
Transcriptome and co-expression
network analysis reveals the
molecular mechanism of inosine
monophosphate-specific
deposition in chicken muscle

Baojun Yu, Zhengyun Cai, Jiamin Liu, Wei Zhao, Xi Fu, Yaling Gu
and Juan Zhang*

College of Agriculture, Ningxia University, Yinchuan, China

The inosine monophosphate (IMP) content in chicken meat is closely related to
muscle quality and is an important factor affecting meat flavor. However, the
molecular regulatory mechanisms underlying the IMP-specific deposition in
muscle remain unclear. This study performed transcriptome analysis of muscle
tissues from different parts, feeding methods, sexes, and breeds of 180-day-old
Jingyuan chickens, combined with differential expression and weighted gene co-
expression network analysis (WGCNA), to identify the functional genes that
regulate IMP deposition. Out of the four comparison groups, 1,775, 409, 102,
and 60 differentially expressed genes (DEGs) were identified, of which PDHA2,
ACSS2, PGAM1, GAPDH, PGM1, GPI, and TPI1 may be involved in the anabolic
process of muscle IMP in the form of energy metabolism or amino acid
metabolism. WGCNA identified 11 biofunctional modules associated with IMP
deposition. The brown, midnight blue, red, and yellow modules were strongly
correlated with IMP and cooking loss (p < 0.05). Functional enrichment analysis
showed that glycolysis/gluconeogenesis, arginine and proline metabolism, and
pyruvate metabolism, regulated by PYCR1, SMOX, and ACSS2, were necessary for
muscle IMP-specific deposition. In addition, combined analyses of DEGs and four
WGCNA modules identified TGIF1 and THBS1 as potential candidate genes
affecting IMP deposition in muscle. This study explored the functional genes
that regulate muscle development and IMP synthesis from multiple perspectives,
providing an important theoretical basis for improving the meat quality and
molecular breeding of Jingyuan chickens.
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1 Introduction

With further economic and societal developments, the demand for meat products
continues to increase, and more focus is being placed on meat quality. The second most
consumed meat in China is poultry, and its demand is increasing annually. It has become an
essential source of meat in daily life. In recent years, there has been a significant
improvement in meat production through the use of modern specialized broiler
chickens. This improvement can be attributed to high-intensity selection for growth rate
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in poultry breeding efforts (Maharjan et al., 2021). However, the
quality of chickenmeat has significantly decreased, particularly meat
flavor (Bao et al., 2008; Katemala et al., 2021). Therefore, while
improving poultry growth rate, cultivating high-quality local
chicken breeds with excellent meat quality and unique flavors has
become the main research direction for modern poultry molecular
breeding.

Animal muscle quality includes various indicators, such as pH,
water-holding capacity (WHC), cooking loss, shear force, and flavor.
Muscle flavor is an important aspect of meat quality evaluation, and
mainly includes umami and aroma (Liu et al., 2017). Inosine
monophosphate (IMP) is the most important umami substance
in livestock and poultry muscles, and the content of IMP in chicken
meat is 4.5 times higher than that of free glutamic acid (Ninomiya,
1998). IMP is an important precursor of meat aromas (Cambero
et al., 1992). The influence of IMP on muscles is crucial for meat
flavor. Muscle IMP synthesis and metabolic processes involve gene
expression, signal transduction, and network regulation; however,
many regulatory factors still need to be explored.

Transcriptomics can be used to identify differentially expressed
genes associated with target traits from a large amount of genomic
information, thus revealing the internal association between gene
expression and specific physiological processes (Wang et al., 2009).
However, many differentially expressed genes are typically identified
in high-throughput sequencing results, and single-gene analysis
frequently misses important information. Therefore, the weighted
gene co-expression network analysis (WGCNA) method was
developed based on global gene-expression patterns. WGCNA
has been successfully used to identify gene expression networks
and biomarkers of interest in multiple groups of samples (Li et al.,
2018; Cheng et al., 2020; Yuan et al., 2020; Yuan and Lu, 2021),
thereby alleviating the problem of multiple detections in extensive
data analysis. The application of WGCNA to chicken muscle IMP
deposition-related gene expression has yet to be reported.

The Jingyuan chicken is an outstanding excellent local breed that
has received national recognition for its excellent quality. Known for
its slow growth rate and strong resistance, this breed produces meat
that is rich in amino and fatty acids, high in muscle IMP content,
and incredibly delicious (Yu et al., 2022). This is an ideal animal
model for studying the meat quality of slow-growing chickens. Our
previous studies have revealed differences in IMP content among
Jingyuan chicken parts, feeding methods, sex, and breeds (Zhang
et al., 2020; Zhang et al., 2021; Wang et al., 2022). Therefore, in this
study, transcriptome sequencing was performed on breast and leg
muscles of caged Jingyuan hens, breast muscles of caged Jingyuan
roosters, and breast muscles of free-range Jingyuan chickens and
Pudong hens (slow-growing local native chickens with excellent
meat quality). Multiple differentially expressed genes (DEGs) and
metabolic pathways closely related to IMP anabolic processes were
identified in the different comparative groups. WGCNA was used to
construct co-expressed gene modules related to muscle quality
indicators, and PYCR1, SMOX, ACSS2, TGIF1, and THBS1 were
identified as potential candidate genes regulating IMP deposition by
mRNA-trait association analysis. This study explored the molecular
markers regulating muscle IMP synthesis and metabolism in
Jingyuan chickens from multiple perspectives, which are
economically important for improving the meat quality and
molecular breeding of Jingyuan chickens and also provide an

important reference for the development and utilization of local
chicken breeds.

2 Materials and methods

2.1 Animal and sample collection

Jingyuan chickens were used in this study after 11 generations of
purification and rejuvenation and a family-equivalent breeding
population was established. Breeding was performed using the
closed herd breeding method. To date, two generations of breeding
conservation work have been conducted, and all experimental samples
were collected at the Jingyuan Chicken National Conservation Farm
(Pengyang County, Ningxia). We obtained permission to use
Jingyuan chickens and fed them with the same diet as that used
on the source farm. After growing to 180 days old, 15 caged Jingyuan
roosters and hens, 15 free-range Jingyuan hens, and five free-range
Pudong hens were randomly selected. Caged chickens were fed
individually in 40 × 40 × 40 cm cages. After fasting for 12 h, the
birds were killed under carbon dioxide anesthesia (inhaled 40%).
Samples of breast and leg muscles were rapidly collected; one tissue
sample was used for the determination of IMP, inosine, and various
physical indices (Zhang et al., 2020; Zhang et al., 2021; Wang et al.,
2022) (Supplementary Table S1), and another was snap-frozen in
liquid nitrogen and stored at −80°C.

2.2 Library construction and transcriptome
sequencing

The transcriptome analysis sample grouping information is shown
in Table 1. Muscle tissues with different IMP contents between the
groups were selected as sequencing samples. Magnetic beads with oligo
(dT) were used to enrich the mRNA after assessing the total RNA
quality of the muscle tissue. Purified mRNA was used as a template to
synthesize single-stranded cDNA using a random hexamer primer,
followed by the addition of DNA polymerase I and RNase H to
synthesize double-stranded cDNA. The final cDNA library was
amplified using PCR. Library quality was evaluated using the Agilent
Bioanalyzer 2,100 system (Agilent Technologies, Santa Clara, CA,
United States). After passing the library inspection, 15 libraries were
submitted to the IlluminaHiSeq platform for sequencing and completed
by Beijing Nuohe Zhiyuan Technology Co., Ltd. (Beijing, China).

2.3 Differential expression analysis

Raw reads were filtered after sequencing and more than
38,940,706 high-quality clean reads were obtained from each muscle
sample. The mapping rate of these reads to the Gallus gallus reference
genome was >72.14% (Supplementary Table S2). HTSeq (V0.6.1)
software was used to analyze gene expression levels in 15 samples,
and the FPKM of each gene was calculated (the sum of the FPKM of
three replicates was less than 0.1 and can be considered not expressed).
The DESeq2 (Love et al., 2014) package was used to perform differential
expression analysis between groups, with p < 0.05 and |log2 (fold
change)| > 1 as thresholds to identify DEGs between groups.
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2.4 Weighted gene co-expression network
analysis

WGCNA is suitable for the analysis of complex trait data and
allows for further exploration of key genes affecting the phenotype.
In this study, we used FPKM values obtained from mRNA-seq,
removed genes with a mean FPKM <1, and applied the WGCNA
package tool (Langfelder and Horvath, 2008) to construct co-
expression networks. First, the Pearson correlation between genes
was calculated to construct a gene co-expression correlation matrix.
Subsequently, the optimal soft threshold (β = 12) was selected
according to the criterion of an approximately scale-free
topology, and a weighted adjacency matrix was generated.
Furthermore, the adjacency matrix was converted into a
topological overlap matrix (TOM) using a correlation expression
value analysis. Next, the TOM was used to cluster the genes, and the
clustered modules were classified using dynamic shearing to identify
highly co-expressed gene modules. The key modules of interest were
identified based on the first principal component computation
module eigengene (ME) of the expression profile and correlated
with phenotypic traits. In addition, Pearson correlations between
gene expression profiles and phenotypic traits were calculated to
estimate gene significance (GS). Finally, the relationship between
genes and traits was quantified using the GS module. Then, we
analyzed the correlation between GS and module membership
(MM), and genes with GS > 0.5 and MM > 0.9 in the trait-
specificity module were identified as hub genes.

2.5 DEGs and hub genes functional
enrichment analysis

To explore the functions of the DEGs and significant modules, GO
function and KEGGpathway enrichment analyses were performed using
the Cluster Profiler tool. GO terms and KEGG pathways attaining p <
0.05 were significantly enriched for the DEGs and hub genes.

2.6 Key gene identification and correlation
analysis

The Upset tool was used to analyze the intersection of DEGs and
hub genes, and the Pearson correlation between the intersection of
genes with IMP and cooking loss was calculated. The protein
interaction network of the differential genes was analyzed using
the STRING database (http://string-db.org/), where the minimum
required interaction score was set to high confidence (0.700).

2.7 Real-time fluorescence quantitative PCR

The heart, liver, spleen, lungs, kidneys, abdominal fat, breast
muscles, and leg muscles of 180-day-old Jingyuan chickens were
collected for gene expression profiling. Total RNA was extracted
using RNAiso Plus (Takara, Dalian, China) according to the
manufacturer’s instructions and cDNA was synthesized using the
PrimeScript RT Reagent Kit (Perfect Real Time; Takara, Dalian,
China). Primer 6.0 was used to design the mRNA primers
(Supplementary Table S3). qPCR was performed using a
CFX96 real-time PCR detection system (Bio-Rad) according to
the instructions for the SYBR@ Green Premix Pro Taq HS qPCR
Kit (Accurate Biology, Changsha, China), with β-actin as an internal
reference, and three replicates for each sample. The relative
expression of mRNA was calculated using the 2−ΔΔCt method, and
the results are expressed as the mean ± standard deviation.

3 Results

3.1 Sequencing data evaluation

In this study, 15 mRNA-sequencing libraries were constructed
for five groups of muscle samples. A total of 18,931 genes were
detected (Supplementary Table S4), of which 15,947 genes were
expressed in the PJFXL group, 16,326 in the PJFTL group, 15,786 in
the PJMXL group, 15,717 in the PJFXS group, and 15,676 in the
JHFXS group. The most abundantly expressed genes were actin
alpha 1 (ACTA1), troponin I2, fast skeletal type (TNNI2),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), myosin
light chain 1 (MYL1), and phosphoglycerate mutase 1 (PGAM1).

Principal component analysis (PCA) and intersample correlation
analyses showed that the difference between the breast and leg muscles
was the most significant (PC1), with significant differences among the
PJFXL, PJFXS, and JHFXS groups (Figure 1A). The Pearson correlation
coefficient among samples was greater than 0.825 (Figure 1B). This
indicated that the transcriptome sequencing results were reliable and
could be used for subsequent analyses.

3.2 Screening and identification of DEGs

ptIn each group, 6.33%–7.59% of genes were extremely highly
expressed, and the expression levels of most other genes were
relatively uniform (Figure 2A). We further analyzed the DEGs
between different comparison groups to investigate the key mRNAs
regulating IMP-specific deposition in Jingyuan chicken muscle. We

TABLE 1 Transcriptome sequencing sample grouping information.

Group Sample name Gender Muscle Feeding method Breed

PJFXL l27tho, l29tho, l30tho hen breast caged Jingyuan chicken

PJFTL l17leg, l18leg, l20leg hen leg caged

PJMXL l2tho, l6tho, l10tho rooster breast caged

PJFXS PYs2tho, PYs3tho, PYs12tho hen breast free-ranged

JHFXS sh3tho, sh4tho, sh5tho hen breast free-ranged Pudong chicken
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FIGURE 1
Sample principal components and correlation analysis. (A) Principal component analysis (PCA) of five groups of muscle samples. (B) Heatmap of
Pearson correlation between samples based on gene expression.

FIGURE 2
Identification of DEGs in five groups ofmuscle samples. (A)Distribution of gene expression levels in different groups. (B) Volcano plots of DEGs in the
PJFXL vs. PJFTL, PJFXL vs. PJFXS, PJFXL vs. PJMXL, and PJFXS vs. JHFXS groups (Sig_Up: significantly upregulated; Sig_Up: significantly downregulated;
NoDiff: no significant difference). (C) Upset diagram of four group comparatives DEGs (The horizontal bars on the left indicate the number of DEGs
required for each group comparison. The individual points in themiddle matrix represent the DEGs specific to each group comparison, and the lines
between points represent the DEGs common to different group comparisons. The vertical bars represent the number of DEGs specific to or common to
different group comparisons).
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identified 1775 DEGs in the PJFXL versus PJFTL comparison, of which
808 were upregulated and 967 were downregulated. A total of 409 DEGs
were identified in the PJFXL versusPJFXS comparison, of which 236were
upregulated and 173 were downregulated. A total of 102 DEGs were
identified in the PJFXL versus PJMXL comparison, of which 64 were
upregulated and 38 were downregulated. Sixty DEGs were identified in
the PJFXS versus JHFXS comparison, of which 44 were upregulated and
16 were downregulated (Figure 2B). Hierarchical cluster analysis revealed
significant differences in the expression levels of the DEGs among the
comparison groups (Supplementary Figure S1). None of the DEGs were
common to all four comparison groups, and therewere atmost tenDEGs
in common among any three groups (Figure 2C).

3.3 GO and KEGG enrichment analysis of
DEGs

To gain insight into the functions of the DEGs, we performed GO
andKEGG enrichment analyses to reveal themolecularmechanism of
IMP anabolism in Jingyuan chickenmuscles. GO enrichment analysis
showed significantly enriched DEGs in the PJFXL vs. PJFTL
comparison in functional terms, such as myofibril, muscle system
process, carbohydrate metabolic process, actin binding, and kinase
activity (Figure 3A). The DEGs in the PJFXL vs. PJFXS comparison

were mainly related to GO terms such as receptor complex, lipase
inhibitor activity, and positive regulation of epidermal growth factor-
activated receptor activity (Figure 3B). Twelve GO terms were
significantly enriched in DEGs in the PJFXL vs. PJMXL
comparison, including striated muscle thin filaments, tropomyosin
binding, and pointed-end actin filament capping (Figure 3C). Most of
the DEGs in the PJFXS vs. JHFXS comparison were enriched in
biological processes, and the two significantly enriched GO terms
were monocyte and leukocyte aggregation (Figure 3D).

KEGG pathway enrichment analysis showed that DEGs in the
PJFXL vs. PJFTL comparison were significantly enriched in 32 signaling
pathways, including glycolysis/gluconeogenesis, carbon metabolism,
pyruvate metabolism, biosynthesis of amino acids, the PPAR
signaling pathway, and the FoxO signaling pathway (Figure 4A),
which regulate multiple genes related to muscle development and
IMP anabolism. Nine signal pathways were significantly enriched by
DEGs in the PJFXL vs. PJFXS comparison, including the p53 signaling
pathway, the FoxO signaling pathway, and pentose and glucuronate
interconversions are essential to regulate muscle development
(Figure 4B). DEGs in the PJFXL vs. PJMXL comparison were
significantly enriched in 17 signaling pathways, including steroid
biosynthesis and the renin-angiotensin system (Figure 4C). DEGs in
the PJFXS vs. JHFXS comparison were enriched in only nine signaling
pathways, including circadian rhythm, malaria, and cytokine-cytokine

FIGURE 3
GO functional enrichment results of DEGs in (A) PJFXL vs. PJFTL, (B) PJFXL vs. PJFXS, (C) PJFXL vs. PJMXL, and (D) PJFXS vs. JHFXS group
comparisons (The vertical coordinate is −log10 (Qvalue), the horizontal coordinate is the up-down normalization value: the difference between the
number of differentially up-regulated genes and the number of differentially down-regulated genes as a percentage of the total differential genes, and the
size of the bubble indicates the number of target genes currently enriched by the GO term).
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receptor interaction (Figure 4D). Comprehensive analysis identified
PDHA2, ACSS2, PGAM1, GAPDH, PGM1, GPI, and TPI1 as key genes
regulating IMP deposition (Table 2), which are likely to be involved in
muscle IMP synthesis and metabolism through a variety of
mechanisms, such as energy and amino acid synthesis.

3.4 Weighted gene co-expression network
construction

For WGCNA analysis, genes with an average FPKM of less than
1.0 were removed. Based on the gene clustering tree analysis, the

11,640 genes were divided into 12 modules (the gray module in
Figure 5A indicates that these genes had a low pattern of variation
throughout the experiment and that the pattern of variation could
not be used to associate with other genes; therefore, the subsequent
analysis was removed). The two largest modules in Figure 5A
contained 692 and 536 genes, and the two smallest modules
contained 76 and 53 genes, respectively (Supplementary Table
S5). A heat map of gene co-expression networks was used to
explore the interactions between modules, and multiple modules
were found to be interrelated (Figure 5C).

Next, the gene modules significantly associated with meat
quality phenotypes were identified. We found that six modules

FIGURE 4
KEGG pathway enrichment results of DEGs in (A) PJFXL vs. PJFTL, (B) PJFXL vs. PJFXS, (C) PJFXL vs. PJMXL, and (D) PJFXS vs. JHFXS group
comparisons (Rich Factor indicates the ratio of the number of differential genes to the number of all genes in the background gene set that are enriched in
the pathway).
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(Figure 5B) were significantly and negatively correlated with IMP,
including brown (r = −0.68, p = 0.005) and midnight blue (r = −0.66,
p = 0.007). Inosine was significantly negatively correlated with the
cyan module (r = −0.62, p = 0.01). Six modules (yellow, red,
midnight blue, brown, green-yellow, and magenta) were
positively correlated with cooking loss. The modules with strong
correlations were yellow (r = 0.75, p = 0.001), red (r = 0.74, p = 0.002)
and midnight blue (r = 0.7, p = 0.004). There was a significant
positive correlation between WHC and the green-yellow module
(r = 0.57, p = 0.03). At the same time, we found that the brown,
midnight blue, red, and yellow modules were strongly correlated
with both IMP and cooking loss, and the GS of these four modules
was the highest among all the co-expression modules (Figure 5D).

3.5 Hub gene screening and functional
analysis

After identifying the four important modules, we further explored
the hub genes in each module using GS and MM. The brown module
obtained 178 hub genes, and the correlation between GS andMMwas
0.56 (p = 2.7e-29) (Figures 6A–1). Functional enrichment analysis
showed that hub genes in this module were significantly enriched in
GO terms such as regulation of protein localization to the membrane
and regulation of kinase activity (Figures 6A–2). In addition, hub

genes were significantly enriched in the adipocytokine signaling,
glycerophospholipid metabolism, and arginine and proline
metabolism pathways (Figures 6A–3). The midnight blue module
obtained 132 hub genes, and the correlation between GS andMMwas
0.75 (p = 2.4e-43) (Figures 6B–1). Hub genes were significantly
enriched in such GO terms as phosphate metabolic process
regulation, small molecule metabolic process, and signaling
receptor activity (Figures 6B–2). Among the nine KEGG pathways
that were significantly enriched, the PPAR signaling pathway,
pyruvate metabolism, and glycolysis/gluconeogenesis are necessary
for muscle IMP deposition (Figures 6B–3). The yellow module
obtained 177 hub genes, and the correlation between GS and MM
was 0.76 (p = 7.7e-59) (Figures 6C–1). The hub genes in this module
were significantly enriched in GO terms such as skeletal muscle cell
differentiation and phosphoric ester hydrolase activity (Figures 6C–2).
Twelve KEGG pathways were significantly enriched, including the
TGF-β signaling pathway, regulation of the actin cytoskeleton, and
glycerolipid metabolism (Figures 6C–3). The red module obtained
129 hub genes, and the correlation between GS andMMwas 0.87 (p =
2.9e-68) (Figures 6D–1). The hub genes in this module were
significantly enriched in GO terms such as actin filament binding,
growth factor activity, and myosin complex (Figures 6D–2), and
significantly enriched in steroid biosynthesis, PPAR signaling
pathways, cardiac muscle contraction, calcium signaling pathways,
and fatty acid degradation signal pathways (Figures 6D–3).

TABLE 2 Key pathways for significantly enriched of DEGs.

Group Pathway Pathway id p-value Genes

PJFXL vs. PJFTL Glycolysis/Gluconeogenesis ko00010 1.72E-06 PKLR, MINPP1, PDHA2, PGK2, GPI, PGAM1, TPI1, FBP2,
PGM1, BPGM, ACSS2, GAPDH, LDHA

Pyruvate metabolism ko00620 0.000125 ACSS2, PKLR, LDHA, ACYP2, ACYP1, PDHA2,
GLO1, ME1

Biosynthesis of amino acids ko01230 0.000299 CYLY, TPI1, PKLR, PRPS1L1, BCAT1, GAPDH, PSPH,
CTH, RPIA, PGK2, CPS1, ARF6, PGAM1

Adipocytokine signaling pathway ko04920 0.001304 SLC2A1, MAPK10, ACSBG2, PRKAG3, PRKAA2, CD36,
ADIPOQ, SOCS3, ACSBG1

PPAR signaling pathway ko03320 0.001487 FABP6, LPL, CPT2, ACSBG1, ADIPOQ, ACADL, CD36,
PLIN1, ACSBG2, GK2, ME1

Pentose phosphate pathway ko00030 0.002986 FBP2, PGM1, PRPS1L1, RPIA, FBP1, GPI

FoxO signaling pathway ko04068 0.003087 CDKN1A, MAP2K2, IL10, FOXO3, HOMER2, SETD7,
FOXO1, PRKAG3, PIK3R3, CCND1, PRKAA2

Focal adhesion ko04510 0.015515 TLN2, CHAD, SHC2, PAK1, MYL10, THBS1, VEGFA,
MYL2, CCND1, MAPK10

Glycerophospholipid metabolism ko00564 0.034045 GPD2, MBOAT2, GPAM, PISD, PLA2G2E, GPD1L, PEMT,
DGKH, AGPAT2

Regulation of actin cytoskeleton ko04810 0.049843 MYL2, ENAH, PPP1CC, PIK3R3, FGF4, PAK5, GIT1, FGF9,
PDGFA, PAK1, SSH2

PJFXL vs. PJFXS p53 signaling pathway ko04115 0.019724 RRM2, THBS1, CDK1, CCNB1

FoxO signaling pathway ko04068 0.041711 PLK3, CCNB3, PLK1, FOXO1, CCNB1

Pentose and glucuronate interconversions ko00040 0.047352 AKR1B10, KL

PJFXL vs. PJMXL Steroid biosynthesis ko00100 9.24E-06 LSS, MSMO1, DHCR24

PJFXS vs. JHFXS Cytokine-cytokine receptor interaction ko04060 0.027194 BMP7, THPO
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Joint differential expression analysis identified glycolysis/
gluconeogenesis, arginine and proline metabolism, PPAR
signaling pathway, and pyruvate metabolism as the functional
pathways regulating IMP anabolism. The key genes PYCR1,
SMOX, and ACSS2 may play important regulatory roles in
muscle IMP deposition.

3.6 Functional gene identification

Association analysis of hub genes in the four significant modules
with intergroup DEGs was performed and 14 intersecting genes
GRIN2C, SOCS3, MSMO1, HSPH1, TMOD1, LMOD2, FNDC5,
MAFF, TGIF1, THBS1, PAQR9, FHL1, HBEGF, and UBTD1 were
common to at least one module and two differential comparison
groups (Figure 7A). These 14 genes were positively correlated with
cooking loss (p < 0.05) and 11 were negatively correlated with IMP
(p < 0.05) (Figure 7B). The TGF-β signaling pathway genes TGIF1
and THBS1were strongly correlated with both IMP and cooking loss

(p < 0.05) and were expressed at high levels in the breast and leg
muscles of Jingyuan chickens (Figures 7C, D). Protein interaction
network analysis showed that TGIF1 and THBS1 interacted with
nine and ten proteins, respectively (Figures 7E, F), with a
transcription regulator activity function. Taken together, TGIF1
and THBS1 may regulate the expression of key enzymes involved
in IMP anabolism, either directly or indirectly, through muscle
biogenesis-related processes.

4 Discussion

The economic value of poultry meat is directly related to its
quality. Chicken meat quality may vary greatly depending on the
body part, feeding method, sex, and breed. A previous study found
that the IMP content in the breast muscle of a caged Jingyuan hen
and rooster was significantly higher than that in the leg muscle, and
the IMP content in the hen was higher than that in the rooster;
however, the difference was not significant (Zhang et al., 2020). The

FIGURE 5
Module identification and trait correlation analysis. (A) Gene modules based on phylogenetic clustering tree. (B) Correlation analysis of 12 modules
andmuscle phenotypes. (C)Heatmap of gene co-expression network (the heatmap area indicates the dissimilarity between genes, the smaller the value,
the darker the color). (D) Gene significance in the module.
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FIGURE 6
Hub genes screening and functional analysis in brown, midnightblue, red, and yellow modules. Scatter plot of gene significance and module
membership for (A)-1 (brown), (B)-1 (midnightblue), (C)-1 (yellow), and (D)-1 (red) modules. GO functional enrichment analysis (BP: biological processes;
CC: cellular components; MF: molecular functions) of hub genes in (A)-2 (brown), (B)-2 (midnightblue), (C)-2 (yellow), and (D)-2 (red) modules. KEGG
pathway enrichment analysis of hub genes in (A)-3 (brown), (B)-3 (midnightblue), (C)-3 (yellow), and (D)-3 (red) modules (red nodes are key genes
enriched in the pathway).
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FIGURE 7
Functional gene identification. (A) Upset Venn diagram of hub genes and DEGs in four important modules. (B) Correlation of 14 DEGs with IMP and
cooking loss (The value in the upper left corner of the figure is the correlation coefficient, and the value in the lower right corner is −log10 (p-value)).
Tissue expression of (C) TGIF1 and (D) THBS1 in Jingyuan chickens. The protein interaction network of (E) TGIF1 and (F) THBS1 (Network nodes represent
proteins: splice isoforms or post-translational modifications are collapsed, i.e., each node represents all the proteins produced by a single, protein-
coding gene locus. Edges represent protein-protein associations: associations are meant to be specific andmeaningful, i.e., proteins jointly contribute to
a shared function).
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IMP content of free-range hens is significantly higher than that of
caged hens under different feeding patterns (Wang et al., 2022),
probably because of the increase in muscle ATP content resulting
from increased activity and enhanced IMP synthesis. Moreover,
there were significant differences in IMP content between breeds in
the muscles of Jingyuan and Pudong chickens (Zhang et al., 2021).
These results are consistent with those of previous studies (Liu et al.,
1980; Zhang et al., 2014; Liu et al., 2018; Wang et al., 2018). The
reason for these differences may be due to differences in the
expression of key enzymes involved in IMP synthesis. Although
preliminary studies have explored the gene networks regulating IMP
deposition, most have focused only on single-gene expression
aspects (Hu et al., 2015; Zhang et al., 2015.; Zhang T. et al.,
2018). There is a paucity of relevant studies revealing the
molecular mechanisms underlying IMP-specific deposition in
chicken muscles from multiple perspectives.

We explored the genetic factors affecting muscle IMP-specific
deposition in Jingyuan chickens from several perspectives. We
analyzed the transcriptome profiles of Jingyuan chickens for
different parts, feeding methods, sexes, and compared them with
Pudong chickens to identify key genes associated with muscle IMP.
In total, 1,775 DEGs were identified between the breast and leg
muscles of caged Jingyuan hens, 409 DEGs in the breast muscles of
caged and free-range hens, 102 DEGs in the breast muscles of caged
hens and roosters, and 60 DEGs in the breast muscles of free-range
Jingyuan and Pudong chickens. Further exploration of the specific
biological functions of the DEGs revealed that the DEGs of the four
comparison groups could participate inmultiple biological processes
of muscle development, including several metabolic processes such
as energy metabolism and lipid anabolism. It has been shown that
the glycolysis/gluconeogenesis pathway is the main form of energy
metabolism in the organism, and the energy generated by its
metabolic processes plays a critical role in ensuring cell survival
and growth. PPARγ can bind and activate the transcriptional
activity of pyruvate kinase M in the form of transcription factors,
which regulate glycolysis/gluconeogenesis processes (Panasyuk
et al., 2012). The PPAR signaling pathway regulates lipid
metabolism (Moreno et al., 2010; Cui et al., 2012). Additionally,
FoxO is a key pathway involved in gluconeogenesis (Zhang X. et al.,
2018). Cytokine-cytokine receptor interactions promote focal
adhesions (Wang et al., 2021). Focal adhesions play a vital role
in skeletal muscle development and are a signaling center for cell
growth and differentiation (Sastry and Burridge, 2000). These results
suggest that intergroup DEGs may be involved in the anabolic
processes of IMP in the form of energy metabolism, key
molecular activities, and direct or indirect participation in muscle
quality regulation.

Traditional transcriptome sequencing methods cannot
distinguish confounding factors among multiple groups (Barabasi
and Oltvai, 2004; Ghaemi et al., 2019). Many DEGs can be identified
by transcriptome sequencing; however, reliable evidence to elucidate
the gene network associated with meat quality phenotypes is lacking.
WGCNA is an effective data-mining method that can cluster
massive gene sets into co-expression modules based on gene
expression patterns (Zhao et al., 2010). Co-expression modules
and key genes that perform biological functions were identified
through association analysis with phenotypic traits. In this study, we
constructed 11 functional co-expression modules, among which the

brown, midnight blue, red, and yellow modules showed a strong
correlation with both IMP and cooking loss.

GO and KEGG enrichment analyses explored possible
mechanisms by which functional genes regulate muscle
development and IMP deposition. GO enrichment analysis
revealed significantly enriched functional terms for protein and
kinase activity regulation, molecular transduction and
metabolism, growth factor activity, transcriptional regulation, and
skeletal muscle development. IMP is mainly produced by the
degradation of ATP in muscles. Therefore, muscle development
is closely related to IMP anabolic processes. IMP is also known as a
hypoxanthine nucleotide and the purine metabolic pathway
regulates its anabolism. Pyruvate kinase M (PKM), a key gene in
the purine metabolic pathway, regulates adenine ribonucleotide
biosynthesis (IMP => ADP, ATP) and guanine ribonucleotide
biosynthesis (IMP => GDP, GTP) (Yu et al., 2022), as well as a
variety of amino acid-assisted regulations in this process. At the
same time, PKM is also the key kinase regulating the conversion of
glucose to pyruvate in the glycolysis pathway, which has many
functions, such as anabolism, cell proliferation, and aerobic
glycolysis (Deyle et al., 2012). These results suggest that
glycolysis/gluconeogenesis, arginine, proline, and pyruvate
metabolism play important roles in IMP-specific deposition
processes.

Analysis of the hub genes of the functional modules revealed
that PYCR1, SMOX, and ACSS2 were the most important genes.
Pyrroline-5-carboxylate reductase 1 (PYCR1) is a precursor of
l-proline synthesis and is involved in the regulation of proline
biosynthesis (Alaqbi et al., 2022). A key step in proline
biosynthesis is the reduction of Δ1-pyrroline-5-carboxylate (P5C)
to proline, which is catalyzed by P5C reductase (PYCR). Studies
have shown that proline biosynthesis is key to sustaining protein
synthesis and supporting mitochondrial function, redox balance,
signaling, and nucleotide biosynthesis (Burke et al., 2020; D’Aniello
et al., 2020; Ding et al., 2020; Tran et al., 2021). Spermine oxidase
(SMOX) is a multifunctional enzyme that controls polyamine
metabolism, plays an important role in muscle differentiation,
and maintains muscle fiber size and skeletal muscle mass
(Cervelli et al., 2018; Reinoso-Sánchez et al., 2020). Vertebrate
SMOX is a flavoprotein that specifically oxidizes the natural
substrate spermine, with the production of spermidine, hydrogen
peroxide (H2O2), and the aldehyde 3-aminopropanal (Polticelli
et al., 2012; Cervelli et al., 2013). H2O2 plays a critical regulatory
role in skeletal muscle function. H2O2 levels from low to moderate
are critical for cell signaling and regulation of gene expression; they
act as signals for cell adaptation and are necessary for muscle growth
(Powers and Jackson, 2008; Sies, 2017).

Acyl-CoA synthetase short-chain family member 2 (ACSS2) is a
conserved nucleocytosolic enzyme that affects lipid synthesis and
metabolism by selectively regulating genes related to lipid
metabolism (Huang et al., 2018). The basic function of the ACS
family of enzymes is to convert acetate and coenzyme A (CoA) into
acetyl-CoA in an ATP-dependent manner. It was found that ACSS2
encodes acetyl coenzyme A synthetase, and was expressed at
approximately 2-fold higher levels in subcutaneous fat than in
intramuscular fat, consistent with a relative preference for acetate in
the subcutaneous fat depot (Hudson et al., 2020). STRING database
exploration revealed that ACSS2 has functions similar to those of
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adipogenesis-related genes (ACACA, ACOT12, SIRT3, and aldehyde
dehydrogenase family members) and can regulate acetyl-CoA
metabolism, fatty acid biosynthesis, and adipocyte differentiation.
Consistent with the results of Hu et al. (2010), ACACA was
identified as a key factor in adipogenesis and transport, and played
a crucial role in the weight variability of abdominal adipose tissue in
growing chickens. IMP deposition is a product of the interaction of
multiple biological processes mediated by a complex network of gene
regulation in muscles. Although there is no direct evidence that PYCR1,
SMOX, and ACSS2 are associated with muscle IMP, the association
analysis of transcriptome DEGs and co-expression functional modules
suggests that PYCR1, SMOX, and ACSS2, which are regulated by the
glycolysis/gluconeogenesis, arginine and proline metabolism, and
pyruvate metabolism pathways, may be potential candidate genes for
regulating IMP deposition.

Based on the combined analysis of the transcriptome and co-
expression module, TGF-β signaling pathway-regulated TGIF1 and
THBS1 were strongly correlated with both IMP and cooking loss and
showed high expression levels in the breast and leg muscle tissues of
Jingyuan chickens. TGF-β is a multifunctional secreted protein
belonging to the transforming growth factor (TGF) superfamily.
TGF-β can inhibit myoblast differentiation during the myoblast state
transition by promoting MYOD degradation and inhibiting myogenin
expression (Schabort et al., 2009). During myogenic differentiation, core
proteoglycans in the extracellular matrix can competitively bind TGF-β,
resulting in reduced TGF-β binding ability to the receptors TGF-β
R1 and TGF-β R2, affecting satellite cell differentiation (Droguett et al.,
2006). TGF-β andWnt pathways also interact to regulate skeletal muscle
growth and development (Biressi et al., 2014). Furthermore, the TGF-β
signaling pathway typically inhibits adipocyte differentiation (Du et al.,
2013). A previous study found that TGF-β3 stimulates adipocyte
progenitor proliferation in white adipose tissue, which is related to
glucose metabolism (Petrus et al., 2018). This is consistent with our
findings that the TGF-β signaling pathway, which regulates multiple
molecular activities and energy metabolism, may be a key regulator of
muscle development and IMP deposition in Jingyuan chickens.

TGFB-induced factor homeobox 1 (TGIF1) is a multifunctional
protein that represses TGF-β-activated transcription by interacting with
Smad2-Smad4 complexes (Guca et al., 2018). By analyzing open
chromatin regions and transcription factor-binding sites in porcine
dorsal longissimus muscle, TGIF1 was identified as a possible
transcription factor that affects muscle growth and development
(Miao et al., 2021). The TGIF1 gene was identified in a gene
module related to the growth and development of pigeon skeletal
muscle, which has a high degree of connectivity and is a hub gene
in development-specific modules (Ding et al., 2021). In addition, TGIF1
is involved in regulating lipid metabolic processes; knockout of TGIF1
in mice increases the accumulation of intrahepatic lipids and serum
levels of cholesterol (Pramfalk et al., 2014), andTGIF1 repressesACAT2
and NPC1L1 (Parini et al., 2018). Thrombospondin-1 (THBS1), a
multidomain calcium-binding glycoprotein (Adams and Lawler,
2011), is highly expressed during muscle development following
injury (Stenina et al., 2003). THBS1 is also elevated in obesity and is
an adipocyte-derived cytokine (adipokine) (Varma et al., 2008).
STRING database exploration revealed that THBS1 functions in cell
adhesion, fibronectin binding, and cell surface and is also regulated by
KEGG pathways such as extracellular matrix receptor interaction, focal
adhesion, and other types of O-glycan biosynthesis. Freedman et al.

(2018) found that the extracellular matrix plays an important role in
multiple cell proliferation and differentiation processes and can also
interact with focal adhesion signaling to participate in the growth and
differentiation of skeletal muscle cells (Sastry and Burridge, 2000;
Romer et al., 2006). These studies suggest that TGIF1 and THBS1
regulate the synthesis and metabolism of IMP in muscles directly or
indirectly through biological processes related to myogenesis.

5 Conclusion

Transcriptome analysis of different muscle tissues, feeding
methods, and sexes of Jingyuan chickens, and comparison with
other breeds, combined with differential expression analysis and
WGCNA, helped to identify multiple potential candidate genes
regulating muscle IMP deposition, including PYCR1, SMOX,
ACSS2, TGIF1, and THBS1. Glycolysis/gluconeogenesis, TGF-β
signaling pathway, and other multiple functional mechanisms are
important in IMP-specific deposition. This study explored the genes
regulating muscle IMP synthesis and metabolism in Jingyuan
chickens from multiple perspectives, providing an important
theoretical basis for the improvement of meat quality and
molecular breeding of chickens.
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