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Tumour progression and metastasis remain the leading causes of cancer-related
death worldwide. Tumour angiogenesis is essential for tumour progression. The
vasculature surrounding tumours is not only a transport channel for nutrients,
oxygen, and metabolites, but also a pathway for metastasis. There is a close
interaction between tumour cells and endothelial cells in the tumour
microenvironment. Recent studies have shown that tumour-associated
endothelial cells have different characteristics from normal vascular endothelial
cells, play an important role in tumour progression and metastasis, and are
expected to be a key target for cancer therapy. This article reviews the tissue
and cellular origin of tumour-associated endothelial cells and analyses the
characteristics of tumour-associated endothelial cells. Finally, it summarises
the role of tumour-associated endothelial cells in tumour progression and
metastasis and the prospects for their use in clinical anti-angiogenic therapy.
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1 Introduction

Angiogenesis was introduced by British surgeon John Hunter over 200 years ago to
describe the growth of blood vessels in reindeer antlers (Ren et al., 2019). In 1971, Judah
Folkman proposed that tumour growth is entirely dependent on angiogenesis (Carmeliet and
Jain, 2000).

Angiogenesis is essential for tumour progression. Without blood vessels, tumours
remain a mass of cells less than 2 mm in diameter (Ribatti, 2008). The blood vessels
surrounding the tumour not only supply nutrients, oxygen and metabolites, but also provide
a pathway for tumour cells to metastasise. Therefore, angiogenesis has become a key target
for cancer therapy, and several anti-angiogenic drugs/inhibitors have been developed.
However, anti-angiogenic therapy is a double-edged sword, with the positive benefits of
anti-angiogenic drugs such as reduction of tumour size and prolonged the survival as giving
hope to patients and the negative side effects such as hypertension, proteinuria, bleeding,
thrombosis and hypothyroidism leaving clinicians conflicted (Li et al., 2022; Motzer et al.,
2022; Lee N. et al., 2023). A major dilemma facing clinical anti-angiogenic therapy today is
how to maximise treatment efficacy and minimise side effects.
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The success or failure of the tumour metastatic cascade response
is highly dependent on the interactions between components of the
tumour and the local microenvironment through a variety of
bioactive molecules such as growth factors, cytokines,
chemokines, and microRNAs (Sellner et al., 2022). A particular
site of intercellular communication within the tumour is the
vasculature. Within the vasculature, tumour cells come into
direct contact with tumour-associated endothelial cells (TECs).
Tumour-endothelial interactions not only promote malignant
vascularisation but also influence the proliferative and metastatic
potential of the malignant cells (Hashemi et al., 2022).

VEGF-A (referred to as VEGF) is the major angiogenesis-
inducing molecule released by tumour cells (Qi et al., 2023).
Excess VEGF in tumours can lead to excessive vascular
permeability and increased inter-tissue osmotic pressure,
resulting in disorganised vascular architecture. The tumour
vasculature is complex, unstratified and disorganized (Balan
et al., 2019). In turn, TECs can release vascular secretory factors
that promote tumour progression (Butler et al., 2010). TECs can
secrete biglycan, which facilitates the metastasis (Maishi et al., 2016).

TECs are found on the inner surface of tumour vessels and are
previously considered to be genetically stable (Hillen and Griffioen,
2007). In fact, TECs are distinct from normal vascular endothelial
cells and their properties can be exploited in translational research
for cancer intervention and treatment. Currently, tumour-derived
primary endothelial cells have emerged as a more representative way
to assess tumour angiogenesis (Liu et al., 2020). This review focuses
on an overview of the origin, features, and role of TECs in tumour
progression and metastasis, and their potential application in
clinical anti-angiogenic therapy.

2 Origin of TECs

2.1 Tumour blood vessels

Tumor blood vessels are the major source of TECs. TECs can be
isolated using the endothelial markers, but they possess some
specific characteristics, including the absence of von Willebrand
factor (vWF), which distinguishes them from normal vascular
endothelial cells (Naschberger et al., 2011).

TECs including tumour-derived vascular endothelial cells
(TDVEC) and tumour-derived lymphatic endothelial cells
(TDLEC) have been identified in tumours. TEVEC isolated from
malignant gliomas express an enriched angiogenesis-related gene
profile, whereas TDLEC express interferon-alpha and interferon-
beta, which may be involved in inflammation and immune cell
recruitment (Carlson et al., 2021). Comparison of a mouse model of
endogenous glioma with a patient derived orthotopic xenograft
(PDOX) model showed that tumour-associated vascular
endothelium is distinct from normal brain endothelium and
exhibits extensive heterogeneity (Carlson et al., 2021).

Delivery of extracellular vesicles or non-coding RNAs into the
tumour microenvironment plays an essential role in tumour
angiogenesis (Li et al., 2021). After overexpression of miR-9,
vascular endothelial cells can possess enhanced angiogenic
ability, and the generated exosomes followed anti-angiogenic
therapy can in turn promote the vascular mimicry of tumour

cells and the progression of the abnormal tumour vasculature
(Zeng et al., 2019). The extracellular vesicles from the lung cancer
cell line A549 cells can induce abnormal angiogenesis by
downregulating transient receptor potential vanilloid 4
(TRPV4) and activating Rho/Rho kinase/YAP/
VEGFR2 pathways (Guarino et al., 2021). The mechanisms by
which the tumour microenvironment modifies endothelial cells
are still poorly understood.

2.2 Tumour stem cells

Tumour stem cells may be involved in angiogenesis to form
tumour vasculature. Cells derived from tumour to endothelial
transdifferentiation express typical endothelial marker CD31 and
vWF and stem cell markers such as Nestin and CD133, and cells
contributed to vasculogenic mimicry lack CD34 and
CD31 expression (He et al., 2012; Maddison et al., 2023).

Glioblastoma endothelial cells have a similar expression
profile to other tumour cells. Glioblastoma stem cells positive
for the stem cell marker CD133 may have an endothelial-like
phenotype and function (Ricci-Vitiani et al., 2010; Wang et al.,
2010). However, it has been reported that TDVEC are rarely
found in glioblastoma vasculature (Rodriguez et al., 2012).
Nonetheless, glioma stem cells can differentiate into
perivascular cells and thus support tumour angiogenesis and
progression (Cheng et al., 2013). The use of a combinatorial
treatment of RoboN and the monoclonal anti-SDF-1 antibody
effectively attenuated the activity of hemangioblast derived-
endothelial cell precursors and tumor neovascularization
(Shenoy et al., 2023). CD44/CD44v6 might play a vital role in
formation of cancer stem cells and angiogenesis (Wang et al.,
2018).

Although transdifferentiation of tumor stem cells to
enodothelial cells have been suggested in vasculogenic mimicry,
whether tumour stem cells are origin of TECs and the
transformation mechanism remains unclear.

2.3 Endothelial progenitor cells

Endothelial progenitor cells recruited from bone marrow have
the capacity to differentiate into mature vascular endothelial cells
(Zhou et al., 2013). Endothelial CD34+CD45– progenitors formed
entire blood vessels in wounds, inflamed skin, and tumors (Patel
et al., 2017). The CD34 were progressively lose in endothelial
progenitor cells during cultivation and maturation (Delia et al.,
1993).

CD133+ bone marrow cells, a subset of CD34+ progenitors, can
retain high levels of VEGFR2 expression while positively expressing VE-
cadherin, vWF, and platelet endothelial cell adhesion molecule 1
(PECAM1, CD31) (Quirici et al., 2001). Another study suggested
that CD133+ cells were unable to differentiate into mature
endothelial cells, whereas CD34+ endothelial progenitors could (Lu
et al., 2007). It is possible that CD133+/CD34+ endothelial
progenitor cells are a stable origin of TECs. However, the specific
mechanism by which the endothelial progenitor cells differentiate
into TECs is not yet known.
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3 Characteristics of TECs

3.1 Genetic instability

TECs from xenografts, such as human melanoma and
liposarcoma, have larger nuclei than normal vascular
endothelial cells from skin and adipose, and cytogenetic
abnormalities (Hida et al., 2004). Lymphatic-specific
chromosomal translocations have also been found in
microvascular endothelial cells of B-cell lymphomas (Streubel
et al., 2004). In addition to tumour-resident TECs, aneuploid
CD31+ circulating TECs are found in the peripheral blood of
breast cancer patients (Lin et al., 2017). TECs isolated from
xenografted human epithelial tumours are CD133+ cells, have
a higher frequency of aneuploidy than CD133-cells and are
genetically unstable (Akino et al., 2009).

Hypoxia-induced reactive oxygen species and VEGF signalling
promote chromosomal abnormalities of TECs (Kondoh et al., 2013).
Vascular endothelial cells may receive tumour genetic material
(DNA/chromosomes) delivered by tumour cell-derived apoptotic
vesicles (Bergsmedh et al., 2001; Ehnfors et al., 2009), resulting in
altered cytogenetics.

Cell fusion between transformed cells and normal stem cells
may be important in the genomic transfer and generation of
reprogrammed somatic cell hybrids with self-renewing highly
malignant phenotype (Glinsky, 2005). The formation of cell-in-
cell structures (a type of unique structure with one or more cells
within another one) may promote genetic transfer and contribute
to genomic instability and malignancy of tumor cells (Wang et al.,
2023). Thus, fusion of bone marrow-derived endothelial
progenitor cells with TECs might be responsible for genetic
instability.

TABLE 1 Characteristics of TECs.

Features Manifestations Tumour/signalling Ref

Genetic instability Larger nuclei Human melanoma and liposarcoma Hida et al. (2004)

Chromosomal translocations B-cell lymphomas Streubel et al. (2004)

Aneuploid Breast cancer Lin et al. (2017)

Genomic transfer Cell fusion/cell-in-cell structure Glinsky (2005), Wang et al. (2023)

Genetic heterogeneity Heterogeneous gene expression patterns Influenced by tumour type, extracellular
environment, and epigenetic regulation

Aird (2009), Hennigs et al. (2021)

Upregulated genes involved in angiogenesis
(VEGFR1/2), cell proliferation andmotility, stemness
and drug resistance

Matsuda et al. (2010), Ohga et al. (2012)

Survival capacity in serum-free medium Bussolati et al. (2003)

Upregulated extracellular matrix organisation genes
such as COL4A2 and SPARC, and vascular
endothelial cell markers such as CD31, AQP1 and
CD34

Hepatocellular carcinoma Aizarani et al. (2019)

Anoikis resistance Resistance to anoikis miR-145, Bcl-2, syndecan-4 Yadav et al. (2015), Hida et al. (2017),
Onyeisi et al. (2020)

Protected tumour cells from anoikis in circulation
and helped them to migrate to distant organs

Pyaskovskaya et al. (2021)

Abnormal metabolism Closely associated with glycolysis and oxidative stress COX-2, PFKFB3, TRPM7, CA2 Cantelmo et al. (2016), Wu et al. (2018),
Zhang et al. (2018), Annan et al. (2019),
Wu et al. (2023)

Resistance to anticancer
drugs

ABCB1-postive TEC increased after first-line
chemotherapy

Urothelial carcinoma Kikuchi et al. (2020)

Resistant to paclitaxel Human melanoma cell xenografts, MDR1 Akiyama et al. (2012)

Resistant to doxorubicin and 5-fluorouracil Hepatocellular carcinoma, CD105 Xiong et al. (2009)

Resistant to the checkpoint blockade immunotherapy Advanced non-small cell lung cancer,
PD-L1

Zhang et al. (2020)

Adaptive to abnormal
mechanical
microenvironment

Inhibited leukocyte rolling but promoted their
adhesion

Increased extracellular matrix stiffness;
increased interstitial pressure and reduced
blood flow/shear stress

Finger et al. (1996), Paszek et al. (2005)

Specific mechanical responsiveness Independent of Inflammatory signalling;
dependent on extracellular matrix
composition

Onken et al. (2014), Riddle et al. (2022)
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3.2 Genetic heterogeneity

TECs are composed of heterogeneous cell populations (Hennigs
et al., 2021). Single-cell RNA sequencing has also demonstrated the
heterogeneity of TECs in mouse and human samples (Goveia et al.,
2020). The heterogeneity of TECs is influenced by tumour type,
extracellular environment and epigenetic regulation (Aird, 2009).
TECs have distinct and heterogeneous gene expression patterns
compared to normal vascular endothelial cells (Hennigs et al., 2021).
Genes involved in the regulation of angiogenesis, cell proliferation
and motility, stemness and drug resistance are differentially
upregulated in TECs (Ohga et al., 2012). TECs express high
levels of VEGFR1 and VEGFR2, which enhances cellular
responsiveness to VEGF and angiogenesis (Matsuda et al., 2010).
They have the capacity for survival in serum-free medium (Bussolati
et al., 2003). Compared to normal colorectal mucosal endothelium,
46 genes were specifically elevated in endothelial cells isolated from
colorectal cancer, including MMP2 and MMP11, and collagen types
I, III and VI (St Croix et al., 2000). Amap of single-cell sequencing in
hepatocellular carcinoma (HCC) shows that in TECs, extracellular
matrix organization genes such as COL4A2 and SPARC were
upregulated, liver sinusoidal endothelial cell (LSEC) markers such
as CLEC4G did not express, while macro-vascular endothelial cell
(MVEC) markers such as PECAM1 (CD31), AQP1 and CD34 were
also upregulated (Aizarani et al., 2019). Furthermore, HCC LSECs
express plasmalemma vesicle-associated protein (PLVAP), making
them less permeable and potentially limiting the entry of
lymphocytes and tumour-derived antigens (Rantakari et al.,
2015). PLVAP is considered as a major factor influencing the
permeability of endothelial cells, also upregulated within pro-
angiogenic or pro-inflammatory responses (Denzer et al., 2023).

3.3 Anoikis resistance

Anoikis (Anchorage-Dependent Cell Death) refers to the
death of normal adnexal cells that are left suspended for long
periods and become ‘homeless’. Non-coding RNAs are closely
related to anoikis resistance of cancer cells (Shi et al., 2022). TECs
with high expression of miR-145 have an increased ability to
resist anoikis (Hida et al., 2017). Circulating TECs with high
expression of Bcl-2 also have increased resistance to anoikis
(Yadav et al., 2015). The increased resistance of TECs to
anoikis enhances their ability to survive after entry into the
circulation, while improving cell adhesion and promoting
tumour metastasis (Yadav et al., 2015). TECs interacting with
tumour cells can protect the latter from anoikis in circulation and
help them to migrate to distant organs (Pyaskovskaya et al.,
2021). Silencing of syndecan-4 led to an inhibition of the
proliferative, invasive and angiogenic capacity of anoikis-
resistant endothelial cells (Onyeisi et al., 2020).

3.4 Abnormal metabolism

Angiogenesis of lung TEC is closely associated with glycolysis
and oxidative stress (Wu et al., 2018). Inhibition of glycolysis
tightened the vascular barrier and inhibited the expression of

cancer cell adhesion molecules in endothelial cells (Cantelmo
et al., 2016). Pharmacological blockade of cyclooxygenase-2
(COX-2) by parixibox restored the glucose metabolism level
(particularly glycolysis) in TECs, reducing the VEGF (Zhang
et al., 2018). Inhibition of the glycolytic activator
PFKFB3 tightened the vascular barrier by reducing VE-cadherin
endocytosis in TECs, contributing to the reduction of metastasis by
normalizing tumor vessels (Cantelmo et al., 2016). Deficiency of
endothelial TRPM7 inhibited postnatal retinal angiogenesis in mice
might through normalized glycolytic metabolism (Wu et al., 2023).
Lactate activated the major stroma components in gastric cancer
mesenchymal stem cells and promote their migration (Tao et al.,
2023). Unlike normal endothelial cells, TECs proliferate in lactic
acidic via upregulation of carbonic anhydrase 2 (CA2) (Annan et al.,
2019). The mechanism by which TECs survive in a high-lactate
environment and participate in angiogenesis is required to be
further explored.

3.5 Resistance to anticancer drugs

Following first-line chemotherapy, the proportion of ABCB1-
postive TEC in urothelial carcinoma was increased, which conferred
drug resistance to the tumor (Kikuchi et al., 2020).

TECs isolated from highly metastatic human melanoma cell
xenografts express high levels of multidrug resistance protein 1
(MDR1) and are resistant to the anticancer drug paclitaxel (Akiyama
et al., 2012). CD105+ TECs isolated from hepatocellular carcinoma
were resistant to doxorubicin and 5-fluorouracil (Xiong et al., 2009).
The PD-L1+ aneuploid circulating TECs exhibit resistance to the
checkpoint blockade immunotherapy in advanced non-small cell
lung cancer patients (Zhang et al., 2020).

TECs highly express stemness markers such as CD105 and
CD146 (St Croix et al., 2000; Otsubo et al., 2014). The stem cell
properties of TECs may be responsible for the development of drug
resistance, but further clarification is required.

3.6 Adaptive to abnormal mechanical
microenvironment

Tumour-associated vasculature is characterised by irregular
morphology and structure, dysfunction, and reduced flow and
leakage in comparison to normal vessels. The stiffness of tumour-
derived extracellular matrix is increased, leading to high
interstitial pressure (Paszek et al., 2005). Increased interstitial
pressure and reduced blood flow within the tumour vasculature
reduces shear stress and inhibits leukocyte rolling but promote
their adhesion to the endothelium (Finger et al., 1996).
Endothelial cells can sense the stiffness of the extracellular
matrix. In contrast to a soft stroma, a hard stroma led to
dysfunction of the endothelial monolayer, independently from
inflammatory signalling (Onken et al., 2014). The composition of
extracellular matrix such as geltrex and collagen I is critical for
endothelial cell function (Riddle et al., 2022). It remains unknown
whether the mechanical responsiveness of TECs differs from that
of normal vascular endothelial cells.

The major characteristics of TEC are summarized in Table 1.
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4 TECs in tumour progression and
metastasis

Tumour blood vessels, with abnormal thin-wall, contribute to
metastasis (Oka et al., 2023). The immature nature of tumour
vessels, with the absence of smooth muscle cells or pericytes, allows
tumour cells to readily invade tumour vessels (Morikawa et al., 2002).

TECs may also provide signals that actively promote metastasis.
CXCR7 regulated CXCL12-mediated migratory cues, driving
CXCR4+CXCR7+ metastasis and tissue invasion (Zabel et al., 2009).
However, in hepatocellular carcinoma patients, CXCR4 affected overall
survival, but not CXCR7 (Neve Polimeno et al., 2015). Conditionally
deleted the CXCR7 from vascular endothelium of adult mice elevated
number of circulating tumor cells and more spontaneous metastases
(Stacer et al., 2016). Transendothelial migration of tumour cells was
increased after VEGF disrupted the glycocalyx on the surface of vascular
endothelial cells (Xia et al., 2022; Zeng et al., 2022). Heparan-sulfate
proteoglycans (HPSE) digestion-generated heparan sulfate fragments of
about 10 kDa in B16B15b melanoma cell stimulated melanoma
migration and angiogenesis, which were possibly due to signaling by
some other unknown heparin-binding growth factor(s) (Roy and
Marchetti, 2009).

TECs can transform tumour cells into more tumourigenic,
invasive and chemoresistant cells (Cao et al., 2017; Hoarau-

Véchot et al., 2022). In a bio-3D printed in vitro vascular model
of neuroblastoma, the invasive behaviour of neuroblastoma cells co-
cultured with human umbilical vein endothelial cells was
significantly increased (Ning et al., 2022). By inhibiting the
expression of lectin-like oxidised LDL receptor 1 (LOX-1) in
TECs, the LOX-1 enahnced neutrophil migration was inhibited,
and thus the formation of high metastatic-tumor microenvironment
was inhibited and lung metastasis of tumour cells can be suppressed
(Tsumita et al., 2022).

In addition, TECs can accelerate lung metastasis of tumour cells
with low metastatic potential by releasing the vascular secretory factor
biglycan (Maishi et al., 2016). TECs express high levels of adhesion
molecules and biglycan, which allow vascular endothelial cells to bind to
tumour cells, protecting them from circulating anoikis and promoting
their metastasis to distant organs (Yadav et al., 2015).

5 TECs in anti-angiogenic therapy

Anti-angiogenic drugs are currently used in a combination
therapeutic model with immunotherapy and radiotherapy, which
demonstrated promising anti-tumor activity in various advanced
solid tumors (Shen et al., 2023). Anti-angiogenic therapies alter the
immunologically permissive microenvironment of the tumour by
reducing the number of regulatory T cells and myeloid-derived
suppressor cells (Wallin et al., 2016; Hegde et al., 2018). However,
anti-VEGFA therapy is a direct reduction in the rate of tumour
growth rather than an induction of tumour regression, and some
drugs slow tumour growth without necessarily causing tumour
shrinkage (Bagri et al., 2010). In patients with advanced EGFR-
mutated non-small cell lung cancer, longer but not significant
progression-free survival (PFS) was observed in the erlotinib plus
bevacizumab compared with the erlotinib alone (Lee Y. et al., 2023).

Despite the benefits, anti-angiogenic therapies face challenges.
Complications and adverse events such as hypertension, hand-foot
syndrome, proteinuria and thyroid dysfunction can occur due to the

FIGURE 1
Potential role of tumour-associated endothelial cells (TECs) in
tumour angiogenesis and metastasis. TECs are mainly derived from
tumour vasculature. They may be formed by uptake of extracellular
vesicles (EVs) or non-coding RNAs from tumour cells (TCs) and
may undergo transdifferentiation from tumour stem cells and
endothelial progenitor cells. (A–D) Following the occurrence of
tumor, the normal vascular endothelial cells (ECs) are transformed into
TECs, which facilitate the infiltration of tumor cells into
microcirculation andmetastasis through bloodstream. The circulation
tumor cells may induce the transformation of endothelial cells in distal
vessels into TECs, and aid to their adhesion and invasion for metastatic
foci formation.

FIGURE 2
Major characteristics of TECs.
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adverse effect of anti-angiogenic drugs on normal blood vessels, as
well as the possibility of drug resistance, which often requires drug
replacement (Li et al., 2022; Yuan et al., 2022; Lee N. et al., 2023).

Long-term anti-angiogenic therapy induces tumour hypoxia
and invasiveness (Pàez-Ribes et al., 2009). Hypoxia also induces
tumour angiogenesis through the recruitment of bone marrow-
derived endothelial progenitor cells (Gao et al., 2009). Recurrence
and metastasis after initial tumour response have also been reported
with anti-angiogenic therapy (Mancuso et al., 2006; Allegra et al.,
2009; Ebos et al., 2009; Toda et al., 2021). Exosomes generated by
TECs in response to anti-angiogenic drugs may also promote
tumour cell vascular mimicry and the development of aberrant
tumour vasculature (Zeng et al., 2019; Zeng and Fu, 2020). This
provides in vitro evidence and possible mechanisms by which anti-
angiogenic therapy may promote metastasis.

6 Conclusion and prospects

TECs are mainly derived from tumour vasculature (Figure 1).
They may be formed by uptake of extracellular vesicles or non-
coding RNAs from tumour cells and may undergo
transdifferentiation from tumour stem cells and endothelial
progenitor cells, although the exact mechanism of transformation
requires further investigation. The formation of TECs may involve
fusion between transformed cells and normal stem cells.

TECs are distinctly different from normal endothelial cells,
characterized by genetic instability, genetic heterogeneity, anoikis
resistance, abnormal metabolism, resistance to anticancer drugs and
adaptation to an abnormal mechanical microenvironment (Figure 2).
TECs play an important role in tumour progression and metastasis.
Increased evidences suggest that TECs are more promising targets than
normal endothelial cells. Circulating TECs may be mesenchymal TECs
shed from the neoplastic vasculature (McGuire et al., 2012; Lin, 2020).
Circulating TECs reduction after anti-angiogenic therapy and surgical
tumour resection (Mehran et al., 2014; Zhang et al., 2021) suggests that
circulating TECs should be more specific for cancer and more suitable
for prognosis, but it is unclear which precise markers is specific for
TECs and appropriate for clinical application.

Furthermore, the complexity of the tumour microenvironment
and its intricate details remain unclear, and there is a lack of uniform
standards for the detection of TECs. A comprehensive description of
the tumour microenvironment and a better understanding of the
mechanism underlying how TECs form and function will facilitate
the design of novel approaches for overcoming resistance and
monitoring the efficacy of anti-angiogenic therapy.
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