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This study examined the determinants of sustained physical activity. Eighty-four
participants undertook a 7-weeks walking regime (i.e., a 1-h biometrically-
monitored walk, at least 5 days/week), with bioelectrical impedance (BIA) and
total cholesterol capillary blood measurements performed before and after
programme. To investigate behavioural habit formation, 7 weeks after walking
termination, all participants were interviewed and (health) re-tested. Data were
modelled with an artificial neural network (ANN) cascading algorithm. Our results
highlight the successful prediction of continued physical activity by considering
one’s physical fitness state, the environmental living context, and risk for
cardiovascular disease. Importantly, those artificial neural network models also
taking body mass index (BMI) and blood cholesterol as predictors excel at
predicting walking continuation (i.e., predictions with 93% predictability). These
results are first to highlight the type and importance of available physiological
drivers inmaintaining a sustained physical activity regime such aswalking. They are
discussed within the framework of habit formation and the nowadays health and/
or wellbeing focus.
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Introduction

A physically-active regime significantly impacts health and longevity. People who
regularly exercise have better immunity and a grander resistance in the face of disease
(Macciochi, 2020). It has been demonstrated that purposefully moving our body promotes
health in various ways. For example, muscle mass may be gained, and the heart muscle tonus
and functionality are maintained, together with a healthy blood pressure and cholesterol
level (O’Mara, 2019). Conveniently, health-promoting exercise needs not necessarily be
organized around a group, or even be time-, and/or resource-consuming: Exercise can be as
simple and as available as an everyday walk. Walking regularly promotes health, as it
concomitantly activates the cardiovascular, respiratory and locomotor systems, with specific
resultant physiological effects, including a better oxygenation of the body and an enhanced
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vital capacity. Walking has been proposed to be closest to the perfect
physical exercise (Morris and Hardman, 1997). It is performed both
unintentionally, within the scope of daily activities, or intentionally,
such as the recreative walking through a park or garden (Kelly et al.,
2017). Since walking is free, low-income groups are likelier to engage
in regular moderate walking (Blacklock et al., 2007), whereas the
pay-for-use-facility physical activity tends to be encountered in
individuals with higher income (Taylor, Floyd, Whitt-Glover and
Brooks, 2007).

There is unanimous agreement that walking offers a natural,
widely accepted, low injury risk, social functioning and
environmentally friendly approach to physical activity. Walking
at a self-selected pace is of moderate intensity for most adults
(Murtagh et al., 2015). Further, daily walking has been
demonstrated to enhance cognitive function (Zheng et al., 2016),
promote a better sleep (Wang and Boros, 2021), sustain weight loss
when practiced over longer durations (Hanson and Jones, 2015),
lower the incidence of CVD, obesity, and Alzheimer’s disease
(Reiner et al., 2013), as well as to regulate blood circulation for
those cases where one remains seated for longer periods of time
(Carter et al., 2018). Defining a healthy walking workout is
conditioned by age, gender, and the general health state. For
example, take the older population, for whom walking can
constitute a significant moderator for social engagement
(Carrapatoso et al., 2017). Physical effort volume and intensity,
but even its complexity, needs to be adjusted such that the bodily
adaptation is optimally achieved.

In the context of walking, we can nowadays easily access
biometric information via smart wearable devices. Diverse
metrics are offered as indicators of health and appropriate health
behaviour, across a variety of fields, such as sleep (Wen et al., 2022),
stress (Pakhomov et al., 2020), chronic disease management and
sports or preventive medicine (Casselman et al., 2017; Vogel et al.,
2017), as well as, in what regards children safety or military support
(Casselman et al., 2017). Furthermore, while measurements of
health-related indices exist in connection to physical activity and
exercising, as well as their beneficial influence in various pathologies
(Bowler et al., 2010; Berman et al., 2012; Marselle et al., 2013;
Williams and Thompson, 2013), the specific type of physical activity
assessment, but also its optimal time-span, needs to be considered.

For example, significant general contributions of exercising to
health have been reported (del Pozo et al., 2022a; del Pozo et al.,
2022b) see also recent research reports on participants re-tested
several years from the first evaluation of physical activity and health
status (Casselman et al., 2017; Vogel et al., 2017). However, the
majority of previous research has concentrated on the self-reported
physical activity intensity and frequency of it, or had before/after
designs of a single bout of a given motor behaviour evaluation
(Hartig et al., 2003; Roe and Aspinall, 2011). Nevertheless,
longitudinal 6-month monitoring studies of walking do exist, e.g.,
in the form of the British Walk to wellbeing study, with participants
taking walks either in the city or in nature (Marselle et al., 2013). For
longitudinal studies, the most evident barrier and risk in conducting
a real-life monitoring study is participant engagement and,
consequently, the scale of study participants drop-outs. If the
study participants recruiting can be conveniently handled
through a student population motivated through the offering of
study credits (i.e., such is the case of the present study approach), the

intended sustained motivation for the participation in the study
needs the support of various planned strategies (e.g., amongst those
that were used in the present study: initiating the study in January,
simultaneously with any potential New Years’ resolutions; a well-
trained team of research assistants, closely monitoring the adherence
to the required walking regime).

Location appears to affect walking. Environmental psychologists
have demonstrated the benefits of natural landscapes for physical
and mental health, a positive mood and a significantly reduced
stress, improved social and material wellbeing as the main benefits
for being in nature and having contact with nature, with such effects
found to be present across cultures (Kaplan and Kaplan, 1989). One
of the earliest empirical tests on the healing qualities of contact with
nature contrasted two types of views from a hospital room, as
reflected in patients’ recovery period: Patients in rooms with
windows facing a park registered less days of hospitalization
compared to those positioned in salons facing the inner
courtyard, had fewer post-operative complications and were
evaluated by the medical staff as having positive affective states
(Ulrich, 1984). This preference for natural habitats has highlighted
the stress-reducing effect of natural, over urban environments
(Ulrich, 1981; Chang and Chen, 2005; Velarde et al., 2007).
Significant decreased noradrenaline and heart rates were also
associated with forest walking as compared to city walking (Li
et al., 2016), with walking in a park found to improve health
(Barton, Hine and Pretty, 2009; Taylor, Robertson, Lightfoot,
Smith and Jones, 2022; Tsao et al., 2022). For example, evidence
for increased relaxation is suggested by reduced stress hormones
secretion, such as cortisol, adrenaline, and dopamine, with walking
in a forest, as opposed to a city environment, known to reduce heart
rate and blood pressure in individuals without chronic disease
(Taylor et al., 2022).

Taking into account the previous findings of walking and/or
physical activity in city and natural environments, here, we
evaluate and predict the continuation of a healthy habit, once
a given sustained healthy regime has commenced. We focus on
everyday naturalistic walking and investigate the health benefits
of such a daily walk, as evidenced by how the environment where
one lives and walks affects a person’s health. The goal of our study
is to distinguish whether one is more likely to continue a common
motor behaviour regime such as walking irrespective of spatial
context, or rather, whether walking in specific environments
(e.g., in the park) results in an overall objectively healthier
body profile and propensity to transform walking into a long-
term habit (Ardigo et al., 2011; Zhao et al., 2019). Health status is
assessed through the body mass index (BMI), total cholesterol
blood profiles, as well as the subjectively reported mood and
wellbeing, together with the assessment of cardiovascular disease
risk, personal physical fitness, living and environmental self-
reported data. We hypothesize that the specific location of the
daily walk will significantly influence participants’ drive to
perform physical activity. Further, taking into consideration
that most real-world systems display intricate nonlinear traits
and cannot be adequately addressed using linear systems theory
(Chen and Billings, 1992), we hypothesize that the propensity to
continue an already started physical activity regime is given by a
real-life-driven and inherently non-linear combination of a
person’s behaviour, health, and the living environment.
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As such, the goal of the present study is to identify those
combined environmental and psychophysiological factors
necessary to make walking a long-term healthy habit. For this,
we utilise artificial neural network (ANNs) systems to investigate
behavioural and physiological determinants of walking, so as to
highlight those relevant drivers which can be easily and efficiently
used to monitor the continuation of an already-started healthy
physical activity programme. Considering the present complex
longitudinal multi-dimensional design, ANNs are excellent
models for data classification and prediction, well-known for
their outstanding self-learning capabilities, adaptability, resilience
to faults, inherent nonlinearity, and proficiency in mapping inputs
to outputs. Importantly, they are outstanding in addressing both
complex and straightforward problems across various life domains
(Abiodun et al., 2018). In this context, to the best of our knowledge,
this is the first longitudinal study to apply NN algorithms in order to
predict the continuation of a commonmotor behaviour regime (e.g.,
sustained walking) by monitoring data from multiple sources (e.g.,
wearable data, objective physiological data from the assessment of
BMI and blood cholesterol, as well as the assessment of self-reported
cardiovascular risk, living and environmental perceptions, and
fitness).

Materials and methods

Participants

From amongst students taking the Neuroscience
undergraduate course in our university, we used convenience
sampling to advertise and offer credit course for taking part in
the study. Participants who expressed interest to participate were
randomly distributed in one of the three experimental groups.
Further, given the constraints in finding and keeping participants
motivated to walk for the entire duration of the study, we also used
snowball sampling, to attract friends of already-committed
participants, as well as of research assistants and experimenters.
Three of the study authors have taken part in the study. A total of
90 participants took part in this study. Out of these, two dropped
out and four participants were excluded from the final data
analysis, because of significant missing data. The remaining
sample (N = 84) included 12 male participants and had a mean
age of 25.83 years, SD = 7.84 years, age range 20–55 years. The

study received ethical clearing from the Alexandru Ioan Cuza
ethics committee (no. 2984/27.09.2021) and written informed
consent was obtained from all participants before beginning the
experiment. All participants were debriefed with respect to the
study purpose at the end of the experimental session. This study
conforms to the Declaration of Helsinki and to all subsequent
amendments (Declaration of Helsinki, 1964, 2013).

Materials and apparatus

The participants were allocated to one of the experimental
groups: city walking–with instructions to walk within a city
environment, park walking–with instructions to walk in the park/
forest/garden or a green environment, and a control group–with no
walking required for this group. The experimental participants were
required to walk for a minimum of an hour, at least 5 days a week.
The participants in the experimental groups (city and park walking)
were also fitted with Mi band 5 sports bands (Anhui Huami
Information Technology Co., Ltd., Anhui, China) and the
corresponding application was installed on their personal smart
phone. All participants were also required to fill-in a daily ecological
momentary assessment (EMA) questionnaire (i.e., an experience
sampling questionnaire which typically took about a minute to
complete, and which was made available in the app at 6 p.m.
daily and expired at 2 a.m. the following day). The daily
questionnaire was delivered through the SEMA3 app (Koval
et al., 2019; O’Brien et al., 2023) and included 21 questions about
their current day and their affective state for the day; the data from
these daily EMA assessments are reported elsewhere. These (app)
requirements were monitored and addressed once per week by our
research assistants, such that participants with missing data were
called and reminded to comply with the walking and EMA daily
questionnaires requirements.

A body composition scale was utilised for BIA assessments (RD-
953, Tanita, Japan). Total cholesterol capillary blood tests were
performed with a MulticareIN portable device and disposable
individual tests (Biochemical Systems International SpA, Arezzo,
Italy); standard measurement intervals for cholesterol (130–400 mg/
dL/3.3–10.2 mmol/L) were utilised. Note that a comparable
accuracy has been achieved between measurements made with
such a point-of-care cholesterol testing device and traditional
laboratory instruments (Rapi et al., 2009).

FIGURE 1
Chronological study timeline, enlisting measurements recorded for the three laboratory testing times.
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The data that support the findings of this study, together with
the ANN Matlab code, are available from the corresponding author
(GJ), upon request.

Procedure and experimental design

The study was conducted between 11/01/2022 and 13/05/2022;
see Figure 1. The experiment consisted of several measurement
phases (i.e., Time 1—start measurement, Time 2—post-walking-
regime-intervention measurement, taken at Time 1 + 7 weeks, and
Time 3 –follow-up measurement, taken at Time 1 + 14 weeks),
together with a physical exercise intervention. The physical
intervention requirement consisted of 6 weeks of at least 1 h/day
walking, for at least 5 days/week. Note that it takes an average of
66 days for a habit to become automatic (Lally et al., 2010). In the
light of the evidence-based research, the decision was taken for
allowing a period of walking monitoring in this average range: That
is, the initial 6 weeks of walking, together with the 6 weeks of no
requirement (between Time 2 and Time 3) would have given us
84 days to assess the determinants of forming a walking habit.
Because the study coincided with an extended COVID-19 wave,
we allowed for an extra week of walking, such that data spread would
still permit to assess the forming of a habit and a participant would
not be completely lost, in case a walker was kept at home with
COVID during the study participation. As such, daily
questionnaires and movement data were collected and analysed
for 49 days between Time 1 and Time 2, with a total of 98 days
between walking regime start and the evaluation of its continuity,
between Time 1 and Time 3.

Capillary blood tests and BIA assessments were performed at
each of the Time 1, Time 2, and Time 3. At measurement Time 3, all
participants were also assessed on the continuation of physical
activity over the previous 7 weeks, which was self-declared. For
the assessment of their objective health status, at Time 3 they also
completed a cardiovascular disease risk assessment questionnaire
developed in line with current guidelines for the prevention of CVD
(Miller et al., 2011; Grundy et al., 2019; Pearson et al., 2021). The
YES/NO questionnaire included two smoking-related questions (i.e.,
if currently smoking, and if they quit smoking over the past three
months), together with a series of questions assessing the presence of
personal/family history of various conditions including diabetes,
arterial hypertension, CVD, chronic kidney disease, obesity (e.g.,
BMI ≥ 30), inflammatory diseases (e.g., psoriatic/rheumatoid
arthritis), chronic obstructive pulmonary disease, and/or any
hypertensive disorder of pregnancy. Participants also completed a
5-item questionnaire which assessed their self-reported level of
physical fitness, the International Fitness Scale (IFIS, see Ortega
et al., 2011; 2023). The scale includes items assessing overall physical
fitness, cardiorespiratory fitness, muscular force, speed/agility, and
flexibility, on a 5-point scale from 1 (poor) to 5 (very good). The
calculated internal consistency for this study is acceptable,
Cronbach’s α = .88; 95% CI [.83 .92]. Finally, participants also
filled in a European-population-standardized questionnaire
assessing their living environment (ALPHA, Spittaels et al.,
2009). The ALPHA questionnaire consists of 49 items, organised
in 9 themes, surveying the types of residences in one’s
neighbourhood, the distance to various local facilities, the

existing neighbourhood walking or cycle infrastructure, the
maintenance of the infrastructure, the perceived neighbourhood
safety and pleasantness, the existing cycling and walking network,
the respondent’s home environment, as well as their workplace or
study environment. The calculated internal consistency for this
study is good, Cronbach’s α = .74; 95% CI [.69 .80].

Additionally, a selection of standardized questionnaires
targeting participants’ subjective wellbeing was also filled in by
participants at each of the three measurement times, online,
through custom-made Google forms (i.e., the International
Personality Item Pool 50, IPIP-50, Goldberg et al., 2006; Iliescu,
Popa and Dimache, 2015; the Life Orientation Test revised, LOT-R;
Scheier et al., 1994; the PsychologicalWellbeing Scale; Ryff, 1989; the
Body Appreciation Scale 2; Tylka and Wood-Barcalow, 2015; the
Warwick-Edinburgh Mental Wellbeing Scale; Tennant et al., 2007).
These questionnaires data are reported elsewhere.

At first measurement (Time 1), participants were welcomed in
the lab, were given the consent form, and were required to attend a
short presentation from one experimenter, outlining the setting-up
of the Mi5 band, the connection with the personal smart phone, and
the two apps required for participating in the study (e.g., the Mi Fit
and the SEMA3 apps). At each of measurement phases (Times 1, 2,
and 3), the participants were invited to step on the scale, barefooted.
Their height was verbally assessed and then checked against a wall,
with a linear meter; the experimenter assured the participant’s head
was positioned in the Frankfort plane. Participants were weighted
with their clothes on, after a series of standard questions assessing
their age, gender, and their activity level (from sedentary, with little/
no exercise, to moderate–occasional exercise, active–regular
exercise, to athlete–more than 12 h exercise per week).

Time 1 physiological measurements (i.e., the BMI and blood
cholesterol) commenced on 11 January 2022. The in-app data
collection for the 7-week walking regime app-supervised through
theMi Fit and the SEMA3 apps was initiated on 17 January 2022 and
was concluded on 7 March 2022. Time 2 physiological
measurements were performed in the following week (i.e., March
7th—14th 2022). Time 3 physiological measurements were
performed between May 2nd and 13th 2022.

Data analysis

Data pre-processing and analysis was performed in MATLAB
(R2020a, MathWorks, Natick, MA, US), and implemented via the
Neural Network Toolbox. Artificial Neural Networks (ANNs)
permit the detection of complex non-linear input-output
relationships between variables, affording higher performance in
binary classification and pattern recognition problems, as compared
to classical regression models. Importantly, the ANNs require less
formal statistical training, are independent of the statistical
distribution of the data and have better-discriminating power, as
compared to classical regression models (see, for example, their
demonstrated success over regression-type models in predicting
physical activity features, Staudenmayer et al., 2009; Montoye
et al., 2017). ANNs are the most common used approach to
predict gait data (Caldas et al., 2020). Relatedly, with specific
consideration of physical activity parameters, the superior
efficiency of machine learning techniques was demonstrated in
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predicting exercise relapse, by using accelerometer-recorded
physical activity data: Accurate robust predictions are derived
especially from the number of steps and physical activity
intensity (Zhou et al., 2019). In this context, our developed NN
algorithm classifies, based on several variables, if one individual is
likely/not to continue his/her/their already started physical activity.
The ANN approach thus uses a probabilistic white-box technique,
able to capture high-order relationships between sets of variables,
with respect to classification. This method exhibits excellent
discriminatory power, when compared with conventional
methods (Abiodun et al., 2018; Yasnitsky et al., 2019; Rodríguez-
Hernández et al., 2021).

At pre-processing stage 17 independent variables (i.e., age,
gender, BMI, basal metabolic rate, body water, bone mass, waist
circumference, fat free mass, fat mass, fat percent, muscle mass,
weight, blood triglycerides, blood cholesterol, CVD risk index, CRI,
environment score, ES, fitness state, FS) were considered, together
with 1 dependent variable, physical activity continuation. After
performing a correlation analysis on the variables, we observed
that some of them were dependent on each other and were removed
from the analysis (i.e., as this is typically performed, to reduce
multicollinearity in the model). Taking into account the relatively
reduced volume of data, we further reduced the number of
independent variables to only 6 features (i.e., predictor variables)
and one predicted class, which were chosen to be the ones with the
most significant correlation with the response variable. This
predicted class was defined as a binary variable to mirror the
continuation of an already started physical activity regime, as
assessed at measurement Time 3, with two values coded as 1 and
2. That is, code 1 indicated that a participant declared that they had
less or NO continued physical activity after the experiment, whereas
code 2 class indicated that the participant declared to have continued
with the initial physical activity, at least as strenuous as this was
performed during the experiment (i.e., a YES class). The
continuation of physical activity was assessed by paper and
pencil at Time 3 measurement. The final dataset included a total
of 84 observations/participants, out of which 34 observations/
participants were classified in class 1 (NO), and 50 observations/
participants were classified in class 2 (YES).

For the models reported in this study, we trained artificial neural
networks to estimate the continuation of physical activity (PA), in
three cascading steps, based on the study manipulated group
variable (control vs. park vs. city walking), as well as the type
and the typical availability of monitored data. As such, the self-
reported questionnaire data is the most readily available type of
monitored data, it is relatively easy to acquire, but also known to be
prone to (memory) recall bias. Our first basic Model 1 was thus
based on 4 predictors, including the experimental group (EG,
control vs. city walking vs. park walking), cardiovascular risk
index (CRI, the total score on the CVD risk questionnaire; the
higher the score, the higher the risk for CVD), an environment score
(ES, the total score calculated on the environment questionnaire,
Spittaels et al., 2009) and the fitness state (FS, the total score on the
self-assessed fitness state, Ortega et al., 2011). Model 1 was prepared
as the self-report baseline for predicting the continuation of a
sustained physical activity, such as walking. Models 2 and
3 include further physiological measurements: For Model 2, we
included the baseline predictors utilised in the first model, to which

we also added one further body composition variable (i.e., EG, CRI,
ES, FS, and body mass index (BMI) measured at Time 2, following
the 7-week walking regime required for the experimental group).
Lastly, Model 3 was based on 6 predictors, i.e., the previously
considered, EG, CRI, ES, FS, BMI, together with the blood
cholesterol measured at Time 2 (Ch).

Neural network architecture

As it can be observed in Figure 2, depicting the architecture of
the ANN utilised in this study for Model 3, this contains one input
layer with six neurons, one hidden layer with seven neurons, and one
output layer with two neurons. Depending on the model, the given
inputs are experimental group (EG), cardiovascular disease risk
index (CRI), environment score (ES), fitness state (FS), mean
body mass index (BMI), and blood cholesterol (Ch). A trial-and-
error process was utilised to determine the number of neurons in the
hidden layer (i.e., 7 neurons). The activation function employed for
the hidden layer was the tansig function:

f x( )�tansig x( )� 2
1 + e−2x

− 1

For the output layer, the softmax function was used. The
performance of the network is assessed using the MSE (mean
squared error):

MSE� 1
n
∑

n

i�1 ŷi − yi( )2

Neural network training method

To improve the learning performance, the dataset was
randomized prior to training. The data set was then randomly
divided into two separate sets, such that 80% of data values were
used for the training set, and 20% for the validation set. As such, for
ANN training, a back-propagation Levenberg-Marquardt algorithm
with a MSE performance function was used. The Levenberg-
Marquardt back-propagation ensures faster convergence speed as
compared to other algorithms, while still maintaining better overall
performance (Yu and Wilamowski, 2011). The MSE function is the
function that is minimised during the training process within the
ANNs. It represents the alteration between the original value and the
predicted value of the response variable (Rajawat et al., 2022). The
MSE is an important ANNs metric as it is easily calculated, penalises
large errors, and it lies close to the centre of the normal distribution
(Maier and Dandy, 2000).

Several networks need to be trained for the same set of data, in
order to obtain a robust network performance or a solid classification
for our chosen dependent variable (i.e., physical activity continuation).
Therefore, we trained 50ANNswith the architecturementioned above,
see Figure 2. Each ANN was trained starting with different initial
weights and biases, and with a different division for the training and
test data sets. To ensure good generalization, eachANNwas retrained a
further 5 times. After training, the ANN with the best performance
(i.e., the lowest MSE) on the test data set was chosen to make
predictions on the continuation of physical activity, PA.
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Results

Averages together with standard deviations of considered bodily
characteristics and total blood cholesterol, for each of the three study
groups are presented in Table 1. Table 2 outlines average walking
data for the experimental groups of city and park walking.
Descriptive data for the total scores regarding the cardiovascular
disease risk index (Miller et al., 2011; Grundy et al., 2019; Pearson
et al., 2021), the environment score (Spittaels et al., 2009), and fitness
state (Ortega et al., 2011) for each of the three study groups are
reported in Table 3. Note that with an overall average BMI of
23.55 kg/m2 across the study groups and measurement times, our
sample is positioned in the upper range of the ideal BMI,
corresponding to normal weight (18.5–24.9).

Figures 3–5 highlight the result and robustness of the ANN
algorithm estimated in a hierarchical approach, i.e., Model
1 encompasses the variables of experimental group (EG, control
vs. city walking vs. park walking), the total score for the CVD risk
questionnaire (CRI), the environment questionnaire (Spittaels et al.,
2009, ES), and the fitness state (Ortega et al., 2011, FS), Model 2 also
takes into consideration the BMI, whereas Model 3 includes, in
addition to all the variables above, the total blood cholesterol
measured at study Time 2 (Ch).

Figure 3 displays the observed classes (blue) and the predicted
classes (red) by the model. The performance (error) for these
models is: MSE Model 1 = 0.1972, MSE Model 2 = 0.1389, and MSE

Model 3 = 0.0753. Given that when optimization is considered the
MSE is typically subject to minimization, i.e., the lower value
indicates a better fit of the estimates to actual values, these values
highlight that Model 3 has the best accuracy or, in other words, a
better fit. That is, adding blood cholesterol information to the
self-reported questionnaire and BMI calculations is an enhanced
predictor of continued/sustained physical activity.

See Figure 4 for the confusion matrices computed for the
training set, to illustrate this enhanced prediction of sustained
physical activity from the added bodily physiological data. A
confusion matrix represents a table typically used to describe the
performance of a classification model on a set of test data for which
the true values are known. The green diagonal elements represent
correctly classified observations, while the red diagonal elements
represent misclassified observations. As it can be observed, a total of
67.9% of observations were correctly classified by Model 1, a total of
86.9% of observations were correctly classified by Model 2, and a
total of 92.9% of observations were correctly classified by Model 3.
As such, Figure 4 highlights that when we add new predictors related
to the BMI (inModel 2) and total blood cholesterol (in Model 3) into
the system, we can classify with significantly increased precision
whether a person will continue the physical activity already
commenced, or not. That is, adding physiological features to our
first model based exclusively on questionnaire data, considerably
enhances the overall model predictive performance.

Another well-established way to address the performance of a
model is by plotting a Receiver Operating Curve (ROC). The ROC is a
metric commonly utilised to verify the quality of classifiers and it is
achieved by plotting the true positive rate (i.e., a Class 2—YES option
correctly classified by the model as YES, sensitivity) against the false
positive rate (or false alarms rate, i.e., a Class 1—NOoption incorrectly
predicted as a YES class, 1—specificity, as reflected in the number of
false positives divided by the sum of the false positives and the true
negatives, indicating how often a positive class is predicted when the
actual outcome is negative) at various threshold settings; see Figure 5.
Classifiers that give curves closer to the top-left corner of Figure 5
indicate a better performance for Model 3.

Lastly, the area under the ROC curve (AUC) is another valuable
metric used to summarize the overall classification of a model’s
performance. The AUC value indicates how able a model is to
distinguish between designated classes. That is, the higher the AUC,
the better the model is at predicting 1-labelled classes as 1 (NO) and
2-labelled classes as 2 (YES). The calculated AUC for Model 1 is
AUC = .7574, indicating a fair discrimination capacity to distinguish
between the two classes. The calculated AUC for Model 2 is AUC =
.8365, with a good accuracy to distinguish between the two analysed
classes. The calculated AUC for Model 3 is AUC = .9594,
highlighting an excellent discrimination capacity to distinguish
between the two monitored classes. In addition, the optimum
cut-off point was defined as the point that maximized the AUC
value (see also Perkins and Schisterman, 2006; Unal, 2017). These
cut-off points (0.3512 for Model 1, 0.4961 for Model 2, 0.5205 for
Model 3) provide support in discriminating between participants
that have less physical activity as compared to the study start (Time
1) and those that continued the physical activity (as this was assessed
at Time 3).

Discussion

Walking contributes to health and is a promoting habit for daily
living and quality of life. Here we explored those psychological and
physiological contributors to maintaining a healthy physical activity
habit, once this has commenced. For this, we monitored a group of
participants who were required to walk through the city, to walk in

FIGURE 2
Artificial neural network architecture utilised in the present study
Model 3, including one input layer with 6 neurons, one hidden layer
with 7 neurons and one output layer with two neurons.
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the park, or to not walk at all, for a continuous period of 7 weeks. We
registered questionnaire responses and health measurements, before
the start of programme and after this was completed. Further, to
investigate behavioural habit formation, we re-called participants in
the lab after a period of 7 weeks following the end of the required
walking regime, to perform further health measurements, as well as
to interview them with regard to their physical activity continuation.

Highlighting no significant change in blood cholesterol for the
experimental walking groups, our results are in agreement with
other intervention studies that have failed to evoke favourable
changes in lipid parameters (Albarrati et al., 2018; Buyukyazi
et al., 2010; Kelley, Kelley and Tran, 2004; Murtagh et al., 2015;
Murtagh, Boreham, Nevill, Hare and Murphy, 2005; e.g., a
quantitative analysis of blood lipid adaptations to exercise
revealed that the threshold for adaptation occurs at training
volumes of 1,200–2,200 kcal/week). With the total energy cost of
the walking sessions in the present study situated at the lower
predicted training volumes, the lipid profiles may have not been
altered consistently. The lack of body mass change is also in
agreement with other walking studies using normal-weight

participants (Kelley et al., 2004; Murtagh et al., 2005). During the
present 7 weeks walking intervention, it is estimated that
participants expended on average between 7,000–8,000 kcal while
walking, and therefore, theoretically should have incurred a weight
loss of approximately 1 kg (American College of Sports Medicine,
2013). A compensatory increase in food intake in response to
increased energy expenditure during walking sessions, or a
reduction in leisure-time activity has been proposed to account
for such an effect (Murtagh et al., 2015). Previous studies have not
described significant changes in total cholesterol and its subfractions
with walking (Kelley et al., 2004; Albarrati et al., 2018). One
possibility may be that not weeks, but rather months of
endurance exercise involving a minimum expenditure of about
1,200 kcal per week are needed to better blood lipids in typical
hyperlipidemic participants. Another explanatory path is that
participants in both the city and park walking in our study took
a not so endurance-based, but rather amental immersive or attentive
approach to physical activity, by actively experiencing the
surrounding environment, a walking workout commonly referred
to as deep travel (Hiss, 2017).

TABLE 1 Means together with standard deviations for body measurements and blood data, with split according to the three study groups, for each measurement
time: Time 1—before taking part in the walking regime, Time 2—after 7 weeks of walking, Time 3–7 weeks after walking regime cessation (Time 1 + 14 weeks). No
walking was required from our participants between measurement times Times 2 and 3.

Control group—no walking (N = 27) City walking group (N = 30) Park walking group (N = 27)

Time 1 Time 2 Time 3 Time 1 Time 2 Time 3 Time 1 Time 2 Time 3

Weight (kg) 68.63 (13.45) 69.60 (12.99) 68.81 (13.81) 65.50 (13.99) 65.69 (13.99) 65.30 (13.77) 63.04 (15.89) 64.92 (15.54) 64.83 (16.61)

Height (m) 1.70 (0.09) 1.67 (0.08) 1.66 (0.08)

BMI (kg/m2) 23.71 (4.47) 23.97 (4.30) 23.84 (4.47) 23.20 (3.94) 23.52 (4.20) 23.40 (4.14) 23.15 (5.11) 23.47 (4.85) 23.72 (5.67)

Cholesterol
(mg/dL)

180.07
(33.89)

176.11
(31.16)

183.33
(34.68)

185.87
(47.69)

170.03
(38.84)

173.27
(44.45)

192.70
(30.56)

169.96
(36.79)

173.11
(47.82)

Note. For each of the monitored variables, no significant differences were recorded between the three study groups (control vs. park walking vs. city walking) for each of the Time

1–3 measurements taken (all ps > .09). Additionally, the control group, which had no walking requirement, exhibited no significant differences in each of the analysed characteristics, across the

three measured times.

TABLE 2 Average daily recordedmotricity (means ± SD) for the two experimental groups of city and park walking, as monitored on individual Mi 5 bands together
with MiFit app, over a period of 7 weeks between January and March 2022.

City walking group Park walking group

Daily mean number of steps ± SD (count) 6,695.29 (1,379.68) 6,817.31 (2015.48)

Daily mean walked distance ± SD (m) 4,763.56 (991.24) 4,699.46 (1,421.32)

Daily mean consumed calories ± SD (kcal) 198.79 (70.80) 229.99 (117.76)

TABLE 3 Descriptives for the considered questionnaires total scores data.

Control group-no walking City walking group Park walking group

Mean (SD) Min. Max. Mean (SD) Min. Max. Mean (SD) Min. Max.

Cardiovascular risk index (CRI) 0.67 (1.00) 0 4 0.60 (0.81) 0 3 0.52 (0.64) 0 2

Environment score (ES) 342.07 (57.65) 198 435 358.33 (50.20) 184 422 332.56 (77.76) 181 462

Fitness state (FS) 14.89 (4.72) 6 22 15.40 (3.45) 8 21 14.70 (3.96) 8 21
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Further, mirroring previous findings on blood lipids, no
significant differences were found in our study between walking
in the park and city-walking. However, other longitudinal studies,

like ours, indicate that participants do not discern between benefits
offered by the urban and natural environments, highlighting that a
personal stance is taken when a walking context is evaluated: Each

FIGURE 3
Real observations (targets) and predicted observations for the three analysed models. Model 1 includes four predictors, Model 2 includes
5 predictors, and Model 3 includes 6 predictors.
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participant is likely to develop a preference, and this is given by their
own interaction with the surrounding environment (Marselle et al.,
2013; Cooley et al., 2021). Note that, at least when walks were taken
in the space of natural farms, a higher wellbeing could be predicted
(Marselle et al., 2013). Hence, walking in isolation cannot be used to
induce therapeutic changes in blood lipids, but its effects cannot be
ignored on other health indicators like the general fitness level,
maximum oxygen consumption, body composition, physical
activity, and blood pressure (Kelley et al., 2004).

For this reason, an important distinction needs to be made with
respect to green spaces located in nature, outside the city realm, and
green spaces purposefully organised within the city space. In other
words, how relevant is the distinction between city and park, when
the park itself is located within the city perimeter? It has been
demonstrated that even minimal contact with natural landscapes,
such as admiring the view from one’s window, reduces stress
(Ulrich, 1984; Elsadek et al., 2020). One explanation is that we
might simply prefer natural landscapes to urban ones (Chang and
Chen, 2005; Velarde et al., 2007; Meidenbauer et al., 2020), with a

virtual simulation of the natural environment shown to contribute
to an enhanced wellbeing state (Browning et al., 2020). On the other
hand, bar the attractivity of the urban spaces’ lifestyle, facilities, and
the opportunities they offer (Lecic-Tosevski, 2019), it has been
argued that they represent a threat to mental health, by
promoting isolation, with urban visual and auditory pollution
enhancing anxiety and/or depression (Okkels, Kristiansen, Munk-
Jørgensen and Sartorius, 2018; Klompmaker et al., 2019; Lan,
Roberts, Kwan and Helbich, 2020; Li, Martino, Mansour and
Bentley, 2022). In line with our findings highlighting that a
person’s environment contributes to the continuation of an
already started physical activity, research has shown that the
urban scape needs quality relationships with neighbours, as it has
been shown that city neighbourhood impacts health, with higher
blood cortisol reported for violent environments (Do et al., 2011;
Ettema and Schekkerman, 2016). In addition, it is a fact that people
without access to parks and recreational services (i.e., a friendly
environment for exercise) are less likely to engage in physical activity
(Taylor et al., 2007).

FIGURE 4
Confusion matrices for each of the three models conducted in this study.

FIGURE 5
The ROC curves for the two classes in the three ANN models conducted in this study.
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Knowing that both physical activity and nature independently
enhance human health, we expected measured health benefits
derived from being active in green or natural places to be greater
than the benefits of walking in the urban environment. Our results
could be taken to indicate that physical exercise is crucial, whichever
the environment (natural or urban) of practice. That is, any
movement is beneficial movement. For example, researchers
investigated a 50-min walk along a forest path, or along a busy
road, and the same period of activities of daily living and found that
physical activity improved psychological parameters (e.g., positive
and negative affect, anxiety, perceived stress, and working memory),
regardless of the walking atmosphere (Koselka et al., 2019). A
moderating factor could be age, as demonstrated by a study on
participants with an average age of 65 years: Roe et al. (2020) were
able to highlight the positive effects of walking through a quiet urban
area with front gardens and street trees, as opposed to moving
through an urban busy gray district. Relatedly, in line with our
present results, residing in a ‘green’ neighbourhood does promote
walking (Inoue et al., 2010), prevents obesity and CVD, and
importantly, it also appears to favour weight loss (Chandrabose
et al., 2019).

It has been demonstrated that we need between 18 and 254 days to
form a new behavioural habit, a process with high variability among
participants and an average of 66 days needed for the tested new habits
(e.g., running 15min in the evening) to become automatic (Lally et al.,
2010). Because of the implications for health, it is noteworthy to investigate
long-termmotor habit formation, especially taking into account that when
we consider exercise, we tend to typically acknowledge the long-term
benefits for our health and wellbeing. However, at the same time, we are
likely to oversee any immediate benefits in physical exercise, and rather
focus on its short-term costs and regard exercising as a time-/money-
consuming effort (Rice, 2013). Further, the specific time span of targeted
behaviour (i.e., the total duration monitored) needs to be experimentally
assessed. For instance, behaviour change theory has long delimited several
stages to intervene and change a given behaviour of interest, including the
precontemplation, contemplation, preparation, action, and maintenance
periods (Prochaska and DiClemente, 1983). The maintenance stage has
been typically settled at 6months for physical exercise behaviour.Note that
in our design we have directly targeted the maintenance period, by
opposing a behaviour-requested-period (e.g., 7 weeks of walking) to a
subsequent no-requirement period, also amounting to 7 weeks.

To identify specific drivers of long-term physical activity habit
formation, here we utilise cascading ANNs models and highlight
several relevant predictors of one’s propensity to continue a physical
activity programme, based on walking. We consider the
construction of cascading models from multiple sources of
monitored data to be the highlight of our study. Because the
probability distribution and the prior probabilities of classes do
not constitute a requirement, ANNs are widely used in the pattern
classification processes. It has been suggested that the popularity of
neural networks in pattern classification, as opposed to logistic
regression, could be specifically due to the consideration of these
algorithms as powerful nonlinear generalizations of logistic
regression (Dreiseitl and Ohno-Machado, 2002). Our results
successfully highlight a considerably low mean square error for
the tested ANNs, indicating that the chosen algorithm is an excellent
predictive tool. The current study ANN models first take into
account the easily available questionnaire data, indicating that by

only asking the appropriate questions from our participants, we can
draw a baseline prediction of one’s propensity to continue an already
started physical activity at 68% probability–That is, self-reported
questionnaire data gives an overall good prediction of one’s
continuation of an already started physical activity such as
walking, based on participants’ self-assessed fitness level, their
risk of CVD, other variables related to their living and work
environment, as well as the city they live in, together with the
type of environment where they performed the 7 weeks physical
activity programme. Of all our models, we underline those variables
related to body composition and total blood cholesterol level to
significantly improve the classification performance: The relevant
questionnaire data enhanced with physiological predictors (e.g., the
BMI and total blood cholesterol levels) permit to successfully decide
(i.e., with 93% probability) whether a novel participant will continue
with the ongoing physical activity or not. To consider the practical
value of our results, they indicate that a rightfully-selected self-
report series of questionnaires are able to predict to a certain
reasonable extent whether a given user of a potential (lifestyle)
app would continue a given physical activity regime already started.
Our data also highlight the type of physiological data needed to be
considered for highly successful prediction of health outcomes.

With further consideration of potential limits of our study (e.g.,
total available physiological variables, the choice of specific
physiological variables, sample size), for generalizability, a
comprehensive assessment of bodily health could ideally sample
from a broader range of physiological variables, including, amongst
others, further body composition variables, blood pressure, blood
sugar levels, inflammatory markers, and overall physical and mental
wellbeing. Nevertheless, for the specific purpose of the present study
(i.e., to predict the continuation of an already started sustained
physical activity), the success of our prediction models is evident in
the ANNmetrics outlined in the Results section and highlights those
specific relevant predictors for the continuation a sustained physical
activity such as walking.

Taken together, with the well-established health benefits of
physical exercise and nature exposure, here we successfully
highlight how they both contribute to predict the continuation of
an already started physical regime: With our ANNs, we can predict
with excellent accuracy, whether a person commencing physical
activity is going to successfully abide by it, or not. In this respect, our
results are the first to evidence the contribution of specific factors to
sustained physical activity, such as walking (i.e., either self-declared,
as given by questionnaire data, or indicative of one’s health, as given
by the BMI and measured total blood cholesterol). They allow to
design future personalised engagement-motivated physical activity
and/or general health early behavioural interventions for targeted
populations of interest. By reliably identifying individuals who are
likely to be (non)-compliant with a long-term physical activity
regime, our evidence-based approach and algorithm has the
potential to successfully enhance future interventions designed
for the improvement of lifestyle-related physical activity.
Considering the post-pandemic population focus on physical
activity, health and physical-exercise-derived health, these results
are of high importance, as they indicate a significantly bettered
prediction of one’s success in maintaining an already started
physical regime, when this is made based on physiological,
established and easily available and economical health parameters.
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