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Purpose: To explore whether stimulation of C-fibers in tibial nerves can induce
bladder inhibition by optogenetic transdermal illumination.

Methods: Ten rats were injected with AAV2/6-hSyn-ChR2(H134R)-EYFP into the
tibial nerves. Transurethral cystometry was performed 4 weeks after the virus
injection. Illumination (473-nm blue light at 100mW)was performedwith the fiber
positioned above the right hind paw near the ankle. The light transmission
efficiency was examined with a laser power meter. The effects on cystometry
were compared before and after illumination with the bladder infused with normal
saline and acetic acid, respectively.

Result:Upon transdermal delivery of 473-nm light at a peak power of 100mW, the
irradiance value of 0.653 mW/mm2 at the target region was detected, which is
sufficient to activate opsins. The photothermal effect of 473-nm light is
unremarkable. Acute inhibitory responses were not observed during
stimulation regarding any of the bladder parameters; whereas, after laser
illumination for 30 min, a statistically significant increase in bladder capacity
with the bladder infused with normal saline (from 0.53 ± 0.04 mL to 0.72 ±
0.05 mL, p < 0.001) and acetic acid (from 0.25 ± 0.02 mL to 0.37 ± 0.04 mL, p <
0.001) was detected. A similar inhibitory response was observed with pulsed
illumination at both 10Hz and 50Hz. However, illumination did not significantly
influence base pressure, threshold pressure, or peak pressure.

Conclusion: In this preliminary study, it can be inferred that the prolonged bladder
inhibition is mediated by the stimulation of C-fibers in the tibial nerves, with no
frequency-dependent characteristics. Although the 473-nm blue light has limited
penetration efficacy, it is sufficient to modulate bladder functions through
transdermal illumination on the superficial peripheral nervous system.
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1 Introduction

Tibial nerve stimulation (TNS), approved by the Food and Drug Administration (FDA)
in 2005, is a well-established third-line therapy for overactive bladder (OAB) (Gupta et al.,
2015). The precise mechanism is still unclear; however, accumulating evidence suggests that
bladder inhibitory reflexes play an important role (Yecies et al., 2018; Paquette and Yoo,
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2019). Evidence from animal studies indicates that the small
myelinated Aδ in the afferent tibial nerve may be responsible for
bladder modulation; recruiting C-fibers does not enhance the
bladder-inhibitory effects further (Sato et al., 1980; Kovacevic and
Yoo, 2015). This conclusion is supported by the fact that a low
stimulation amplitude (4–10Tmot) was sufficient for inhibiting OAB,
the range of which was consistent with the Aβ-fiber activation
threshold. However, recently a study revealed that unmyelinated
C-fibers, not Aδ or Aβ, were recruited during TNS in a continuous-
fill rat model. The authors argued that repeated bladder filling and
emptying reinforces excitatory neural circuitry and propensity to
void; the activation of C-fibers under the continuous-fill bladder
condition (at 100Tmot) is required for eliciting inhibitory responses
(Paquette and Yoo, 2019). There are also studies suggesting that
stimulating C fibers may lead to bladder excitation (McPherson,
1966; Kovacevic and Yoo, 2015). These inconsistent results indicate
that the role of C fibers in the tibial nerve remains unclear.

Optogenetics is an emerging technology that enables the activation
or inhibition of specific cells with light (Zhou and Liao, 2021). The
expression of the light-sensitive protein, opsin, is genetically encoded,
providing a way to target the neurons of interest. Channelrhodopsin 2
(ChR2) is the most commonly employed unselective depolarizing opsin.
Exposure to blue light with a wavelength of 473 nm can induce a
structural conformational inversion of 11-cis-retinal to all-trans-retinal,
resulting in the opening of channels, the influx of positive ions,
depolarization of the membrane, and activation of neurons.
Optogenetics has revolutionized our ability to influence neural
activity with high precision. Previous studies reported that AAV2/
6 was largely specific to unmyelinated nociceptive neurons (Iyer
et al., 2014). In this study, we selectively expressed ChR2 in C-fibers,
and investigated whether stimulation of C-fibers in tibial nerves can
induce bladder inhibition, bladder activation, or neither. Moreover,
instead of traditional optogenetics that requires an invasive light-
delivery device to be surgically implanted in the body (Zhou and
Liao, 2021), we utilized transdermal illumination as a non-invasive
approach to target superficial nerves, and subsequently discussed the
potential of this method as an alternative or supplementary approach to
traditional neural electrical stimulation.

2 Materials and methods

2.1 Experimental animals

Ten female Sprague-Dawley rats (180–220 g [g]) were used in
this experiment. Animals were housed under standard conditions
with food and water ad libitum. All procedures were performed in
accordance with protocols approved by the Capital Medical
University Laboratory Animal Welfare and Ethical Review Board
(permit number, AEEI-2022-102).

2.2 Virus injection

The AAV2/6-hSyn-ChR2(H134R)-EYFP and AAV2/6-hSyn-EYFP
were purchased from OBIO Technology Co. (China), which is reported
to target nociceptive neurons (Iyer et al., 2014). During surgery, rats
underwent anesthesia with 2% pentobarbital (30 mg/kg) by

intraperitoneal injection. Breathing was monitored, and body
temperature was maintained with a heating plate throughout the
experiment. The tibial nerve was accessed through the medial side of
the right hind leg near the ankle. The nerve was removed from the
underlying fascia under a microscope. A 30-gauge Hamilton syringe
(10 μL) was inserted under the epineurium of the nerve, and a total of
5×1010 vector genomes were injected. Fast Green (1%; 1 μL) was added to
visualize the injected solution. After the injection, the incision was closed
with sutures, and the rats were treated with ampicillin sodium for 3 days.

2.3 Cystometry

Transurethral cystometry under urethane anesthesia (1.2 g/kg,
intraperitoneal) was performed 4 weeks after virus injection, as
described previously (Kashyap et al., 2018). A polyethylene
catheter (PE-50) was inserted transurethrally into the bladder,
and the catheter was connected by a three-way stopcock to a
micro-infusion pump (Stoelting, IL) and pressure transducer
(MP150; Biopac, CA). The bladder was filled with normal saline
(NS) at a rate of 0.08 mL/min. The bladder capacity (BC) was
defined as the volume of infusion that triggered the first
micturition waves and corresponding urine leakage. Bladders
were emptied by gently pressing on the abdomen. The average of
at least 3 BCs was measured after the stabilization of the cystometry.
An OAB model was induced by infusion of 0.25% acetic acid (AA).
A significant decrease in BC indicated successful disease induction.

2.4 Blue light illumination

A blue light was generated from a 473-nm laser with a 100-μm
optical fiber (1–100mW, RWD Life Science Co., Shenzhen, China).
Illumination (100mW, constant/10Hz/50Hz) was performed with the
fiber positioned 1 cm above the right hind paw near the ankle, with the
fur shaved. Acute bladder responses (during the illumination) and
prolonged bladder responses (after illumination for 30 min) were both
explored. An LP10 laser power meter (Sanwa Electric Instrument Co.,
Tokyo, Japan) was used to assess light transmission efficiency. An
SDR473 radiometer (Shenzhen Speedre Technology Co., Guangzhou,
China) was used to assess the light intensity. A thermocouple sensor
(K-type) connected to a digital thermometer (DM6801A) was used to
detect temperature changes under illumination. The tip of the
thermocouple sensor was inserted into the target tibial nerve region
or placed at the skin surface for local temperature detection.

2.5 Immunofluorescence assessment

The rats were sacrificed after cystometry, and the tibial nerves
and L6-S1 dorsal root ganglions (DRGs) were obtained immediately.
Tissues were fixed with 4% PFA and then embedded with OCT
compound. Tissues were washed in OBS and incubated with
blocking solution. Primary antibodies (1:100 Anti-Peripherin,
ab246502) were diluted in blocking solution and incubated in
sections. Slides were washed 3 times and incubated with
secondary antibodies (1:200 Goat anti-rabbit IgG Alexa Fluor
488). Samples were imaged using a DMI8 microscope (Leica).
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2.6 Statistics

Statistical analysis was performed using R (version 4.2.0; The R
Foundation, Vienna, Austria). Results are expressed as means ±
SEM. A paired t-test was used to compare the cystometry parameters
before and after transdermal illumination. A value of p < 0.05 was
considered statistically significant for all comparisons.

3 Results

3.1 Penetrating ratio and photothermal
effect of a 473-nm light

Previous studies have revealed the relatively limited penetration
depth of visible light in biological tissues (Ash et al., 2017). Our results
revealed a penetrating ratio of 26.7% ± 0.2% at a depth of 1.5 mm and
13.7% ± 0.2% at a depth of 3.0 mm, showing little dependence on the
incident intensity (Figure 1A). Upon transdermal delivery of 473-nm
light at a peak power of 100 mW, the irradiance value of 0.653 mW/mm2

at the target region was detected. Although the tissue penetration of the
473-nm light was limited, for the superficial tibial nerve at the hind leg
near the ankle, the light is sufficient to activate ChR2 for cation influx
(Chen et al., 2018). The photothermal effect of a 473-nm light was
unremarkable. After illumination of 30 min, only a slight temperature
increase at the skin surface (0.47°C ± 0.09°C) and the target region
(0.16°C ± 0.04°C) were detected (Figure 1B). Based on these results, we
confirmed it is possible to manipulate the tibial nerve through
transdermal illumination.

3.2 Acute bladder responses under
illumination

Expression of ChR2-EYFP in C-fibers was confirmed by the
immunohistology of the tibial nerves and DRGs 4 weeks after
transfection (Figure 2). We tested whether transdermal tibial
nerve optogenetic stimulation targeting C-fibers influences
bladder activity. Acute inhibitory responses were not observed

during infusion with NS regarding any of the bladder parameters
(Figure 3A). The irritation of AA successfully induced the OAB
model, with the BC from 0.61 ± 0.05 mL to 0.35 ± 0.05 mL (p =
0.042). Similarly, in the OAB rats, no acute bladder responses were
detected during illumination (Figure 3B).

3.3 Prolonged bladder responses after
illumination for 30min

After illumination for 30 min in the physiological bladder, a
statistically significant increase of BC (0.72 ± 0.05 mL) compared
with baseline (0.53 ± 0.04 mL, p < 0.001; Figure 3C) was detected.
The results showed in pathologic bladder a statistically significant
increase of BC after illumination of the tibial nerve for 30 min
(0.37 ± 0.04 mL) compared with baseline (0.25 ± 0.02 mL, p < 0.001,
Figure 3D). Illumination did not significantly influence base
pressure, threshold pressure, or peak pressure in both physiologic
and pathologic conditions. We furtherly explored whether the
inhibitory response was associated with illumination frequency.
Continuous stimulation, pulsed 10Hz stimulation, and 50Hz
stimulation all elicited an inhibitory response in BC, with no
significant differences among different stimulation protocols
(Figure 3E).

4 Discussion

4.1 The functional role of C-fibers in tibial
nerves

The functional role of different fiber types is still not clear.
Previous studies revealed that the Aδ-fibers were activated under the
required stimulation intensity for TNS(4–10 Tmot), while C-fibers
were activated in a much higher range (100–200 Tmot) (Sato et al.,
1980; Kovacevic and Yoo, 2015). Based on these results, it is inferred
that the inhibitory responses were mediated by Aδ fibers rather than
C-fiber afferents. However, a recent study revealed that TNS leads to
bladder-inhibitory effects only at stimulation amplitudes that

FIGURE 1
Penetration ratio (A) and photothermal effect (B) of transdermal illumination. (A) Penetration ratio of 473-nm constant illumination through skin and
subcutaneous tissue, showing a ratio of 26.7% ± 0.2% and 13.7% ± 0.2% at a depth of 1.5 mm and 3.0mm, with little dependence on the incident intensity.
(B) Temporal change of temperature for skin surface and target tibial nerve region, showing the unremarkable photothermal effect of a 473-nm constant
illumination. Data are presented as mean ± SEM (n = 3 for all experiments).
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electrically recruited unmyelinated C-fibers (Paquette and Yoo,
2019). Similarly, Wallace et al. found that stimulation of C-fibers
can relieve bladder pain. What’s more intriguing is that Mapherson
et al. reported bladder excitation evoked by applying ice to the hind
paws in cats, which was attributed to C-fibers activated by low-
temperature input (McPherson, 1966; Kovacevic and Yoo, 2015).
Based on these results, it is still unknown whether stimulating C
fibers are inactive, inhibitory, or excitatory in nature. In previous
studies, the activation of different fiber types was achieved by
choosing the electrical stimulation intensity. However, electrical
stimulation lacks selectivity in nature. Optogenetics provides a
powerful tool to target C-fibers in a high spatial precision
manner. Previous studies have revealed that AAV2/6 has a
preference for transducing unmyelinated fibers (Yu et al., 2013;
Kudo et al., 2021). Our immunofluorescence result also suggests that
most ChR2 expression is detected on peripherin-positive fibers and
neurons, and the “off-target effect” of AAV2/6 transfection is
relatively low. In this preliminary study, we found that
illumination of C-fibers can both induce prolonged bladder
inhibitory responses when the bladder was infused with NS and
AA, respectively.

4.2 Absence of acute inhibitory responses

Previous experimental studies have shown that TNS can
elicit acute inhibitory effects in rats (Su et al., 2012a; Su
et al., 2015)and cats (Tai et al., 2011a; Tai et al., 2011b), with
the mechanism still largely unknown. In contrast, our results did
not show any significant acute responses in all bladder
parameters. The acute inhibitory effect observed during
electrical stimulation appears to differ from prolonged
bladder inhibition in our study (Paquette and Yoo, 2019).
The former acts like an “on-and-off” switch and can take
only a few seconds or minutes to observe the influence on the
bladder, whereas the latter indicates a different mechanism of
neuromodulation. The illumination directly leads to the
depolarization of the membrane and activation of C-fibers,

while the exact mechanisms of the responses remain unclear.
Previous studies revealed that intense stimulation of C-fibers
may exert efferent effects, secreting neuropeptide, including
substance P, calcitonin gene-related peptide, neurokinin,
et al., and recruiting other fibers in the periphery (Lao and
Marvizon, 2005; Adelson et al., 2009; Edvinsson et al., 2019).
Further investigation is needed to explore whether the
prolonged stimulation of C-fibers in the tibial nerve also
affects bladder function through this mechanism. Prolonged
inhibition may resemble the long-term depression of the
central micturition reflex, which requires more time to
develop (Jiang and Lindstrom, 1998; Su et al., 2012b). The
signals may be transmitted to the spinal cord and then to
higher regions in the central nervous system. Research has
shown that electrical stimulation of peripheral nerves can
lead to an increase in endogenous opioid peptide levels
within the central nervous system (Yaksh and Elde, 1981;
Wang et al., 2005). Of specific note, the level of stimulation
required to produce this opioid peptide release is one that
activates small nociceptive fibers. It can be inferred that the
prolonged bladder inhibition may be mediated by the
stimulation of C-fibers in the tibial nerves, but the
recruitment and activation of other nerve fibers as well as the
upstream targets remain unclear. More research is required to
elucidate this potential peripheral and central mechanism in the
future.

4.3 Consideration of stimulation frequency

The bladder reflex elicited by electrical stimulation of tibial
nerves exhibits frequency-dependent characteristics, where an
inhibitory response can be obtained at low frequencies
(5 Hz–30 Hz in rats and cats) and an excitatory response can be
evoked at high frequencies (50 Hz) (Kovacevic and Yoo, 2015). We
found that both 10 Hz and 50 Hz illumination resulted in an
inhibitory effect similar to constant illumination. The excitatory
response was not observed at high frequencies. It appears that

FIGURE 2
Expression of EYFP for ChR2 transfection in tibial nerve (A) and dorsal root ganglion (B). ChR2-EYFP: green; Peripherin: red, marker for C-fibers; Co-
expressed: yellow. Bar: 100 μm.
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evoking excitatory response by TNS depends on multiple factors,
and the underlying mechanism remains unknown. In this
optogenetic experiment, we directly manipulate C-fibers, which
excluded the possible impact of frequency and intensity on the
selective activation of nerve fibers. The bladder responses elicited by
the excitation of C-fibers did not exhibit frequency-dependent
characteristics, indicating that there may be other mechanisms
underlying bladder excitation at specific electrical frequencies.

4.4 Concerns of further clinical application

Optogenetics has become a powerful cell type-specific tool
that enables light-mediated activation or inhibition of neural
functions (Zhou and Liao, 2021). Optogenetic modulation is a
potential alternative to electrical modulation. There is still a
long way to go before it can be applied clinically. Traditionally,
optogenetic manipulation requires surgical device implantation

FIGURE 3
Acute and prolonged bladder responses to 473-nm illumination. (A) Acute bladder responses during illumination on the physiologic (normal saline-
infused) bladder. (B) Acute bladder responses during illumination on the pathologic (acetic acid-infused) bladder. (C) Prolonged bladder responses after
constant illumination for 30 min on the physiologic (normal saline-infused) bladder. (D) Prolonged bladder responses after constant illumination for
30 min on the pathologic (acetic acid-infused) bladder. (E) Prolonged bladder responses under different illumination protocols (Constant, pulsed
10Hz, pulsed 50Hz, 30 min). Data are presented as mean ± SEM. *: p < 0.05; ****: p < 0.0001.
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of tethered fiber optics or microscale light-emitting diodes,
which is invasive and limited the feasibility of clinical
applications. Transdermal illumination provides a
noninvasive way to achieve optogenetic control of superficial
peripheral afferents or muscles. It’s known that blue light with a
wavelength of 473 nm has limited penetration. Our research
confirmed the acceptable penetrating ratio of 473-nm blue light,
which is sufficient to activate ChR2 for tibial nerve stimulation
in rats. Although we confirmed the feasibility of transdermal
illumination using a 473-nm blue light, there are still concerns
about the limited penetration depth, especially when
considering application in human beings. Many attempts
have been made to improve the optogenetic activation of
deep tissues. Maimon et al. (2017) revealed that higher virus
concentrations can deliver more transgene copies to the neuron
genome; therefore, increased density of ChR2 channels can lead
to a lower required fluence rate for activation. The absorption
and scattering coefficients of red light are significantly lower
than those of blue light. Chrimson (Urmann et al., 2017) and
ReaChR (Lin et al., 2013) were two red-shifted
channelrhodopsin with a wavelength peak of 600–700 nm.
These two opsin variations enable the activation of deeper
tissues and can reduce the required illumination power.
Near-infrared light (NIR), with a wavelength of
650–1350 nm, achieves a maximal penetration depth. Chen
et al. (2018) developed transcranial NIR optogenetic
stimulation of deep-brain tissues via lanthanide-doped
upconversion nanoparticles (UCNPs), which can convert NIR
photons into visible photons. The emission of UCNPs can be
restricted to a specific wavelength using selective lanthanide-ion
doping. The Yb3+-Tm3+ couple emits blue light compatible with
activation of ChR2, while the Yb3+-Er3+ couple leads to green
light for activation of halorhodopsin (NpHR) or
archaerhodopsin (Arch). Hong (2020) developed an
ultrasound-mediated deep-tissue light source for
optogenetics. They made zinc sulfide nanoparticles doped
with silver and cobalt, which can trap electrons and store
energy until triggered by focused ultrasound and emitting
blue light. Compared with direct light illumination, focused
ultrasound enables a penetration depth of roughly 5 cm. These
approaches provide a possible solution for noninvasive
neuromodulation of the bladder, including the targets of the
sacral nerve, pudendal nerve, or direct bladder smooth muscle
cells (Park et al., 2017).

There are still challenges and limitations to be solved before
further application of transdermal illumination of the peripheral
nerves. First, the expression of ChR2 usually decreases after several
weeks or months. New stable viruses should be developed to achieve
persistent expression. Second, the thickness of skin and
subcutaneous fat as well as the angle of the incident beam affects
opsin activation. Improvement of the light-delivery device would
decrease exposure variation. Third, exploring a more noninvasive
and effective transducing route rather than intranerve injection is
essential for translation into clinical practice. Recently, attempts
have been made to introduce optogenetics as a therapeutic approach
in humans, including the PIONEER study (NCT03326336) (Sahel
et al., 2021). We believe such investigations can reveal the prospect
of future therapeutic strategies.

5 Conclusion

In this preliminary study, we optogenetically stimulated C-fibers in
the tibial nerves. It can be inferred that the prolonged bladder inhibition
is mediated by the stimulation of C-fibers in the tibial nerves, with no
frequency-dependent characteristics. Although a 473-nm blue light has
limited penetration efficacy, it is sufficient to modulate bladder
functions through transdermal illumination on the superficial
peripheral nervous system. More effects need to be paid to this
approach before we see the dawn of clinical translation for optogenetics.
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