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Impact of electrode orientation,
myocardial wall thickness, and
myofiber direction on
intracardiac electrograms:
numerical modeling and
analytical solutions
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3Department of Physics and Astronomy, Ghent University, Ghent, Belgium

Intracardiac electrograms (iEGMs) are time traces of the electrical potential
recorded close to the heart muscle. We calculate unipolar and bipolar iEGMs
analytically for a myocardial slab with parallel myofibers and validate them
against numerical bidomain simulations. The analytical solution obtained via
the method of mirrors is an infinite series of arctangents. It goes beyond the
solid angle theory and is in good agreement with the simulations, even though
bath loading effects were not accounted for in the analytical calculation. At
a large distance from the myocardium, iEGMs decay as 1/R (unipolar), 1/R2

(bipolar and parallel), and 1/R3 (bipolar and perpendicular to the endocardium).
At the endocardial surface, there is a mathematical branch cut. Here, we show
how a thicker myocardium generates iEGMs with larger amplitudes and how
anisotropy affects the iEGM width and amplitude. If only the leading-order term
of our expansion is retained, it can be determined how the conductivities of
the bath, torso, myocardium, and myofiber direction together determine the
iEGM amplitude. Our results will be useful in the quantitative interpretation of
iEGMs, the selection of thresholds to characterize viable tissues, and for future
inferences of tissue parameters.

KEYWORDS
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1 Introduction

Heart rhythm disorders are still the main cause of death worldwide. The main tools
to study cardiac arrhythmias and their properties non-invasively include measurements of
electrical potentials in the body caused by electrical sources in the heart. There exist several
mapping strategies, outlined by Choudhuri and Akhtar (2012). When recorded on the body
surface, these signals are known as electrocardiograms (ECGs). To treat arrhythmias, a
commonmethod is intracardiac ablation (Bhaskaran et al., 2020), a procedure during which
a catheter containing electrodes is inserted into the heart and the potentials are locally
recorded, resulting in intracardiac electrograms (iEGMs). To guide the ablation, electro-
anatomical voltage mapping (EAVM) is used, in which an electrode on a catheter roves over
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the cardiac wall and measures and maps the potential on
a constructed mesh. Presently, only iEGMs have sufficient
spatiotemporal resolutions to be used as the basis for reliable
catheter ablation. To this purpose, cardiologists use spatial
registration and processing packages, such as CardioInsight
(Ramanathan and Jia, 2006) and EnSite (Ptaszek et al., 2018).
Intracardiac electrograms (EGMs) are used to localize and
characterize arrhythmia substrates from the amplitude, shape, and
complexity of the signals (Bolick et al., 1986; Glashan et al., 2018).

The concrete motivation for this study results from ongoing
debates in the medical literature concerning the interpretation
of EGM properties. As a first example, Glashan et al. (2018)
recently proposed that in order to delineate non-viable tissue
regions based on the unipolar EGM amplitude [usually carried
out using mapping strategies (Jackson et al., 2015) and classification
rules (Marchlinski et al., 2000; Nayyar et al., 2018)], the total wall
thickness should be taken into account. This is currently not
the case, as medical standards prescribe constant thresholds of
Φuni > 1.5 mV for healthy tissues, and 0.5–1.5 mV for the border
zone. Values Φuni < 0.5 mV are considered to occur in the densely
scarred myocardium (Marchlinski et al., 2000).

The aim of this study is to develop an analytical approach to
explain and predict certain properties of the iEGM and to support
these findings with simulation data.

In brief, we considered an idealized geometry of the myocardial
wall consisting of one layer with a constant myofiber direction,
lying between spaces of constant conductivity, representing the
cardiac cavity (blood pool) and the surrounding torso, see Figure 1.
At distance h from the endocardium, we set two electrodes
with interelectrode distance d to mimic a bipolar catheter, whose
orientation is fixed by angles α and β in Figure 1. Our solution to
bidomain equations (neglecting bath-loading effects) then yielded
an explicit solution for the unipolar voltage Φ(t) registered by the
catheter tip (distal electrode) and the bipolar signal, which equals the
voltage difference across the electrode.The solution for the unipolar
solution was found as an infinite series, see Supplementary Eq. 70.
However, when the electrode was close to the endocardium, the first
term in this summation already gave a reasonable approximation.
Our main result can, thus, be stated as follows:

Φ (t) ≈
(ϕmax −ϕrest)

π
gi,xx

(gi,xx + ge,xx + ηgB)
Θ̃1 (t) . (1)

Here, ϕmax −ϕrest is the difference in transmembrane voltage
during upstroke (i.e., about 100 mV); gi,xx and ge,xx are the
intra- and extracellular conductivities in the direction of wave
propagation and gi,zz and ge,zz are the conductivities in the
transmural direction. Together they determine the anisotropy ratio
η = √(gi,xx + ge,xx)/(gi,zz + ge,zz) that quantifies the anisotropy of the
tissue. Finally, Θ̃1 is the angle subtended by the wave front when
viewed from the electrode, after stretching the wall thickness over
factor η.

The analytical result was confirmed by numerical bidomain
simulations (Plank et al., 2021). From the novel description, we
learned the explicit dependency of the uni- and bipolar iEGM on
six conductivity parameters. Furthermore, the EGM amplitude was
found to increase monotonically (with the saturation) with the
wall thickness and to drastically reduce when the wave propagated
perpendicular to the myofibers.

The remainder of this paper is structured as follows: Section 2
outlines the numerical methods. The analytical results are derived
in Section 3, with the solution to the anisotropic case included in
Supplementary Appendix A2. The analytical and numerical results
were then used to assess the impact of the slab thickness, angle of
incidence with the fibers, and electrode configuration (orientation,
position, and interelectrode distance). Section 4 discusses our results
and compares them to previous numerical and analytical works in
the literature. Finally, a conclusion and outlook are given.

2 Methods

2.1 Physics model: bidomain equations

The wave propagation was modeled by bidomain
equations (Tung, 1978; Roth, 1991; Clayton et al., 2011), which
describe the evolution of the extracellular electrical potential Φ( ⃗r, t),
the intracellular electrical potential Φint( ⃗r, t), and their difference,
the transmembrane potential Vm =Φint −Φ.Within the myocardial
wall, the following coupled partial differential equations are applied:

∇⃗ ⋅ (Gi +Ge) ∇⃗Φ = −∇⃗ ⋅ (Gi∇⃗Vm) , (2a)

∇⃗ ⋅Gi∇⃗ (Vm +Φ) = βM(CM
∂Vm

∂t
+ iion (Vm,u)) , (2b)

∂u
∂t
= K (Vm,u) . (2c)

Here, Gi and Ge are the conductivity tensors for the intracellular
and extracellular domain, βM is the surface-to-volume ratio, CM
is the membrane capacitance, and iion describes the ion currents
through the membrane. The ionic currents themselves depend
on the transmembrane voltage and on ionic concentrations and
membrane gates that are grouped in column vector u. The evolution
of this state vector is governed by Eq. 2c. The functions iion
and K together specify the reaction kinetics, i.e., the cardiac cell
model (Clayton et al., 2011). In the bidomain model, the active
myocardium is surrounded by a blood pool and torso, in which
the electrical potential is denoted as ΦB or ΦT . These regions only
exhibit isotropic passive conduction.

∇⃗ ⋅ (gB∇⃗ΦB) = 0, (in blood pool) (2d)

∇⃗ ⋅ (gT∇⃗ΦT) = 0. (in torso) (2e)

Within our numerical study, we took gB = gT, i.e., the myocardium
was embedded in a bath of isotropic and homogeneous conductivity.
In our analytical result, we used a three-layer geometry, with gB ≠ gT.
The myocardium there was a slab of thickness L parallel to the XY
plane but was unbounded in the X and Y directions. At the outer
boundary of the bath, Neumann boundary conditions were applied,
which state that no electrical current can flow outside the bath. In
our slab geometry, we applied the same boundary condition to the
edge of the blood pool.

n⃗ ⋅ ∇⃗ΦT = 0, (at torso boundary) (2f)

n⃗ ⋅ ∇⃗ΦB = 0. (at blood pool boundary) (2g)
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FIGURE 1
Setup of the simulation. The wave propagation is in all simulations in the X-direction. Here, L is the wall thickness, ψ is the angle between the myofiber
direction and the direction of wave propagation, α is the elevation angle of the catheter, and β is the azimuthal angle. The interelectrode distance on
the catheter is d, and h is the distance of the catheter tip to the myocardial wall. The highlighted (yellow) tissue is the stimulated tissue and, thus, the
onset of the wave.

At the interface between the myocardium and blood pool and torso,
the following transition conditions were applied: Φ is continuous
across the interface, extracellular current flows to the bath, and
intracellular current cannot flow to the bath. With * denoting the
blood or torso domain, we have the following:

Φ =Φ* (at myocardial boundary) (2h)

n⃗ ⋅ (Gi +Ge) ∇⃗Φ = g*n⃗ ⋅ ∇⃗Φ*, (at myocardial boundary) (2i)

n⃗ ⋅Gi∇⃗Φint = 0, (at myocardial boundary), (2j)

where n⃗ is a normal vector to the interface (in either direction).
The unipolar electrical signal Φ was measured by a small

electrode close to the heart at position ⃗relectrode:

Φunipolar (t) =Φ( ⃗relectrode, t) . (3)

In experiments and clinical practice, physicians can also record
the voltage difference between two electrodes. Inside the heart,
convention is generally used to subtract the voltage of the proximal
electrode (furthest away from the tissue) from the distal one (closest
to the tissue). Thus, the bipolar EGM can be calculated as follows:

Vbipolar (t) =Φprox (t) −Φdist (t) =Φ( ⃗rprox, t) −Φ( ⃗rdist, t) . (4)

We now specify the electrode configuration used in our
theoretical and numerical study.

2.2 Geometry set-up and electrode
configuration

We locally considered themyocardial wall to be a slab of constant
thickness L, such that the endocardial surface was located at the
plane z = 0. The myocardial wall extended between z ∈ [−L,0]. To
obtain a propagating action potential in the XZ plane, a planar
stimulus was applied at the left border of the medium (i.e., at
most negative X-values in the domain). The relative position and

orientation of the myocardial wall and sensing electrodes are
depicted in Figure 1. The problem was assumed to be independent
of the Y-coordinate (which is a simplification), but the Y-direction
was nonetheless included in the numerical simulations.

At distance h above the endocardial surface (z = 0), a first (distal)
electrode was placed, shown as the blue point in Figure 1, that can
be used to acquire unipolar iEGMs, denoted as Φdist(t) =Φ( ⃗rdist, t).

At distance d from the first electrode, a second (proximal)
electrode was placed (the red dot in Figure 1) to record Φprox(t) =
Φ( ⃗rprox, t).

The catheter orientation was varied using two angles, shown in
the study by Schuler et al. (2013): the azimuthal angle β ∈ [−90°,90°]
between the projection of the catheter on the tissue and the X-axis
and the elevation angle α ∈ [0°,180°] between the catheter and the
tissue. In terms of these angles, the spatial vector pointing from the
distal to the proximal electrode is given as follows:

d⃗ = d(cosαcosβ ⃗ex + cosα sinβ ⃗ey + sinα ⃗ez) . (5)

To compare to the analytical results, we only used parallel
myofibers within this study. We initiated plane waves along the
X-direction of the slab and took myofibers within the XY plane,
enclosing a constant angleψ ∈ [0°,90°]with the positive X-direction.
Here, g⋆ij are the components of the tensorG⋆ and ⋆ refers to either
the intracellular or extracellular compartment; hence, we found the
following:

g*,xx = g*,l cos
2ψ+ g*,t sin

2ψ,

g*,yy = g*,t cos
2ψ+ g*,l sin

2ψ,

g*,xy = 2(g*,l − g*,t)cosψ sinψ,

g*,zz = g*,t,

g*,xz = g*,yz = 0.

(6)

Here, l and t stand for the longitudinal and transversal component,
respectively. The angle ψ was used to quantify the effect of the angle
betweenwave propagation andmyofiber direction on iEGMs, which
turned out to be an important characteristic of anisotropy.
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2.3 Numerical solution to the bidomain
equations

All the bidomain simulations were run using the open cardiac
electrophysiology simulator for in silico experiments openCARP
(Plank et al., 2021). The ten Tusscher–Panfilov 2006 model (TP06)
with epicardial cells was used for reaction kinetics (ten Tusscher
and Panfilov, 2006). The conductivities g used for the simulations
(Plank et al., 2021) are gi,l = 0.1527 S/m, gi,t = 0.0312 S/m,
ge,l = 0.5485 S/m, ge,t = 0.3361 S/m, and gbath = 0.7 S/m. With
these conductivity values, we measured a longitudinal CV of
0.42 m/s and a transverse CV of 0.2 m/s, which qualitatively
agrees with the studies by Costa et al. (2013) and Caldwell et al.
(2009). The bath-loading effects seen when using the values
used by Bishop et al. (2011) and Bishop and Plank (2011b) are
less prominent when using our values and are neglected in this
study.

The simulations were performed on a 3D slab of size 70 × 70 ×
L mm (see Figure 1), surrounded by a bath of 5 mm in all three
directions.These tetrahedralmesheswere generated usingMeshTool
(Neic et al., 2020) with a resolution of 0.2 mm.

The spatial discretization was carried out using Galerkin FEM
(Sundnes et al., 2006). For temporal discretization, a parabolic solver
was decoupled from an elliptic solver. The former uses the implicit
Crank–Nicolson scheme (Fadugba et al., 2013), while the latter uses
the direct forward Euler scheme. The time step size with which the
partial differential equations were solved is equal to dt = 100 μs. A
total time of 600 ms was simulated with a sampling step of 0.1 ms.
A transmembrane current of strength 100 μA/cm2 with a duration
of 1 ms was applied on the area of 1× 70× L mm (see Figure 1). A
grounded region of 1 mm3 was added at the corner of the bath of
(75,75,L+ 5) mm.

The simulations were run on an Intel R© Xeon R© Gold 6326 CPU
@ 2.90 GHz.This machine has 64 threads, with two threads per core
and 16 cores per socket, of which there are only two. Only 16 threads
were used to run the simulations. Depending on the parameters, one
simulation took between 9 h–13 h.

We report results for h = 1 mm, since for smaller values of
h, this value becomes comparable to the finite element size and
discretization artefacts affect the EGM amplitude. Furthermore, the
lowest simulated interelectrode distance is d = 2 mm, which is the
default value used in this paper.

Within each simulation, different electrode orientations were
mimicked by recording the extracellular potential along 149 points
regularly spaced on a hemisphere centered around the distal
electrode position, similar to the study by Blauer et al., 2014; we took
α ∈ {0°,30°,60°} and β ∈ {−90°,−60°,…,60°,90°} and supplemented
α = 90° (in which case β is irrelevant). This set was taken for
three different interelectrode distances d ∈ {2,3,4} mm, resulting
in 7× 7× 3+ 1 = 149 points, where “+1” is for the central distal
electrode position at the center of the hemisphere (see blue dot in
Figure 1).

We varied two quantities amongst the different in silico
experiments: wall thickness L and wave-fiber angle ψ. The different
values used for these parameters are L = 2,5,and 10 mm and ψ= 0,
30, 60, and 90°. This set-up led to a total of 4*3 = 12 simulations, in
which 149 unipolar EGMs were generated in each case.

2.4 Post-processing of the simulation
results

The simulations provided us with the time course of the
extracellular potential for the two points of the catheter. We studied
the effect of the amplitude or peak-to-peak amplitude and the
EGM width or duration, on the properties of the electrogram.
The numerical simulations generated both depolarization (QRS
complex) and repolarization (T-wave) parts. Both complexes could
be selected by taking the first and second half of the signal,
respectively.The analytical results only generated the depolarization
wave.We compared iEGMs in terms of the following characteristics.

2.4.1 Extremal values
Both minimum and maximum values of the electrical potential

were calculated. The generated signals were smooth and densely
sampled such that no pre-filtering was required.

2.4.2 Peak-to-peak amplitude
Following clinical practice, we also report the peak-to-peak

difference, Φpp = ϕmax −ϕmin.

2.4.3 Width of the EGM
The width of the EGM or EGM duration should reflect the time

interval over which the peak is formed but is tedious to define in
practice due to a vast variation in the signal morphology. Here, we
defined the fraction of completion for both QRS and T waves, given
as follows:

S (t) =
∫
t

−∞
|Φ (t) |dt

∫
∞

−∞
|Φ (t) |dt

. (7)

Then, in analogy to the measurement of the action potential
duration, we define the start and stop time of the signal as follows:
S (t5) = 0.05 and S (t95) = 0.95. Then, the time interval, including
90% of absolute surface variations under the signal curve, was as
follows:

W90 = t95 − t5. (8)

This quantity was used in the following as the width of the EGM.

2.4.4 The root-mean-squared error
To quantify the resemblance between two signals Φ1 and Φ2, we

used the root-mean-squared error (RMSE) on the interval of interest
t ∈ [t0, t1]:

RMSE = √ 1
t1 − t0
∫
t1

t0
|Φ1 −Φ2|2dt, (9)

which yielded a value in mV.

3 Results

We first report an analytical solution for the iEGM in a slab with
parallel fibers and then interpret the results.
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3.1 Analytical solutions

The calculation of an EGM in an isotropic homogeneous
medium is reviewed in Section 3.1.1 and is extended to a three-
layered medium in Section 3.1.2 and improved even further to
include the anisotropic case in Section 3.1.3.

3.1.1 Analytical unipolar EGM in an isotropic
homogeneous medium

The set of coupled Eq. 2a has not yet been solved analytically.
However, if the distribution of the transmembrane potentialVm( ⃗r, t)
is known, Eq. 2a can be regarded as a Poisson problem:

−∇⃗ ⋅ (Gi +Ge) ∇⃗Φ = ρ (x, t) , (10)

with charge density

ρ = ∇⃗ ⋅ (Gi∇⃗Vm) . (11)

A similar reasoning was used to approximate electrical signals from
monodomain simulations in the pseudo-bidomain method or the
lead-field method (Bishop and Plank, 2011a).

The shape of the wave front in a slab with uniform fibers is in
general non-planar, due to bath-loading effects; the presence of a
conducting layer around the myocardium tends to accelerate the
wave front near the tissue–bath interface (Roth, 1991; Bishop and
Plank, 2011b; Bishop et al., 2011). In our simulation results with
conductivity values taken from the literature, we found that the wave
front was approximately planar, see Figure 2C.Therefore, within this
study, we neglected bath loading effects and assumed thatmembrane
potential Vm changed rapidly from resting state ϕrest = −86 mV to
ϕmax = +10 mV, over a plane parallel to the YZ plane. For a wave
traveling to the positive X-direction, it was found that

Vm = ϕmax − (ϕmax −ϕrest)H (x− vt) , (12)

with H(x) as the Heaviside step function.
By inserting this Ansatz (Eq. 12) into the bidomain of Eq. 2a,

we obtained a Poisson problem (Eq. 10), with the following charge
density:

ρ (x, t) = −(ϕmax −ϕrest)gi,xxδ
′ (x− vt) . (13)

Here, δ(x) is the Dirac distribution that represents a localized
charge (Arfken andWeber, 1995); its spatial derivative, as appearing
in (Eq. 13), is themathematical representation of an electrical dipole
layer.

The general solution to this case could be obtained by linear
superposition, in the form of Green’s functions. If G( ⃗r, ⃗r0) was the
electrical potential Φ created by a unit point charge at ⃗r0

−∇⃗ ⋅ (Gi +Ge) ∇⃗Φ = δ( ⃗r− ⃗r0) , (14)

respecting the boundary conditions, then the solution to (Eq. 10) is
as follows:

Φ ( ⃗r, t) =∭G( ⃗r, ⃗r0)ρ( ⃗r0)d3r0. (15)

So, the search for an analytical solution came down to 1) finding the
Green’s function and 2) integrating it over the source configuration.

In our present scope, we only considered wave fronts parallel to the
YZ plane, whence

Φ ( ⃗r, t) = ∫
0

−L
G( ⃗r,z0)ρ(z0)dz0. (16)

For general anisotropic and inhomogeneous media, the Green’s
function has no closed form and should be computed numerically.
In this paragraph, we continue the simplest case possible, where the
conductivity in the Poisson’s Eq. 10 in the tissue is the same as in
the blood and torso, in addition to being constant and isotropic.
This implies thatGi +Ge = gBI = gTI = ̃gI, where we used ̃g to denote
the simplified, lumped conductivity. We refer to this assumption
as the “homogenized” case, since the differences between the
conductivities of the myocardium, blood, and torso are neglected
and have been replaced by a homogeneous conductivity ̃g. Our use
of the term “homogenized” should not be confounded with the
homogenization of the cellular structure within the tissue, which
takes place during the derivation of bidomain equations (Neu and
Krassowska, 1993).

In the analytical derivation, the bath was taken to be unbounded
as opposed to the simulations. To denote that the potential too is an
approximation, we indicated it as Φ̃.

Under this condition, the problem is reduced to a classical
electrostatic problem:

̃gΔΦ̃ = (ϕmax −ϕrest)gi,xxδ
′ (x− x0)H (z+ L)H (−z) , (17)

with the dipole sheet position, x0 = vt.
In the first step, we replaced the source by a line charge of

unit strength parallel to Y that is placed at x = x0 and z = z0,
i.e., ρ = δ(x− x0)δ(z− z0). Then, it was found from Gauss’ law that
(Jackson, 1975)

̃gΔΦ̃line = −δ(x− x0)δ(z− z0)

⇒ Φ̃line = −
1
2π ̃g

ln√(x− x0)
2 + (z− z0)

2. (18)

Differentiating with respect to x0 gave the potential distribution of a
dipole line, with the dipole oriented in the X-direction:

̃gΔΦ̃dipole line = (ϕmax −ϕrest)gi,xxδ
′ (x− x0)δ(z− z0)

⇒ Φ̃dipole line =
(ϕmax −ϕrest)gi,xx

2π ̃g
(x− x0)

(x− x0)
2 + (z− z0)

2 . (19)

To obtain the potential generated by the wave front, the dipole line
charges are needed to be stacked on top of each other in the Z-
direction, z0 ∈ [−L,0], where z = 0 corresponds to the endocardium.

Φ̃dipole layer (x,x0,z) = ∫
0

−L
Φ̃dipole linedz0,

=
(ϕmax −ϕrest)gi,xx

2π ̃g
∫
0

−L

x− x0
(x− x0)

2 + (z− z0)
2 dz0,

=
(ϕmax −ϕrest)gi,xx

2π ̃g
(arctan( z+ L

x− x0
)

− arctan( z
x− x0
)), (20a)

=
(ϕmax −ϕrest)gi,xx

2π ̃g
(arctan(

x− x0
z
)− arctan(

x− x0
z+ L
)). (20b)
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FIGURE 2
Electrical potential of a traveling wave within the cardiac wall, as a function of the lateral position (or time) x = vt and electrode distance from the
myocardium z. (A) 3D view. (B) Top view of the same profile. It should be noted that there is no singularity of the potential, but a discontinuity (branch
cut) at the wave front within the cardiac wall. (C) Same view as (B) but observed with simulated data.

Here, arctan is the inverse of the tangent function on the
interval (−π/2,π/2), see Figure 3. In the last step, we used that
arctan(1/x) = π

2
sgn(x) − arctan(x). It should further be noted that

arctan(−x) = −arctan(x).1

Since thewave profile propagated at constant speed v to the right,
the wave front was located at x0(t) = vt, leading to the following
spatiotemporal potential distribution:

Φ̃ (x,z, t) = Φ̃dipole layer (x,vt,z) =
(ϕmax −ϕrest)gi,xx

2π ̃g

×(arctan(x− vt
z
)− arctan(x− vt

z+ L
)). (21)

The potential registered by an electrode at position (x,z) = (0,h)
is then the measured unipolar signal in the blood pool:

Φ̃unipolar (t) = Φ̃dipole layer (0,vt,h) =
(ϕmax −ϕrest)gi,xx

2π ̃g

×(−arctan(vt
h
)+ arctan( vt

h+ L
)). (22)

1 Here, we avoided the use of the inverse cotangent function, since for some
authors and software it is defined as π

2
− arctan(x), while for others, it is

arctan(1/x), and both definitions differ for x < 0.

Snapshots of spatial profiles at different times and different
distances h to the endocardial surface are shown in Figure 4. When
the signal is recorded on the endocardial surface, one can set h

>
→0

in (Eq. 22), such that for an electrode at x = 0:

Φ̃unipolar (t) = −
(ϕmax −ϕrest)gi,xx

2π ̃g
arctan( L

vt
), (23)

which first entails an upward deflection, followed by a finite
downward jump at t = 0 and a restoring phase, see Figure 4A.

Figure 5 shows how this result can be interpreted geometrically.
Since tan(θ0) =

vt
h
and tan(θ1) =

vt
h+L

, the result can be written in
terms of the angle Θ1 = θ1 − θ0 under which the wave front is seen
as follows:

Φ̃unipolar (t) =
(ϕmax −ϕrest)gi,xx

2π ̃g
Θ1. (24)

This result is in agreement with the classical solid angle theory
for the electrogram (Bayley and Berry, 1964; Holland and Arnsdorf,
1977; Van Oosterom, 2002; Macfarlane et al., 2010). The angle θ
from Figure 5 can be extended with the angle ξ that a point on
the wave front makes with respect to the Y-axis. Then, ξ and θ
are spherical coordinates centered on the Y-axis, which obey
dΩ = dθdξ sinξ. Since we worked with a slab geometry, the angle
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FIGURE 3
Trigonometric and inverse trigonometric functions used in the analytical calculations.

FIGURE 4
Analytical solution for the potential caused by a finite traveling dipole sheet in the X-direction. (A) Spatial potential profile at different distances h to the
myocardium, for subsequent time steps. In the direction of front propagation (positive X), the potential is elevated. (B) Regarded as a function of time at
a fixed recording position, there is first an upward deflection in the unipolar signal. In both cases, we used ϕmax = 30 mV, ϕmin = −86 mV,
gi,xx = 0.1527 S/m, ̃g = 0.8341 S/m, L = 5 mm, and v = 1 mm/ms.

ξ under which the wave front is seen always extends from 0 to π,
whence

Ω(θ0,θ1) =∬dΩ = ∫
π

0
dξ∫

θ1

θ0
dθ sinξ = 2(θ1 − θ0) = 2Θ1. (25)

Hence, doubling the planar angles Θ in this work will give the
corresponding solid angle in 3D. It should be noted that angles Θ
are expressed in radians, while the other angles used in this work are
reported in degrees.

Thus, in the homogenized approximation, the unipolar EGM
is proportional to the angle Θ1 subtended by the wave front when

viewed from the electrode at any given time. The potential
difference ϕmax −ϕrest can be measured in experiments and
has a value of around 120 mV (Plonsey, 1965; Plonsey, 1974;
Holland and Arnsdorf, 1977). The value of gi,xx can also be
measured.

However, in the homogenized theory, there is no fixed rule
to estimate the lumped conductivity ̃g as a weighted average
of the conductivities in the problem: g i,l, g i,t, ge,l, ge,t, gB, and
gT. In the following, we showed the relation between them
from the exact analytical solution in the case with and without
anisotropy.
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FIGURE 5
Interpretation of the arctan(x) and solid angles in the myocardium.

3.1.2 Analytical unipolar EGM in an isotropic
three-layered geometry

Analytical calculations of potentials generated by dipole charges
in inhomogeneous media representing the heart have been carried
out before (Bayley and Berry, 1964; Kempner and Grayzel, 1970;
Plonsey, 1974). However, these are focused on ECG generation and,
therefore, adopted a circular geometry representing a cross-section
through the heart.

In this paragraph, we incorporated the different conductivities
of the blood (gB), myocardium (gM, given by gi,xx + ge,xx), and torso
(gT), for now assuming that the myocardium is an isotropic layer
of thickness L. The mathematical problem is similar to finding
the electrostatic potential in a three-layered medium with different
electrical permittivities. For two layers, the result was detailed in the
study by Jackson (1975) using the method of mirror charges, and
it was used by Plonsey and Barr (1987) to obtain potentials inside
the myocardium. The case where the two outer layers have equal
properties and the recording is made in the middle layer has also
been described in a study of quantum dots (Escribano et al., 2017).

In case of a three-layered medium, the solution method
came down to reflecting the position of the sources within
the myocardium on the other side of myocardium–torso and
myocardium–blood interfaces and solving the interface conditions
to recursively find all the strengths of the mirror sources.

This procedure is outlined in our Supplementary Appendix A1.
We chose Cartesian coordinates, such as z > 0, which represents the
blood pool, −L < z < 0 the (isotropic) myocardium and z < −L the
torso domain (assumed homogeneous).

The factors relating to the strengths of different mirror sources
are, with * equal to B (blood) or T (torso):

h* =
gM − g*
gM + g*
, v* =

2g*
gM + g*
. (26)

Solving the recursion relation then led to the following explicit
series solution:

ΦB (x,z, t) =
vBgM (ϕmax −ϕrest)

2πgB

∞

∑
j=0

h
⌊ j
2
⌋

B h
⌈ j
2
⌉

T ×[arctan(
x− vt
z+ jL
)

− arctan( x− vt
z+ (j+ 1)L

)], (27a)

=
vBgM (ϕmax −ϕrest)

2πgB

∞

∑
j=0

h
⌊ j
2
⌋

B h
⌈ j
2
⌉

T Θj+1. (27b)

We observed that including inhomogeneous conductivities led
to focusing and defocusing of electrical field lines [see (Jackson,
1975)], which can alternatively be interpreted as reflections of the
source at the endo- and epicardial boundaries.

Although the result was formulated using the angle Θ, Eq. 27 go
beyond the solid angle theory, as the solid angles subtended by the
reflection are also included. Considering only the first term of the
expansion led to ΦB(x,z, t) ≈ −

vBgM(ϕmax−ϕrest)
2πgB

Θ1. A comparison with
the homogenized result (Eq. 24) suggested that ̃g = gB

vB
= gM+gB

2
.Thus,

in the homogenized approach, the chosen effective conductivity
should be equal to the arithmetic mean of myocardial and blood
conductivities. This result was refined in the following paragraph to
also include anisotropy.

3.1.3 Analytical unipolar EGM in an anisotropic
three-layered geometry

To add anisotropy of the myocardium to the derivation, we
denoted gM = gi,xx + ge,xx and gzz = gi,zz + ge,zz . To reuse the isotropic
solution from the previous paragraph, we restored isotropy in the
myocardial domain by re-scaling the Z-axis according to the square
root of the conductivity ratio (see Figure 8), inspired by previous
work on cardiac anisotropy (Wellner et al., 2002; Verschelde et al.,
2007; Young and Panfilov, 2010). Thus, we used a (dimensionless)
re-scaling factor, which also appeared in the study by Plonsey and
Barr (1987):

η = √
gM
gzz
= √

gi,xx + ge,xx
gi,zz + ge,zz

. (28)

For η = 1, the configuration is that of three parallel layers described
previously.

For η ≠ 1, we defined a re-scaled Z-coordinate as follows:

Z =
{{
{{
{

z+ L− ηL, if z < −L
ηz, if − L ≤ z ≤ 0
z. if 0 < z

(29)

In the following, we took the re-scaled tissue thickness to be
ℓ = ηL. In Supplementary Appendix A2, it was verified that this
reduced the problem to the one with three homogeneous layers,
but at the interface conditions, gM needed to be replaced by
gM/η. Anisotropy, thus, affects three elements. First, the transfer
coefficients are changed to the following:

H* =
gM − ηg*
gM + ηg*

, V* =
2g*

gM + ηg*
. (30)

Second, the effective tissue thickness becomes ℓ = ηL, meaning
that the myocardium appears to be thicker, for wave propagation
along the myofiber direction (as then, both gxx and η increase).
The geometric re-scaling also affects the solid angles, which we will
denote as Θ̃ here. For unipolar signal scales in the linear leading
order with Θ1, we expect that maximal signal amplitude is reached
for the case ψ = 0, i.e., wave propagation parallel to the myofibers.
Third, wave speed v also depends on the myofiber orientation.

At the end of our derivation, the electrical potential measured in
the blood is as follows:

ΦB (x,z, t) =
VBgi,xx (ϕmax −ϕrest)

2πgB

∞

∑
j=0

H
⌊ j
2
⌋

B H
⌈ j
2
⌉

T ×[arctan(
x− vt
z+ jηL
)

− arctan( x− vt
z+ (j+ 1)ηL

)], (31a)
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=
VBgi,xx (ϕmax −ϕrest)

2πgB

∞

∑
j=0

H
⌊ j
2
⌋

B H
⌈ j
2
⌉

T Θ̃j+1. (31b)

Equation 31 is the main analytical result of this paper. It goes
beyond the solid angle theory, as it uses re-scaled angles due to
anisotropy and takes into account several mirror layer reflections,
due to the inhomogeneity of the layers, see Figure 8. Keeping only
the first term in (Eq. 31), we get the following:

ϕoneB (X,Z) ≈
gi,xx (ϕmax −ϕrest)VB

2πgB
Θ̃1,

=
(ϕmax −ϕrest)

π
gi,xx
(gM + ηgB, )

Θ̃1 = AΘ̃1. (32)

Here, we introduced the notation A as the proportionality
factor between the electrical potential measurement and the angle.
This prefactor depends on the conductivities and fiber orientation
angle ψ. If one would furthermore neglect the re-scaling in the
angles (i.e., Θj ≈ Θ̃j, if η ≈ 1), one recovers (Eq. 24) with the
homogenized conductivity being equal to an anisotropy-weighted
average:

̃g =
gB
VB
=
gM + ηgB

2
, (33)

with anisotropy ratio η in the direction of wave propagation given
by (Eq. 28).

3.1.4 Analytical solution for bipolar iEGMs
Bipolar signals are the difference of unipolar signals, see (Eq. 4).
For the homogenized case, from (Eq. 23), we found, with p used

for the proximal and d for the distal electrode positions:

Vbipolar (t) =Φunipolar (xd,zd, t) −Φunipolar (xp,zp,t)

=
(ϕmax −ϕrest)gi,xx

2π ̃g
[arctan(

xd
zd
)− arctan(

xd
zd + L
)

+ arctan(
xp

zp + L
)− arctan(

xp
zp
)]. (34)

Inserting the electrode coordinates xd = x0 − vt, zd = h, and
xp = x0 + dcosβcosα− vt, zp = h+ d sinα yielded the following:

Vbipolar (t) =
(ϕmax −ϕrest)gi,xx

2π ̃g
[arctan(

x0 − vt
h
)− arctan(

x0 − vt
h+ L
)

+ arctan(
x0 + dcosβcosα− vt

h+ d sinα+ L
)

− arctan(
x0 + dcosβcosα− vt

h+ d sinα
)]. (35)

If the catheter was held parallel to the wave propagation
direction or perpendicular to the endocardium, we get the following
expressions:

Vbip,‖ (t) =
(ϕmax −ϕrest)gi,xx

2π ̃g
[arctan(

x0 − vt
h
)− arctan(

x0 − vt
h+ L
)

+ arctan(
x0 + d− vt
h+ L
)− arctan(

x0 + d− vt
h
)],

Vbip,⊥ (t) =
(ϕmax −ϕrest)gi,xx

2π ̃g
[arctan(

x0 − vt
h
)− arctan(

x0 − vt
h+ L
)

+ arctan(
x0 − vt
h+ d+ L

)− arctan(
x0 − vt
h+ d
)]. (36)

The bipolar signals in the main directions are shown as a
difference of unipolar signals in Figure 6.

From the analytical result in case of anisotropy (Eq. 31),
an exact solution for the bipolar electrogram can be found, see
Supplementary Appendix A3.

3.1.5 Analytical model for the wave speed
The only remaining unknown parameter in our analytical

solution is the wave speed v. This speed depends on the local
cell kinetics, i.e., the term iion in bidomain equations. Within
this study, we neglected the bath-loading effect, such that the
wave became planar. Its propagation velocity will then depend
on the conductivities in the X-direction and was, therefore,
affected by g i, xx, ge, xx, gB, and gT. In one spatial dimension, the
intra- and extracellular conductivity tensors are numbers and are,
hence, proportional to each other, under which condition the
bidomain model could be simplified to a monodomain description
(Bishop et al., 2011; Clayton et al., 2011). The resulting diffusion
constant equals

D = 1
βmCm

gi,xxge,xx
gi,xx+ge,xx

. (37)

Through the dimensional analysis of themonodomain equation,
it was found that the conduction velocity is proportional to √D,
whence

v (ψ) = v‖(
gi,l + ge,l
gi,lge,l
)
1/2
[

[

(gi,l cos
2ψ+ gi,t sin

2ψ)(ge,l cos
2ψ+ ge,t sin

2ψ)

((ge,l + gi,l)cos
2ψ+ (ge,t + gi,t) sin

2ψ)
]

]

1/2

.

(38)

This reasoning is held for the bulk of a bidomain region,
neglecting the bath-loading effects.

From simulations with ψ = 0° or 90°, we measured that
v‖ = 0.42 m/s. This value was inserted into the following analytical
solutions to have no more free parameters in the theory.

3.2 Comparison between analytical and
numerical solutions for iEGMs

3.2.1 Difference between analytical
approximations

In Figure 7, the analytical approximations (homogenized, green
solid line and anisotropic, dotted orange line) are compared
to the simulated unipolar and bipolar signal in the two main
directions. The repolarization (T-wave) was not included in the
theoretical framework here and is, therefore, absent in theory
graphs.

Both homogenized and anisotropic solutions follow the same
qualitative behavior, and the amplitudes are in the correct range.
When looked at more closely, it can be seen that the amplitudes of
the anisotropic solution agree slightly better than the homogenized
approximation.The difference, however, is small. The RMSE (Eq. 9)
of the anisotropic solution with the simulated signal is shown on
each plot.

To understand why keeping the first terms in the expansion
works, let us consider the relative importance of the first mirrored
layer (Θ2) to the myocardium (Θ1). We found that Θ2 ≪ Θ1 during
wave passing if the electrode was close to the tissue (h≪ ηL),
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FIGURE 6
(A) Exact solution of the bipolar signal as a local potential difference. Here, ϕmax = 30 mV, ϕmin = −86 mV, gi,xx = 0.1527 S/m, ̃g = 0.8341S/m, L = 5 mm,
and v = 1 mm/ms. The green solid line denotes Vbip,⊥ in (A) and Vbip,‖ in (B). (C) Three main measuring directions of the bipolar extracellular potential
Vbipolar.

see Figure 8. Thus, we expect the best convergence and a good
approximation when the electrode is closer to the tissue, where the
tissue is thick and η is large, i.e., for wave propagation along the
myofiber direction.The latter can be seen in the top row of Figure 9,
where the unipolar voltage (ΦB or Φuni) is shown. The higher the
ψ value, the more the analytical solution differs from the simulated
curve.

3.2.2 iEGMs for different myofiber orientations
In Figure 9, the homogenized isotropic theory is plotted together

with the inhomogeneous anisotropic theory (using only one or three
terms). Strikingly, the amplitude of the EGM decreases significantly
if the wave propagates perpendicular to the myofibers. For example,
for unipolar potential ΦB, the peak-to-peak amplitude changes from
4.64 mV at ψ = 0° to 1.27 mV at ψ = 90°, implying a reduction factor
of 3.6.

3.2.3 iEGMs for different catheter orientations
Figure 10 shows simulated and theoretical bipolar signals for

different catheter orientation angles α and β, as defined in Figure 1.
The case α = β = 0° (top left panel) corresponds to a bipolar electrode
directed parallel to the wave propagation and shows a signal equal
to Vbip,‖(t), see (Eq. 36). This signal is even and has two zeros (see
Figure 6B) and three extrema. Similarly, a bipolar electrode directed
normally toward the endocardium (α = 90° for any β value) yields
Vbip,⊥(t) (Eq. 36), a signal with uneven symmetry (see Figure 6C
and bottom row of Figure 10).This signal has only one zero crossing
and vanishes for x− vt = ±∞. For intermediate orientations, the
result gradually evolves from Vbip,‖ to Vbip,⊥. In all cases, it is well
represented by the analytical solution.

3.2.4 Bipolar iEGMs for different distances to the
endocardium

The effect of measuring further away from the cardiac wall
(higher h) is shown in Figure 11A. At a larger distance, the maximal
solid angle subtended Θ0 or Θ̃0 becomes smaller, such that the
amplitude of the signal is reduced.

3.2.5 Bipolar iEGMs for different interelectrode
distances

Bipolar signals for different interelectrode distances d are
shown in Figure 11B. For both orientations, the signal amplitude
grows with the increased interelectrode distance. This can be
understood by a first-order Taylor approximation around the distal
electrode:

Vbip (t) =Φ( ⃗rdist) −Φ( ⃗rdist + d⃗) ≈ −∇⃗Φ( ⃗rdist) ⋅ d⃗, (39)

which grows linearly with the interelectrode distance d = ‖d⃗‖.

3.3 Interpretation of EGM characteristics

3.3.1 Extraction of EGM characteristics
Figure 12 shows simulated bipolar signals for the different

catheter orientations for a slab of thickness L = 5 mm. The
minimum, maximum, peak-to-peak amplitude, and signal width
were calculated as detailed in Section 2.4, in the same manner for
simulated and analytical signals. In simulated signals, both the QRS
complex and T-wave can be distinguished and the amplitude and
width were also extracted for the T-wave.
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FIGURE 7
Comparison between the analytical numerical solution to the EGM near a slab with wave propagation along the myofiber direction. (A) Unipolar signal
(gray), showing a far-field artefact in the simulation result, occurring since the wave front hits the end of the myocardial slab. (B) Bipolar signal
measured parallel to the myocardial surface in the direction of wave propagation. (C) Bipolar signal measured perpendicular to the myocardial wall.
The slab thickness was L = 5 mm. Furthermore, ϕmax = 30 mV, ϕmin = −86 mV, gi,xx = 0.1527 S/m, ̃g = 0.8341 S/m, v = 0.42 mm/ms, and d = 2 mm. Wave
speed v is the only free parameter in the theory and was measured in the simulation. The RMSE (Eq. 9) between the simulated signal and the
anisotropic theoretical prediction was computed between 0 and 250 ms.

3.3.2 Effect of wall thickness
Electrogram amplitude and width are shown as a function of

myocardial wall thickness in Figure 13. For the QRS complex, there
is a good agreement between (full anisotropic) the theory and
simulations.

We first observe that thicker walls yield larger iEGM amplitudes,
both for the QRS complex and T-wave. This is in line with the solid
angle theory and the exact solution in this paper; each unipolar
signal arises as a difference between an endocardial and epicardial
contribution. For thicker walls, the epicardial contribution
decreases, such that the recorded amplitude will saturate at the
amplitude of the unipolar signal originating from the endocardium.

Second, the width of the QRS complex also increases with the
wall thickness. The reason is the same as for the amplitude: in the

limit of L→∞, only endocardial contributions to (Eq. 36) matter,
and this profile has the largest width.

3.3.3 Effect of the myofiber orientation relative to
the wave propagation direction

The effect of the myofiber direction on the amplitude and width
of bipolar iEGMs is shown in Figure 14.

The amplitude is the highest for waves propagating along fibers
and decreases for non-zero fiber angle ψ. This effect was already
visible in Figure 9. From (Eq. 31), we can see that anisotropy
affects the EGM amplitude in two different ways: via changing
the effective tissue thickness and, hence, the solid angle and via
the prefactor A of the leading order term (Eq. 32). By plotting
hypothetical EGMs with one factor being left out, we found that
the change in the amplitude is mostly caused by prefactor A(ψ)
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FIGURE 8
Solid angle contributions caused by mirror sources. (A) Isotropic three-layered medium. (B) Anisotropic three-layered medium, after re-scaling of the
Z-coordinate. If h

L
≪ 1, then the first term of the series offers a good approximation.

FIGURE 9
Effect of myofiber direction on the EGM amplitude: homogenized (see Eqs 23, 33), re-scaled anisotropic (one term) (see Eq. 32), and full series solution
(see Eq. 31). Solutions shown here have h = 1 mm, L = 5 mm, and d = 2 mm. In every plot, the RMSE (Eq. 9) was calculated between 0 and 300 ms
between the simulated signal and the anisotropic series prediction.
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FIGURE 10
Comparison between two analytical bipolar signals as a function of time: exact difference between two unipolar signals (Eq. 35) (solid color) and the
simulated signal (solid gray line). Here, we used ϕmax = 30 mV, ϕmin = −86 mV, gi,xx = 0.1527 S/m, ̃g = 0.8341 S/m, L = 5 mm, v = 0.42 mm/ms, and
d = 2 mm. The RMSE (Eq. 9) between the two signals is shown on every plot, calculated between 0 and 150 ms.

from Eq. 32 and only in a limited manner by re-scaled solid
angles.

The myofiber orientation also affects the width of the measured
EGMs. From (Eq. 32), we learn that two effects occur. First,
increasing ψ decreases effective wall thickness ℓ, which leads to
a less wide EGM, see paragraph Section 3.3.2. Second, the wave
speed will decrease for larger ψ, as the wave does not propagate
along the myofiber direction anymore. This effect will increase
the EGM width. From Figure 14, we conclude that the reduction

of the propagation velocity is the dominant effect, increasing the
EGM width in case of a propagation transverse to the myofiber
direction.

It can be further observed in Figure 9 that the theoretically
predicted width of the QRS complex for ψ = 90° shows an outlier.
The corresponding EGM was shown in Figure 9 (middle row,
rightmost column). Due to the small signal amplitude, the width is
determined by wide positive lobes, which makes the calculation of
the width sensitive to small deviations.
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FIGURE 11
Effect of (A) the distance of the electrode to endocardium h and (B) interelectrode distance d on bipolar electrogram signals in the isotropic
homogeneous medium. Here again, the two signals were given as follows: exact difference between two unipolar signals (Eq. 35) (solid colored) and
the simulated signal (solid gray) (only for h = 1 mm and d = 2 mm). The comparison was carried out both for the parallel and normal electrical field
component. Here, we used x = 0 mm, ϕmax = 30 mV, ϕmin = −86 mV, gi,xx = 0.1527 S/m, ̃g = 0.8341 S/m, L = 5 mm, and v = 0.42 mm/ms. For parameters
for which there is simulated data, the RMSE (Eq. 9) is given on the plot, calculated between 0 and 150 ms.

4 Discussion

4.1 Relation to previous electrogram
calculations

The morphology and properties of the electrograms depend
on many confounding factors (De Bakker, 2019). Several studies
have already investigated the impacts of various factors on EGMs
or ECGs. For example, the influence of epicardial fat on uni-
and bipolar electrogram amplitudes was studied in the following:

van Huls van Taxis et al., 2013 and De Bakker, 2019. Wiley et al.
(2005) and De Bakker (2019) investigated the influence of the
electrode size on the EGM properties and found that the smaller
the diameter, the steeper the EGM.De Bakker (2019) also highlights
the importance of the catheter orientation and location for the
correct interpretation of bipolar signals, while Ikeda et al. (2014)
focused on the effect the contact force has on the morphology of the
electrogram.Therefore, it is crucial to fundamentally understand the
local electrogram in order to properly deduce the information from
catheter mapping (Choudhuri and Akhtar, 2012).
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FIGURE 12
Results of feature extraction on numerically simulated electrograms for different catheter orientations (α,β ∈ [0°,30°,60°,90°]). The results are shown
for simulation parameters L = 5 mm, d = 2 mm, and h = 1 mm. Extracted features are the local maximum (orange), minimum (purple), and EGM width
(green).

Concerning the ab initio interpretation of electrograms, major
progress was reported in the 1960s (Bayley and Berry, 1964;
Gelernter and Swihart, 1964; Selvester et al., 1967), based on a
solution of Poisson’s equation in a homogeneous medium. Under
this assumption, the problem is equivalent to classical potential
problems in electrostatics and gravity, enabling the expression of the
measured potential as being proportional to the angle under which
the electrode sees the electrical source (Plonsey, 1965; 1974; Holland
and Arnsdorf, 1977; Macfarlane et al., 2010). This so-called solid
angle theory was successful in explaining the overall signal shape,
sharpness, and the influence of local infarcts, i.e., locally unexcitable
tissue. Plonsey and Barr (1987) derived the potentials inside a half-
space of the myocardium with parallel fibers using the method of
mirrors, but provide no expression for the resulting electrograms
measured in the blood pool. Van Oosterom (2002) specified that the
electrogram equals the time course of the difference of two solid
angles, which are maximally close to the surface with a maximum
value of 2π or 360°. In addition, this concept allowed understanding
that the interfaces in the medium, delineating regions with different
conductivities, contribute to a large extent to the electrogram signal
(Holland and Arnsdorf, 1977).

Regarding the ECG registered on the body surface (rather
than the iEGM), it was argued that solid angle theory serves as
a rational basis for understanding the ischemic TQ-ST deflection

(Richeson et al., 1978). However, in order to explain the body-
surface ECG, the inhomogeneous conductivity in the torso due
to the bones, air, and the lungs and the finiteness of the tissue,
needs to be taken into account, rendering themathematical problem
extremely complex, such that calculating accurate ECGs requires
numerical methods (Pezzuto et al., 2017).

In recent years, the focus has shifted from studying electrograms
analytically to doing numerical studies in order to understand and
predict iEGMs. In silico studies were carried out by Blauer et al.
(2014) and Gaeta et al. (2020, 2021) to figure out the effect of
directionality and electrode spacing on bipolar amplitudes. Gaeta
et al. derived a theoretical model based on local activation times
(LATs) and validated it with clinical data. Jacquemet et al. (2003)
used computer simulations to link the signal properties of unipolar
EGMs to the underlying tissue during atrial fibrillation.Nonetheless,
in this work, we argue that the theory for iEGMs can be extended by
an analytical solution for the case of a slab with parallel myofibers
and that these insights help understand the EGM amplitude and
shapes.

In addition, there is a recurring question onwhether given tissue
parameters are better measured using a single electrode (unipolar
signal), two nearby electrodes (bipolar signal), or a multi-electrode
array (Leshem et al., 2017). Furthermore, electrodes of a normal size
or micro-electrodes can be used (Berte et al., 2020; Glashan et al.,
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FIGURE 13
EGM properties as a function of wall thickness L for the extracellular potential in the two main directions: parallel (in the XY plane) and perpendicular (in
the XZ plane) to the wave front. For the QRS part of the EGM signal, the theoretical prediction is plotted using colored lines. The different orientations
are depicted with different markers. Every colored line (anisotropic theory) should be compared to the corresponding gray line (simulation) with the
same marker and line style.

2021). Another question is whether it is better to use contact
electrodes or a central basket within the blood pool (Narayan et al.,
2012; Berte et al., 2020). Berte et al. (2020) outlines how physicians
should be careful in interpreting voltages in electro-anatomical
mapping procedures, since the electrode size and configuration has
a significant impact on measured voltages and leads to inaccurate
substrate detection and mapping.

The aforementioned questions have been partially addressed in
theoretical studies, which generally did not include anisotropic wave
propagation. Holland and Arnsdorf (1977) showed with the solid
angle theory that the EGM properties change depending on the
electrode location and the geometry of the infarcted tissue. Recent
studies have argued that local potential differences, as observed
by a bipolar electrode, or any pair in an array configuration,
can be described as projections of an electrical field vector
(Vermoortele et al., 2023). The effect of the catheter orientation
(and, thus, the bipolar electrodes) on iEGMs has been addressed
in the study by Gaeta et al. (2020), and the effects of anisotropy
on the potential field were studied in Colli Franzone et al., 1982.
Colli Franzone et al. (2000) further decomposed the dipole source

to the EGM into a component along the myofiber and one along the
normal wave front, but gave no explicit expression for the potentials
to be measured.

4.2 Analytical solution for electrograms
generated in a slab with parallel myofibers

4.2.1 Agreement and differences with the solid
angle theory

In this work, we derived the iEGM-shape from bidomain
model equations, with increasing accuracy in the approximations: a
homogeneousmedium, a three-layeredmedium, and a three-layered
mediumwith anisotropy. In earlier works, mirror sources have been
applied in cylindrical or spherical heart and torso geometries (Bayley
and Berry, 1964; Gelernter and Swihart, 1964; Selvester et al., 1967)
to obtain insights on the body-surface ECG and on a two-layered
myocardium with parallel fibers (Plonsey and Barr, 1987), to mimic
recordings of electrodes placed within the tissue. Here, we focused
on intracardiac EGMs measured in the blood pool as used in the
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FIGURE 14
Illustration of the effect of the incidence angle ψ on the EGM properties for a slab with parallel fibers. The solid lines with circles as markers denote the
direction parallel to the direction of wave propagation. The dashed lines with crosses as markers show the potential in the perpendicular direction. The
colored lines (simulation output) should be compared to their corresponding gray lines (anisotropic theory) with the same marker and line style.

clinic, requiring the inclusion of anisotropy. Figures 9, 14 show that
the effect of anisotropy can indeed cause a 3.6-fold change in the
amplitude of a bipolar signal.

The classical solid angle theory (Geselowitz, 1989;
Van Oosterom, 2002) can be applied here for the case of equal
conductivities (without myofibers), but fails for the anisotropic slab
model. Figure 5 shows how the arctan function can be seen as the
angle (in 2D and as a solid angle in 3D) from the electrode position
toward the dipole sheet. In three-layered theories, reflections
(mirror sources) also need to be taken into account.

4.2.2 Nature of the singularity near electrical
sources of the iEGM

Our analytical results also confirm that there are no points
of infinite potential (singularities) when measuring close to a
cardiac depolarization wave. This fact has also been recognized
by others [e.g., Holland and Arnsdorf (1977)] using the solid
angle theory, but we, nevertheless, prefer to repeat the arguments
here.

A classical result in electromagnetism states that the potential
near an electrical dipole scales as 1/R2. This reasoning seems to
suggest that there is a singularity (infinite value) of the potential
on the myocardial surface (i.e., for R→ 0). Such a result would
clearly be non-physical. The flaw in the argumentation is that if
the measurement electrode is put next to the endocardium (where
R = 0), the dipole charge is distributed along the wave front; if the
depolarization front has constant surface density charge σ = p/A
(with p as the local dipole moment and A as the surface), then in
a region of radius R around the electrode, a total dipole moment
P = σ πR2

2
is present, leading to a potential proportional to P/R2 = σ π

2
,

which is finite.The absence of singularity in the potential is reflected
in our analytical result, both in the homogenized case (Eq. 22)
and the full anisotropic series solution (Eq. 31), see Figures 2, 4.
The multi-valuedness of the arctan function accounts for both the
discontinuity of Φ within the myocardial wall and the continuity
of Φ outside it. The underlying mathematical object is a branch
cut (Arfken and Weber, 1995), see also a recent application of
this mathematical concept in cardiology as phase discontinuity and
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phase defects in the studies by Arno et al., 2021 and Tomii et al.,
2021.

4.2.3 Spatial decay rate
At large distances, we can find by which power law

unipolar and bipolar voltages decay, using the Taylor series
arctan(ξ) ≈ ξ− ξ3/3+⋯ for small ξ. From the homogenized solution
(Eq. 22), we have the following for an electrode at a large distance
h = R from the endocardium:

Φ̃unipolar (t) =
(ϕmax −ϕrest)gi,xx

2π ̃g
(−vt

R
− −vt
R+ L
)

+O (R−3) ∝ L
R2 +O (R

−3) . (40)

A similar argument is held for each term in the full anisotropic
series solution. Thus, the unipolar signal decays as R−2 with a
distance from the myocardium for large R. Similarly, we find the
following for parallel and perpendicular bipolar recordings:

Vbip,‖ ∝
d
R2 +O (R

−3) , Vbip,⊥ ∝
d
R3 +O (R

−4) . (41)

The different decay law for both cases should be noted. This
is rooted in the fact that holding the catheter perpendicular to
the myocardial wall effectively takes the derivative with respect to
the distance from myocardium (R), according to (Eq. 39). As the
derivative of R−2 is −2R−3, this explains the cubic power decay of
Vbip,⊥. Both bipolar recordings are also proportional in the leading
order to interelectrode distance d.

4.2.4 Limitations of the analytical solution
The analytical solution presented here was designed for a planar

wave front that remains perpendicular to endo- and endocardial
boundaries. This is a simplification, as the correct boundary
condition toVm, i.e., (Eq. 2j), will cause aV-shapedwave front due to
bath loading (Roth, 1991). This effect is small in the studied regime,
see Figure 2C. Future works should also address the bath-loading
effect, which requires the inclusion of the wave front shape into the
full PDE solution, which may be possible using our present results.
Other extensions could, e.g., address rotational anisotropy and
spatially varying wall parameters, such as anisotropy, conduction
velocity, thickness, and repolarization.

4.3 Effects of myocardial and catheter
properties on iEGM characteristics

4.3.1 Influence of the wall thickness
A clinical study by Glashan et al. (2018) suggests that it is

important to account for the wall thickness when analyzing electro-
anatomical voltage mapping data. A linear dependence of bipolar
and unipolar voltages on the wall thickness was proposed. Our
results agree with the positive dependence of voltage on thickness;
however, the exact dependence is more complicated than being
linear, see (Eq. 35). In Figure 13, we see that the amplitude increases
with increasing L both for the QRS complex and T-wave. For large L,
the epicardium has a minimal influence and the difference becomes
low; therefore, we see a saturation inVbip(L) curves, i.e., a horizontal
asymptote. The bipolar electrograms observed at a position are

in leading orders a difference of two contributions determined
by the intersection of the propagation wave front with the
boundaries of the medium. In summary, the addition of anisotropy
and a three-layered medium does not qualitatively change the
explanation given by the solid angle theory (Holland and Arnsdorf,
1977).

4.3.2 Effect of the catheter orientation in bipolar
signals

From the analytical solution for the unipolar voltage, a difference
can be taken into account to obtain bipolar voltages. These signals
vary in polarity between the parallel measurements to the wave front
and are perpendicular to the wall. The bipolar signals measured at
intermediate angles interpolate between these extremes and exhibit
neither an even nor odd symmetry in time.

4.3.3 Effect of the local myofiber orientation
Anisotropy of the cardiac wall acts in different manners on

iEGMs: by changing the conduction velocity and by deflecting
electrical field lines at the myocardial boundary, differently from
the isotropic case. The latter effect causes a different apparent tissue
thickness ℓ and also affects the prefactor in our formula (Eq. 31).
In Figure 9, it is clear that ψ has a pronounced effect and the
amplitude decreases approximately threefold if the wave is not
propagating parallel but is rather perpendicular to themyofibers.We
conclude that if clinicians want to use a threshold on the unipolar
or bipolar amplitude to delineate viable tissue regions, not only the
wall thickness, but also the local myofiber orientation (relative to the
wave propagation) should be taken into account.

5 Conclusion

In this work, an analytical description of the intracardiac
electrogram was presented for an anisotropic slab model of the
myocardial wall, in which bath-loading effects are neglected.
Including different conductivities in subdomains surpasses the
classical solid angle theory as mirror images are present. However,
for a recording electrode near the myocardium, the leading order
termoffers a reasonable qualitative description. In addition, the non-
linear dependency of the EGM amplitude on the wall thickness
is given. If the wave propagates perpendicular rather than parallel
to the myofibers, the EGM amplitude is significantly reduced (due
to conductivity effects) and its width increases (due to reduced
propagation velocity). These results could prove useful when
interpreting electrical voltage maps and selecting threshold values
for tissue characterization.
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