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ATP binding cassette transporter A1 (ABCA1) limits the formation of high density
lipoproteins (HDL) as genetic loss of ABCA1 function causes virtual HDL deficiency
in patients with Tangier disease. Mice with a hepatocyte-specific ABCA1 knockout
(Abca1 HSKO) have 20% of wild type (WT) plasma HDL-cholesterol levels,
suggesting a major contribution of hepatic ABCA1 to the HDL phenotype.
Whether plasma sphingolipids are reduced in Tangier disease and to what
extent hepatic ABCA1 contributes to plasma sphingolipid (SL) levels is
unknown. Here, we report a drastic reduction of total SL levels in plasma of a
Tangier patient with compound heterozygosity for mutations in ABCA1.
Compared to mutation-free controls, heterozygous mutations in ABCA1 had
no significant effect on total SLs in plasma; however, apoB-depleted plasma
showed a reduction in total SL also in het carriers. Similarly, liver specific
Abca1 KO mice (Abca1 HSKO) showed reduced total sphingolipids in plasma
and liver. In parallel, apoM and sphingosine-1-phosphate (S1P) levels were
reduced in plasma of Abca1 HSKO mice. Primary hepatocytes from
Abca1 HSKO mice showed a modest, but significant reduction in total SLs
concentration compared to WT hepatocytes, although SL de novo synthesis
and secretion were slightly increased in Abca1 HSKO hepatocytes. We
conclude that hepatic ABCA1 is a signficant contributor to maintaining total
plasma pool of HDL sphingolipids, including sphingomyelins and S1P.
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Introduction

Sphingolipids (SL) are essential components of cellular membranes, but also serve as
signaling molecules for a multitude of cellular events (Hait et al., 2006; Hla and
Dannenberg, 2012). Sphingolipids in plasma and tissues consist of a great variety of
subspecies. A structurally shared feature of all sphingolipids is the sphingoid base
backbone that is typically formed by the conjugation of L-Serine with an acyl-CoA of
variable length. The majority of sphingoid bases in human plasma consists of 18 carbons,
although the length can vary between C16 and C20 (Lone et al., 2020). Sphingoid bases
are either saturated (sphinganine, SA) or contain a single Δ4E (sphingosine, SO) or a
combined Δ4E and Δ14Z double bond (Sphingadieniene, SAdianine). Under
certain conditions, alanine instead of serine is conjugated forming a different class
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of 1-deoxySphingolipids (1-deoxySL) (Lone et al., 2019).
Sphingoid bases are usually N-acylated with a second fatty
acid and conjugated to a variety of O-linked head group
structures forming a great spectrum of possible sphingolipid
subspecies (e.g., ceramides, sphingolmyelins, hexosyl
ceramides, gangliosides, etc.). Sphingomyelins (SM) are the
major SLs in plasma and components of lipoproteins. Very
low density lipoproteins (VLDL) and low density lipoproteins
(LDL) contain greater proportions of SM than high density
lipoproteins (HDL) due to proportionally higher VLDL and
LDL concentrations compared to HDL (Chapman, 1986).
However, SM is the second most abundant phospholipid and
the most abundant sphingolipid in HDL (Martinez-Beamonte
et al., 2013). SM regulates HDL metabolism by modulating the
activity of lecithin: cholesterol acyltransferase (Subbaiah et al.,
2012) and phospholipid transfer protein (Sweeny and Jonas,
1985) as well as ABCA1-mediated cellular cholesterol efflux
(Takahashi et al., 2006; Worgall, 2011) and SR-BI-mediated
removal of HDL cholesterol (Yancey et al., 2000). In addition,
sphingosine 1-phosphate (S1P), a prominent sphingolipid
signaling molecule, is enriched in HDL as it specifically binds
to apoM (65%) (Aoki et al., 2005). However, compared to
cholesterol, triglycerides and phosphatidylcholines, the
metabolic origin and fate of sphingolipids carried by HDL is
little understood.

ATP binding cassette transporter A1 (ABCA1) is a membrane
transporter that transports free cholesterol, phosphatidylcholine
(PC), and SM to lipid-free apoA-I, forming nascent HDL
particles (Lee and Parks, 2005; Yokoyama, 2005). Nascent HDL
particles generated by non-hepatic, ABCA1-expressing
HEK293 cells contain ~10% SM regardless of particle size (Sorci-
Thomas et al., 2012). ApoB lipoprotein-depleted plasma from
humans with heterozygous ABCA1 mutations had ~34% and
12% reduction in S1P and apoM, respectively; however, plasma
SM concentration was not examined (Karuna et al., 2011). Although
our previous studies in hepatocyte-specific ABCA1 knockout
(Abca1 HSKO) mice suggested that hepatic ABCA1 activity
accounts for ~80% of normal plasma HDL-Cholesterol (Timmins
et al., 2005), the contribution of hepatic ABCA1 to plasma
sphingolipids concentrations is unknown.

Here we used Abca1 HSKOmice to determine to what extent the
loss of ABCA1 affects plasma sphingolipid concentrations and
hepatic sphingolipid production. Results were compared to
plasma samples from individuals with homo and heterozygous
loss of function mutations in ABCA1.

Materials and methods

Human samples

Six subjects with heterozygous mutations in ABCA1, one
compound heterozygote ABCA1 and eight unaffected members
of a Dutch family were studied. Subject description, sample
collection, ethics approval and plasma lipids/apolipoprotein
quantification have been reported previously (Karuna et al., 2010;
Karuna et al., 2011). ApoB-depleted human plasma was generated

by precipitation with dextran sulfate/Mg2+ as described previously
(Karuna et al., 2011).

Animals

Abca1 HSKO mice were generated as described previously
(Timmins et al., 2005). Mice were housed in the Wake Forest
University School of Medicine animal facility with a 12 h light/
12 h dark cycle and fed a commercial chow diet ad libitum. All
animal procedures were approved by the Institutional Animal Care
and Use Committee of Wake Forest University School of Medicine.
Abca1 HSKO and Abca1 fl/flWT littermates (hereafter referred to as
WT) were derived from heterozygous mating. Seventeen week-old
mice were sacrificed after a 4 h fast or in the non-fasting state.

S1P analysis

Mouse plasma S1P were analysed as described previously
(Karuna et al., 2011).

Primary hepatocyte isolation

Primary hepatocytes were isolated as described previously
(Chung et al., 2010) with minor modifications. After isolation
from liver, hepatocytes were centrifuged at 50 × g for 5 min in a
50% Percoll-containing Williams’ media E to pellet live cells, which
were then washed with Williams’ media E before seeding in 35 mm
dishes at a density of 0.4 × 106 cells per dish.

Stable isotope labeling

Hepatocytes were cultured for 2 h inWilliams’ Emedia and then
switched to MEM media for 2 h. For labelling hepatocytes were
incubated withMEM for 24 h containing 1 mMd3-serine and 2 mM
C13-alanine (Cambridge Isotope Laboratories) with or without
myriocin (1 μg/mL in MetOH, Sigma). Cells were pelleted and
lysed with extraction buffer (50 mM HEPES, pH 7.4, 1 mM
EDTA, 0.2% Triton X100) and protein concentrations measured
by BCA. 90 µg of protein in 100 µL of extraction buffer were used for
lipid extraction and sphingoid base analysis.

Sphingoid bases analysis

The sphingoid base profile was analysed as described before
(Othman et al., 2012). Tissues were homogenized in PBS [pH 7.4)
with 0.2% Triton X-100 (vol/vol)] using a Precellys 24 tissue
homogenizer (Bertin Technologies). 100 µL plasma, 80 µg tissue
homogenate or 90 μg cell lysates were extracted for lipid analysis.
Methanol (0.5 mL) spiked with 200 pmol of the internal
standards d7-sphingosine and d7-sphinganine (d7SA, d7SO;
Avanti Polar Lipids) were added to the aliquot of plasma or
tissue homogenate.
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The sphingoid bases were separated on a C18 column (Uptispere
120 Å, 5 µm, 125 mm × 2 mm, Interchim) and analysed on a TSQ
Quantum Ultra MS (Thermo) as described before (Mwinyi et al.,
2017; Lone et al., 2020). Intra- and inter-assay variation (CV %) of
the method was between 5% and 20%.

14 different sphingoid base backbones were analysed (C16SO,
C16SA, C17SO, C17SA, C18SO, C18SA, C18SAdiene, C19SO,
C20SO, C20SA, deoxysphinganine (1-deoxySA), deoxysphingosine
(1-deoxySO), deoxymethylsphinganine (doxmethSA),
deoxymethylsphingosine (doxmethSO) sphingoid bases were
reported.

Western blotting

Plasma fromWT and Abca1 HSKOmice was subjected to a 12%
SDS-PAGE and transferred to a nitrocellulose (Schleicher and
Schuell). Membranes were blocked with 5% milk in TBST buffer,
incubated with primary antibody at 4°C overnight, washed three
times, and then incubated with secondary antibody for 1 h at room
temperature. Blots were exposed using Supersignal West Pico
chemiluminescence substrate (Pierce) and visualized with a
Fujifilm LAS-3000 camera. Antibodies for Western blots
included: anti-mouse apoM antibody (LifeSpan), anti-mouse
apoA-I primary antibody (Biodesign), and anti-rabbit secondary
antibody (GE Healthcare). Quantification of band intensity was
performed using Multi Gauge software.

Statistical analysis

Two-tailed Student’s t-test was used to compare results for
human ABCA1 mutations (normal vs. heterozygotes) and mouse
genotypes (WT vs. Abca1 HSKO). p-value < 0.05 was considered
statistically significant.

Results

In this study, we investigated the change in total plasma
sphingolipid levels in response to hepatic ABCA1 activity. Plasma
SL’s consist of hundreds structurally different subspecies because of
the heterogeneity in conjugated alkyl chains and head group
structures. To reduce this complexity, the extracted plasma SLs
were subjected to a sequential acid and base hydrolysis prior to
analysis. This hydrolysis step removes the N-linked alkyl chain and
O-linked head group structures and results in the release of the free
sphingoid base backbones, which are the common structural
element of all SL (Bertea et al., 2010). The sum of all individual
sphingoid bases, therefore, reflects the total sphingolipid content in
the analyzed sample.

Humans with mutations in ABCA1 have
decreased HDL sphingolipid concentrations

The plasma of a single Tangier patient with compound
heterozygous mutations in ABCA1 showed a drastic reduction

in all plasma sphingoid bases. The relative decrease was about
70% for the most abundant sphingoid bases (C18SO and C16SO),
but less pronounced for the minor species. In contrast,
heterozygous (Het) mutations in ABCA1 show reduced plasma
HDL-cholesterol, apoA-I, and S1P compared to their family
controls (WT) (Karuna et al., 2010; Karuna et al., 2011), but
did not show a significant difference in total plasma SL levels
compared to the unaffected family members (Figures 1A, B).
However, in apoB-depleted plasma, which lacks VLDL and LDL
but still contains HDL and albumin, C18SO and C16SO were
almost absent in the Tangier patient plasma and C18SO was also
significantly reduced in the Het carriers (Figures 2A, B).
Collectively, our data suggest a decrease in HDL sphingolipids
in humans with ABCA1 mutations, indicating that
ABCA1 activity determines sphingolipid levels, most likely by
maintaining HDL particle concentration.

Abca1 HSKO mice have decreased plasma
sphingolipid concentrations

We previously reported that hepatic ABCA1 activity
contributes ~80% of the plasma HDL-cholesterol pool in

FIGURE 1
Plasma sphingoid base concentrations in humans with
ABCA1 mutations. Sphingoid base profile in subjects with
heterozygous mutations in ABCA1 (Het, n = 8), their family controls
(WT, n= 6) and a compound heterozygous subject (ComHet, n=
1) (A)C16SO, C17SO, SO, SA, C19SO and (B)C16SA, C17SA, C20SO, C20SA,
doxSA, doxSO, doxmethSA and doxmethSO were quantified. SO,
sphingosine; SA, sphinganine; doxSA, deoxysphinganine; doxSO,
deoxysphingosine; doxmethSA, deoxymethylsphinganine;
doxmethSO, deoxymethylsphingosine. Data are presented as mean ±
SEM. There were no statistically significant differences between WT
and Het subjects by Student’s t-test.
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chow-fed mice (Timmins et al., 2005). To determine whether
hepatocyte ABCA1 is also a major contributor to plasma HDL
sphingolipids, we compared the sphingoid base profile between
Abca1 HSKO mice and WT littermate controls (Abca1 fl/fl). As
shown in Figure 3, there was a significant decrease in plasma
levels of C18SO, C18SA, C18SAdiene C16SO, and C17SO but not of
C20SO in Abca1 HSKO mice Because plasma triglyceride
concentrations are elevated in Tangier disease subjects (Clee
et al., 2000; Kolovou et al., 2003) and non-fasted Abca1 HSKO
mice (Chung et al., 2010), we performed a similar sphingoid base
profiling experiment with non-fasted Abca1 HSKO mouse
plasma, which gave similar results (Supplementary Figure S1).
Collectively, our data showed that hepatocyte ABCA1
deficiency leads to significantly reduced HDL plasma
sphingolipid levels.

Abca1 HSKO mice have decreased hepatic
sphingolipid levels

We next asked whether the lack of HDL as a lipid
transporter is the primary cause for the reduction in plasma
sphingolipids or whether ABCA1 deficiency in Abca1 HSKO is
also associated with lower cellular levels and an altered SL
synthesis. To address these questions, we analyzed total SL
levels in hepatic tissue of the mice and found a significant
reduction in the major (C16SO, C18SO, S18SA, and
C18SAdiene), but not in the minor sphingoid bases (C17SO,
C19SO, C20SO, C20SA, and doxSA) (Figure 4).

FIGURE 2
Decreased plasma HDL sphingoid base concentrations in subjects
with ABCA1 mutations. Sphingoid base profile in ApoB-depleted plasma
from subjects with heterozygous mutations in ABCA1 (Het, n = 8), their
family controls (WT, n = 6), and a compound heterozygous subject
(Com Het, n = 1) (A) C16SO, C17SO, SO, SA, C19SO and (B) C16SA, C17SA,
C20SO, C20SA, doxSA, doxSO, doxmethSA and doxmethSO were
quantified. Data are presented asmean ± SEM, p-valueswere calculate by
two-tailed Student’s t-test, *p < 0.05, **p < 0.01.

FIGURE 3
Decreased plasma sphingoid base concentrations in Abca1 HSKOmice. Sphingoid base profile in plasma ofWT and Abca1 HSKOmice. C18SO, C18SA
C18SAdiene C16SO, C17SO and C20SO sphingoid bases were quantified. Data are presented asmean ± SD. p-values were calculate by two-tailed Student’s
t-test, *p < 0.05, **p < 0.01.
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De novo SL formation and secretion is
increased in primary Abca1 HSKO
hepatocytes

To determine whether sphingolipid synthesis is altered in
hepatocytes lacking ABCA1, we measured the de novo SL

synthesis in cultured primary hepatocytes by the incorporation of
stable isotope labelled d3N15-serine into de novo formed sphingoid
bases. Myriocin (myr), a specific inhibitor of sphingolipid de novo
synthesis was added as negative control. Surprisingly, the total
amount of newly synthesized SLs was slightly higher in
Abca1 HSKO hepatocytes (Figure 5A) compared to WT controls.

FIGURE 4
Decreased liver sphingoid base content in Abca1 HSKO mice. Sphingoid base profile in liver lysates from WT and Abca1 HSKO mice C18SO, C18SA
C18SAdiene C16SO, C17SO and C20SO sphingoid bases were quantified. Data are presented as mean ± SD. p-values were calculated by two-tailed
Student’s t-test, *p < 0.05, **p < 0.01.

FIGURE 5
Increased secretion of newly synthesized sphingolipids in Abca1 HSKO mouse hepatocytes. Hepatocytes from WT and Abca1 HSKO mice were
isolated and incubated with d3-serine in presence of vehicle (MeOH) or myriocin for 24 h. Cells and media were collected and subjected to a sphingoid
base analysis. Newly synthesized sphingoid bases in cells (A) and media (B)were quantified. n = 4 per group. Data are presented as mean ± SD Two-way
ANOVA was used for statistical analysis. *p < 0.05, **p < 0.01.
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A similar picture was seen when analyzing the export of the labelled
SL into the media, which was also higher for SO by Abca1 HSKO
hepatocytes (Figure 5B). This was specific as Myriocin completely
blocked sphingolipid de novo synthesis in both wild type and
Abca1 HSKO cells.

Hepatocyte ABCA1 deficiency results in
reduced plasma S1P and apoM

About 60% of the plasma S1P is transported by HDL and about
30% bound to albumin. The binding to HDL is mediated by apoM
(Christoffersen et al., 2011). Previously, we reported reduced plasma
S1P in subjects with ABCA1 mutations (Karuna et al., 2011). Thus,
we analyzed plasma S1P and apoM levels in Abca1 HSKO mice.
Both, S1P and apoM concentrations were significantly lower in
plasma of Abca1 HSKO mice (Figures 6A–C).

Discussion

Here, we show that total plasma sphingolipids were greatly reduced
in patients with Tangier disease and apoB-lipoprotein free plasma of
individuals with compound heterozygous ABCA1mutations. A similar
SL-deficient phenotype was confirmed in plasma of Abca1 HSKOmice
compared to WT mice. The biggest difference was seen for SLs with a
C18SO backbone. SM is the most abundant SL in plasma and it was
already shown previously, that total SM concentrations are reduced in
plasma and HDL of Tangier patients (Yao et al., 1978; Frohlich and
Godin, 1986). However, the reduction in total plasma SL in
ABCA1 deficient humans was less pronounced compared to
Abca1 HSKO mice, likely due to the higher proportion of VLDL
and LDL in humans which transport two-thirds of the total plasma
sphingomyelin (Nilsson and Duan, 2006). Isolated low levels of SM in
the blood may not necessarily lead to specific consequences or

symptoms on their own. However, SM is important for neuron and
glia formation. Demyelinating polyneuropathy is frequently
encountered in the in Tangier patients but reasons are not yet fully
understood. The genotype-phenotype correlation is not currently
straightforward because different phenotypic characteristics.
However, besides the impaired cholesterol metabolism in Tangier
patients also reduced levels of plasma SM might contribute to these
neurological effects.

Several mechanisms might explain the reduced HDL
sphingolipid content in the absence of ABCA1. First,
ABCA1 mediates the efflux of SM, PC, and FC to form nascent
HDLs (Sorci-Thomas et al., 2012). Less SM efflux from ABCA1-
deficient hepatocytes could partially contribute to a reduced HDL
SM content. Second, HDL particles are hyper-catabolized in Tangier
patients as well as Abca1 HSKO mice (Timmins et al., 2005). SL
levels in HDL might therefore be low due to joint removal or due to
the reduced number of particles that can elicit SM efflux of SM via
ABCG1 or other transporters (Kobayashi et al., 2006). Third,
phospholipids like SM may be transferred from VLDL and LDL
to HDL by the activity of the phospholipid transfer protein (PLTP)
(Jiang et al., 1999). Plasma PLTP activity was reduced ~80% in whole
body ABCA1 knockout mice (Francone et al., 2003) and completely
eliminated in Abca1 HSKO mice (Timmins et al., 2005), suggesting
defective transfer of SM from VLDL or LDL to HDL due to the very
low levels of both PLTP and HDL acceptor particles. Fourth, hepatic
sphingolipid synthesis and secretion might be reduced in
Abca1 HSKO mice. To test the latter hypothesis, we analyzed the
SL content of livers in Abca1 HSKO mice as well as synthesis and
secretion of SL by cultured Abca1 HSKO hepatocytes. In the liver of
Abca1 HSKO mice, we found a reduction of the major sphingoid
bases, although to a lower extent as in plasma. Surprisingly,
analyzing the de novo synthesis and export of SL in cultured
primary hepatocyte using a stable isotope labelling approach
revealed a modest, but significant, increase in the formation and
secretion of C18SO in hepatocytes from Abca1 HSKO mice.

FIGURE 6
Decreased plasma S1P and apoM in Abca1 HSKO mive. (A) Plasma S1P levels were analyzed as described previously (Karuna et al., 2011) for WT (n =
26) and Abca1 HSKO (n= 21)mice. *p < 0.05. (B)WT and Abca1 HSKOmouse plasmawas analysed byWestern blot formouse apoM and apoA-I. (C) ApoM
band intensity was quantified, plotted, and analyzed. Data were log transformed and analyzed by two-tailed Student’s t-test. *p < 0.05, **p < 0.01.
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However, cellular SL synthesis is regulated by a homeostatic
feedback mechanism, which is controlled by local ceramide levels
in the ER. The majority of SL in the cell are sphingomyelins, which
are abundant in the plasma membrane. Is possible that a reduction
in total SM stimulates SL de-novo synthesis which is reflected by
increase in labelled +2 sphingoid bass (Figure 5). As the isotope
labeled +2 species are not included in the total SL analysis (Figure 4)
it might explain the opposing results between increased de-novo
formed and reduced total levels.

Hepatic ABCA1 and S1P

We previously reported a significant reduction in plasma S1P and
apoM in apoB-depleted plasma (i.e., HDL) of humans with
heterozygous ABCA1 mutations (Karuna et al., 2011). In agreement
with the human data, we also found significant reductions in plasma
S1P and apoM levels in Abca1 HSKO mice, suggesting that hepatocyte
ABCA1 is a major contributor to plasma HDL-S1P levels. Liver and
hepatocytes can produce S1P (Kurano et al., 2013) but whether
hepatocyte ABCA1 is directly involved in S1P transport from liver
to plasma is unknown. It was suggested earlier that ABCA1 mediates
S1P transport from erythrocytes (Kobayashi et al., 2009), which are the
major source for plasma S1P (Pappu et al., 2007) and express significant
amounts of ABCA1 (Ohkawa et al., 2020).

HDL stimulates secretion of apoM (Ahnstrom et al., 2010), which is
the major carrier for plasma S1P (Christoffersen et al., 2011). Thus,
plasma HDL reduction due to ABCA1 deficiency results in less plasma
apoM to transport S1P. Regardless, ABCA1 regulation of apoM and
S1Pmerits further investigation considering the atheroprotective role of
apoM/S1P-containing HDL (Egom et al., 2013).

Abca1 HSKO mice had attenuated PI3 kinase activation in liver
in response to insulin, but the mechanism is still unclear (Chung
et al., 2010). S1P activates PI3 kinases in liver and hepatocytes
(Osawa et al., 2010; Studer et al., 2012), suggesting that attenuated
PI3 kinase activation in Abca1 HSKO mice may be partially due to
reduced plasma and HDL-S1P (Key et al., 2017).

In conclusion, our results demonstrate that hepatocyte
ABCA1 is a major contributor in maintaining normal plasma
sphingolipids, including SM and S1P. However, further research
is necessary to find out whether the altered SL metabolism is a direct
consequence of ABCA1 deficiency or secondary to HDL deficiency
caused by the lack of ABCA1.
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SUPPLEMENTARY FIGURE S1
Decreased plasma sphingolipid concentrations in non-fasted Abca1 HSKO
mice. Plasma sphingoid base profile in non-fasting WT and Abca1 HSKO
mice (A) C17SO, C18SO, C18SA and C18SAdiene and (B) C16SO, C19SO,
C20SO, C20SA and doxSAwere quantified. Data are presented asmean± SEM.
WT (n = 7) HSKO (n = 9), Student’s t-test, *p < 0.05, ** p <0.01.
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