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Peritoneal dialysis (PD) is an effective alternative treatment for patients with end-
stage renal disease (ESRD) and is increasingly being adopted and promoted
worldwide. However, as the duration of peritoneal dialysis extends, it can
expose problems with dialysis inadequacy and ultrafiltration failure. The exact
mechanism and aetiology of ultrafiltration failure have been of great concern, with
triggers such as biological incompatibility of peritoneal dialysis solutions, uraemia
toxins, and recurrent intraperitoneal inflammation initiatingmultiple pathways that
regulate the release of various cytokines, promote the transcription of fibrosis-
related genes, and deposit extracellular matrix. As a result, peritoneal fibrosis
occurs. Exploring the pathogenic factors and molecular mechanisms can help us
prevent peritoneal fibrosis and prolong the duration of Peritoneal dialysis.
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1 Introduction

The peritoneum is made up of a single layer of mesoderm-derived mesothelial cells and a
thin layer of connective tissue consisting of a dense subepithelial band. The dense band,
composed mainly of collagen fibre bundles, along with some lymphocyte tubes, fibroblasts,
mast cells, macrophages, and capillaries, plays a crucial role in maintaining the function and
structure of the peritoneum (Bajo et al., 2017). The peritoneal natural semipermeable
membrane is responsible for ultrafiltration and solute diffusion during dialysis by converting
solutes and water and removing metabolites while maintaining water and electrolyte balance.

Peritoneal dialysis is a cost-effective method of dialysis (Li et al., 2017) that is gaining
international attention. However, various nonphysiological factors in the dialysate, such as
hyperosmolarity, hyperglycaemia, low pH, glucose degradation products (GDPs), and
advanced glycosylation end products (AGEs), can lead to chronic stimulation and
damage of the peritoneum in PD patients, causing peritoneal sclerosis. Peritoneal
fibrosis has always been a hot topic of research. Here, we provide an overview of how
factors such as inflammation, oxidative stress, glucose metabolism, and hypoxia mediate
peritoneal fibrosis through cytokine generation and molecular pathway activation.

2 EMT induced by TGF-β
Epithelial-mesenchymal transition (EMT) is a complex biological process characterized

by the gradual loss of epithelial-specific markers, such as E-cadherin and zonula occludens-1,
and the acquisition of a fibroblast phenotype expressing fibroblast-specific protein 1 (FSP1)
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and α-smooth muscle actin (α-SMA). This process is accompanied
by changes in cellular behaviour and the production of extracellular
matrix (ECM) (Kalluri and Neilson, 2003).

The exact mechanisms underlying the EMT of peritoneal
mesothelial cells remain unclear, but they are thought to involve
the interaction of cytokines, inflammatory factors, and transcription
regulators. Evidence suggests that Smad and non-Smad signalling
pathways induced by TGF-β1 play a dominant role in the EMT of
peritoneal fibrosis (Lho et al., 2021). In the early phase of fibrosis,
glucose, GDPs, and advanced glycosylation end products (AGEs)
can upregulate type I and type II TGF-β receptors in mesothelial
cells (Suryantoro et al., 2023) by activating protein kinase C-α (PKC-
α) (Wang et al., 2016). TGF-β1 signalling activates the
phosphorylation of Smad2 and Smad3 via type I TGF-β
receptors, and Smad2/Smad3 are transported to the nucleus,
where they directly bind to DNA and regulate the transcription
of target genes, including Snail, collagen, α-SMA, fibronectin, CTGF,
β-catenin, plasminogen activator inhibitor-1 (PAI-1), and matrix
metalloproteinase-2 (MMP2), promoting fibrosis (Derynck and
Zhang, 2003; Hirahara et al., 2009; Xiao et al., 2010; Lei et al.,
2012; Zhang et al., 2022a; Huang et al., 2022; Masola et al., 2022)
(Figure 1). Smad1/5/8 proteins activated by ALKs in response to
BMP (bonemorphogenetic proteins) one to four or other ligands are
also transported to the nucleus to regulate the transcription of target
genes (Balzer, 2020). In addition to the Smad-dependent signalling
pathway, there are also various non-Smad signalling pathways
involved in the process of fibrosis, such as PI3K/Akt, c-Jun
N-terminal kinases (JNK), Wnt/β-catenin, and ERK/NF-κB (Liu
et al., 2012; Jang et al., 2013; Zhang et al., 2013; Lamouille et al.,
2014).

Numerous studies have reported various initiating factors in
epithelial-mesenchymal transition (EMT). For instance, caveolin-1
has been proposed to play a critical role in EMT associated with
peritoneal fibrosis in patients with Parkinson’s disease (Strippoli
et al., 2015). Furthermore, overexpression of insulin-like growth
factor 1 receptor (IGF-1R) has been linked to the promotion of EMT
in human peritoneal mesothelial cells (Xia et al., 2022). These
findings have expanded our understanding of potential strategies
for preventing and treating EMT.

3 Inflammation

Inflammation is a frequent underlying cause of peritoneal
fibrosis in patients with PD. While it can be directly induced by
pathogenic microorganisms, peritoneal inflammation may also
result from the accumulation of uraemia toxins, mechanical
stress on blood vessel walls, ageing, and complications of diabetes
(Cueto-Manzano et al., 2007). In PD patients, an increase in the
number of peritoneal macrophages suggests chronic peritoneal
inflammation, even in the absence of acute peritonitis.

The inflammatory response is a complex process involving
multiple molecular mechanisms, inflammatory mediators, and
signalling pathways. The peritoneum can be damaged by various
factors, activating macrophages and neutrophils that mediate NF-κB
signalling pathways via Toll-like receptors (TLRs) and release
numerous inflammatory cytokines, such as IL-6, IL-1β, IL-8, and
TNF-α, leading to peritoneal fibrosis (Kato et al., 2004). TLRs can

also activate the downstream molecules of JNK, p38MAPKs, and
ERK1/2 through the MyD88 signalling pathway, promoting the
expression of proinflammatory cytokines. In addition, the
NLRP3 inflammasome, a cellular complex composed of proteins,
can activate the cysteine-dependent aspartate-directed proteolytic
enzyme and induce the production of IL-1 and IL-18, resulting in
inflammatory responses (Hautem et al., 2017) (Figure 1). IL-6 plays
a crucial role in regulating inflammation and can be secreted by
macrophages, monocytes, and human peritoneal mesothelial cells.
Exposure to dialysate and IL-1β can trigger the release of IL-6, which
has been reported to increase proportionally with the glucose
concentration in the dialysate (Milan Manani et al., 2016; Yang
et al., 2020). IL-6, along with soluble IL-6 receptors, can facilitate the
synthesis and secretion of MCP-1, MCP-3, and IL-8, as well as
adhesion molecules and angiogenesis factors (Salgado et al., 2002;
Bellón et al., 2011). IL-17, mainly produced by Th17 cells and γδ
T cells, was detected in peritoneal biopsies of PD patients but not
healthy subjects (Rodrigues-Díez et al., 2014). IL-17 can promote the
production of ELR + CXC chemokines in mesothelial cells, such as
CXCL1 and CXCL8. Furthermore, it is believed that IL-17 might
directly stimulate mesothelial cells to produce VEGF via an
unidentified mechanism (Witowski et al., 2018).

In addition, recent studies have begun to focus on the cyclic
GMP-AMP synthase (cGAS)-stimulator of interferon genes
(STING) pathway (Decout et al., 2021; Zhang et al., 2022b).
Inflammation leads to damage to mitochondrial DNA (mtDNA),
which can be released into the cytoplasm under cellular stress and
recognized by various DNA sensing mechanisms, including TLR-
9, cytoplasmic cGAS-STING signalling, and inflammasome
activation, which can result in the development of fibrosis, as
well as pathological angiogenesis and endothelial-to-
mesenchymal transition (Wang et al., 2022a; Wang et al.,
2022b). In the future, there may be more research on
peritoneal fibrosis related to peritoneal dialysis that focuses on
the cGAS-STING pathway.

4 Regulation of epigenetic genes

The role of epigenetic modifications in fibrosis has garnered
increasing recognition. Epigenetic regulation mainly includes DNA
methylation, histone modification, and noncoding RNA regulation.
It is widely believed that DNA methylation of cytosine-phosphate-
guanine (CpG) dinucleotide sites near the gene promoter leads to
target gene silencing. In 2017, Kim et al. found that DNMT1 (DNA
methyltransferase 1) inhibits RASAL1 protein expression by
promoting hypermethylation of RASAL1 (Ras GTPase activating-
like protein 1), which in turn upregulates the expression of TGF-β1
and accelerates peritoneal thickening in vivo in experiments with
encapsulating peritoneal sclerosis rats (Kim et al., 2014). Histone
methylation has also been implicated in PF, as Maeda et al.
demonstrated that the expression of H3K9 histone
methyltransferase and H3K4 methyltransferase can exacerbate the
thickening of the submesothelial compact zone (Maeda et al., 2017).
Recent studies have also linked high expression of EZH2 (Zeste
homologue enhancer 2) with peritoneal fibrosis, possibly through
the activation of profibrotic signalling pathways (Wang et al., 2020;
Shi et al., 2022).
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Furthermore, there is a growing body of evidence indicating that
different types of noncoding RNAs, including microRNAs
(miRNAs) and long-chain noncoding RNAs (lncRNAs), are
involved in the transcription of genes that regulate peritoneal
fibrosis (Liu et al., 2019) (Figure 1). Studies have suggested that
certain miRNAs, such as miR-129–5p and miRNA-302c, have a
protective effect on the peritoneum during dialysis, while others,
such as miRNA-30b, miRNA-23, and miRNA-21, can exacerbate
peritoneal fibrosis (Xiao et al., 2015; Morishita et al., 2016a; Hirai
et al., 2017; Lopez-Anton et al., 2017; Yanai et al., 2018; Zhang et al.,
2019). The functions of miRNAs are diverse and complex, primarily
involving the regulation of gene expression through interactions
with DNA, RNA, proteins, or their combinatorial interactions
involved in transcriptional and posttranscriptional regulation
(Guo et al., 2020). Some researchers also believe that lncRNAs,
such as BC049991 and AK080622, may participate in peritoneal
fibrosis by influencing heat shock protein 72 (HSP72) (Bergmann
and Spector, 2014). Additionally, lncRNA AV310809 promotes
TGF-β1 by activating the Wnt2/β-catenin signalling pathway,
which induces EMT in human peritoneal mesothelial cells
(Bergmann and Spector, 2014). While circular RNAs (circRNAs)
have been implicated in organ fibrosis, such as cardiac fibrosis, liver
fibrosis, and pulmonary fibrosis (Li et al., 2019; Yousefi and Soltani,
2021), relatively little is known about their involvement in peritoneal
fibrosis. It is possible that circRNAs may be involved in peritoneal
fibrosis by inducing EMT, but further research is needed to
determine the specific principles and molecular mechanisms.

5 Autophagy and apoptosis

Autophagy is a double-edged sword. On the one hand, it can be
activated by cells to prevent organelle damage caused by reactive
oxygen species (ROS) under certain external stimuli. However, it
may also induce epithelial apoptosis or EMT. Studies have shown
that autophagy initiation can prevent peritoneal tissue damage by
blocking NLRP3/IL-1β-mediated inflammasome activation (Wu
et al., 2016) (Figure 1).

Normally, autophagy activation and inhibition are in balance,
and excessive activation or inhibition can lead to oxidative stress,
inflammatory damage, and even fibrosis. In fact, it has been reported
that rapamycin, an autophagy inducer, stimulates mTOR signalling
in peritoneal mesodermal cells activated by hyperglycaemia,
reducing EMT and improving peritoneal fibrosis (Wu et al.,
2018). Conversely, high glucose peritoneal dialysate has been
shown to induce autophagy and fibrosis in human peritoneal
mesothelial cells (Wu et al., 2018). This may be involved in
EMT, the proinflammatory response, and angiogenesis by
regulating the TGF-β/Smad3, EGFR/ERK1/2, STAT3/NF-κB, and
β-catenin axes (Shi et al., 2021), suggesting that autophagy plays a
role in peritoneal fibrosis.

Autophagy is reported to contribute to apoptosis as type II
programmed cell death via autodigestive cellular progression or
extracellular stimulation (Ghavami et al., 2015; Zou et al., 2016).
Some researchers have reported that high-glucose peritoneal
dialysate induces Beclin 1-dependent autophagy in human
peritoneal mesoepithelial cells (HPMCs) and that autophagy
inhibition reduces EMT, fibrosis and apoptosis in HPMCs

(Wu et al., 2018). It has also been suggested that promoting
mitochondrial synthesis and inhibiting apoptosis can improve
peritoneal fibrosis (Li et al., 2022).

6 Pseudohypoxia and angiogenesis

Angiogenesis is considered to be a significant factor in peritoneal
ultrafiltration failure (Schilte et al., 2009). Neovascularization
increases the effective surface area for solute exchange and
decreases osmotic pressure driven by glucose from the peritoneal
dialysate, resulting in a decrease in ultrafiltration volume.
Neovascularization is often associated with hypoxia in
physiological or pathological states (Lei et al., 2012). Peritoneal
mesenchymal cells overmetabolize glucose, leading to
pseudohypoxia with increased NADH-NAD+ (oxidized-reduced
nicotinamide dinucleotide ratio) in the cytosol (Krediet and
Parikova, 2022) (Figure 1). This ratio promotes the expression of
hypoxia-inducible factor-1 (HIF-1), which is one of the most
important regulators in the hypoxia response. HIF-1 can regulate
the transcription of various genes, mediate the occurrence of EMT,
and thus participate in peritoneal fibrosis. YANG et al. have
suggested that the activation of the HIF-1α/STAT3 signaling
pathway is the main contributor to EMT of mesenchymal cells
induced by high glucose, and that knockdown of HIF-1α could
alleviate the EMT and fibrosis process (Yang et al., 2021). Yoshiyuki
et al. found that hypoxia can promote the expression of HIF-1α,
Snail-1, VEGF, andMMP-2 in rat mesenchymal cells, which induces
EMT, and that HIF-1α inhibitors can diminish fibrosis by
suppressing the expression of these factors (Morishita et al.,
2016b). VEGF is a key player in peritoneal angiogenesis, and
studies have shown that peritoneal dialysis solution with glucose
is related to the growth of VEGF (Zweers et al., 2001). GDPs in PD
solution can induce the formation of AGEs, and the AGE (RAGE)
receptor plays a profibrotic role by mediating the activation of VEGF
to induce capillary angiogenesis and promoting TGF-β-induced
EMT (De Vriese et al., 2006; Boulanger et al., 2007).
Angiogenesis is regulated by cell growth factors such as VEGF
and basic fibroblast growth factor (bFGF), as well as statins such
as angiostatin and endostatin (ES) (Kakuta et al., 2005; Tanabe et al.,
2007; Nakao et al., 2010).

Apart from VEGF, several other factors contribute to
peritoneal neovascularization. Aquaporin-1 (AQP 1), which is
responsible for fluid transport, plays a vital role in angiogenesis
and endothelial cell migration (Saadoun et al., 2005). Angiotensin
2 (Ang-2) is an angiogenic factor that has been found to be
involved in peritoneal neovascularization in rats with EPS (Io
et al., 2004). Prostaglandin E2 and MCP-1 enhance epithelial cell
migration and induce the transcription of angiogenin-related
genes, contributing to angiogenesis (Ito et al., 2000; Xiao et al.,
2010). Moreover, peritoneal smooth muscle cells are activated after
infection and induce the formation of new blood vessels by
producing proangiogenic factors such as TGF-β, fibroblast
growth factor, VEGF, tumour necrosis factor-α, and IL-8
(Aroeira et al., 2005). Inflammatory factors such as IL-1β and
IL-6 may also participate in neovascularization by stimulating
endothelial progenitor cell proliferation and inducing VEGF
synthesis (Rosell et al., 2009; Catar et al., 2017).
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7 Oxidative stress and glucose
metabolism

Oxidative stress is a common occurrence in patients with
chronic kidney disease (CKD) and its severity increases with the
progression of the disease (Dounousi et al., 2006). In patients
undergoing peritoneal dialysis, oxidative stress is mainly
attributed to the bioincompatibility components of the peritoneal
dialysis fluid, such as high glucose concentration, acidic pH, high
osmolarity (Liakopoulos et al., 2017) and uraemic toxins (Castoldi
et al., 2010). The accumulation of glucose degradation products
(GDPs) in the peritoneum triggers the formation of excessive
advanced glycation end products (AGEs), reactive oxygen species
(ROS), and advanced oxidized protein products (AOPPs). The main
pathway of ROS formation is through increased glucose oxidative
metabolism triggered by GDPs and AGEs. The accumulation of
AGEs in the peritoneal dialysis fluid promotes the expression and
accumulation of specific multiligand transmembrane receptors,
known as RAGE, in the peritoneum (Figure 1). These receptors
induce morphological modifications of intracellular proteins, which
alter the structure of the extracellular matrix (ECM) composition
and the receptors expressed on the peritoneal cell membrane.

Finally, ROS are produced when AGEs and AGE-modified
proteins closely integrate with RAGE. Furthermore, ROS mediate
the activation of proinflammatory factors, cytokines, transcription
factors and growth factors, contributing to downstream aberrant
gene transcription and apoptosis (Roumeliotis et al., 2020).

Si et al. found that PD fluid indeed induces metabolic
reprogramming in the mouse peritoneum through conducting
gene expression profiling and metabolomics analyses. Specifically,
this reprogramming is characterized by a state of hyperglycolysis (Si
et al., 2019). Correcting the metabolic state in mesothelial cells may
be a therapeutic approach to treating peritoneal fibrosis (Si et al.,
2019; Fu et al., 2022). GLUTs and SGLTs are involved in glucose
transport and energy metabolism (Onishi et al., 2015; Han et al.,
2022). The presence of high glucose levels in peritoneal dialysis fluid
can potentially stimulate the expression of GLUT1 and SGLT1,
leading to enhanced glucose absorption and a reduction of the
osmotic gradient for ultrafiltration (Schröppel et al., 1998; Hong
et al., 2016). Unfortunately, this process can ultimately contribute to
the development of peritoneal fibrosis. With the continuous
emergence of new hypoglycaemic drugs, some have found that
SGLT-2 inhibitors reduce the absorption of glucose in peritoneal
dialysate by inhibiting the activity of SGLT-2 (Zhou et al., 2019).

FIGURE 1
Cells and activated molecular pathways involved in peritoneal ultrafiltration failure.

Frontiers in Physiology frontiersin.org04

Li et al. 10.3389/fphys.2023.1220450

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1220450


They also significantly reduce the concentration of TGF-β,
peritoneal thickening and fibrosis, and microvascular density,
thus improving ultrafiltration (Balzer et al., 2020; Shentu et al.,
2021). However, considering that the primary target of SGLT
inhibitors in oral formulations is the renal tubules, it may be
necessary to create more dosage forms, such as those that can be
administered by intraperitoneal injection or added to peritoneal
dialysis fluid, to improve peritoneal fibrosis.

8 Conclusion

In general, there are many factors involved in the development
of peritoneal fibrosis in patients with abdominal dialysis, and the
molecular signalling pathways involved are also complex, with
interactions and influences on each other. Several factors are
recognized for their importance in the development of peritoneal
fibrosis in patients with PD. The most important is the use of
traditional biocompatible peritoneal dialysis, which contains high
glucose concentrations and glucose degradation products. Growth
factor TGF-β1 is transformed by inducing many profibrotic events,
including epithelium-mesenchymal transformation, fibroblast
proliferation, and extracellular matrix deposition, playing a
central role in peritoneal fibrosis. A solution containing high
glucose stimulates the synthesis of TGF-β1 by activating protein
kinase C in peritoneal cells and induces TGF-β type I and type II
receptors, which induce various fibrosis-related signalling molecular
transport pathways, including Smad-dependent and Smad-
independent signalling pathways. Increasing studies on epigenetic
regulation, hypoxic stimulation, and neovascularization are
beginning to confirm their involvement. Peritonitis promotes
peritoneal fibrosis through inflammatory factors such as IL-1β
and IL-6, exacerbating the chronic induction of TGF-β1 synthesis
(Kang et al., 1999), and promoting fibrosis events. Among the many
factors involved in peritoneal fibrosis, EMT, the inflammatory
response, autophagy, epigenetic regulation, and
neovascularization are the dominant factors in fibrosis, of which
TGF-β1 plays an important role in the activation of various
signalling pathways, the induction of inflammatory factors, and
the hypoxia stress response. Correspondingly, many scholars
increasingly emphasize the proposed peritoneal mesothelial cell
markers that reflect the inflammatory state of the peritoneum
and the degree of fibrosis, and the application of clinical
evaluation of peritoneal ultrafiltration function is an important
part of the evaluation of the treatment effect. Carbohydrate
antigen CA125, CTGF, suppression of tumorigenicity 2, MMP-2,
and microRNAs (Mizutani et al., 2010; Ge et al., 2012; Barreto et al.,
2013; Krediet and Struijk, 2013; Kim et al., 2019) are some of the

biomarkers that have been proposed thus far, and the specificity and
sensitivity of their diagnosis still need to be confirmed by more
studies. Based on the above-related precipitating factors in the final
treatment, the proposed peritoneal fibrosis treatments mainly
include the use of biocompatible dialysate, tyrosine kinase
inhibitors, inflammatory factor blockers, renin-angiotensin
system inhibitors, and immunosuppressants, but most of these
are still being studied in animal experiments or early clinical
studies and are not widely used in clinical practice. In the future,
more research is needed to further supplement the research targets
and specific and detailed molecular mechanisms related to
peritoneal fibrosis, and more clinical therapeutic drug
intervention experiments will make greater contributions to
delaying peritoneal fibrosis and providing more effective
abdominal dialysis therapy for patients with PD.
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