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Objective: The purpose of this study was to employmetabolomics for the analysis
of urine metabolites in swimmers, with the aim of establishing models for
assessing their athletic status and competitive potential. Furthermore, the study
sought to compare the identification efficacy of multi-component (urine and
blood) model versus single-component (urine or blood) models, in order to
determine the optimal approach for evaluating training and competitive status.

Methods: A total of 187 Chinese professional swimmers, comprising 103 elite and
84 sub-elite level athletes, were selected as subjects for this study. Urine samples
were obtained from each participant and subjected to nuclear magnetic
resonance (NMR) metabolomics analysis. Significant urine metabolites were
screened through multivariable logistic regression analysis, and an
identification model was established. Based on the previously established
model of blood metabolites, this study compared the discriminative and
predictive performance of three models: either urine or blood metabolites
model and urine + blood metabolites model.

Results: Among 39 urinemetabolites, 10 were found to be significantly associated
with the athletic status of swimmers (p < 0.05). Of these, levels of 2-KC, cis-
aconitate, formate, and LAC were higher in elite swimmers compared to sub-elite
athletes, while levels of 3-HIV, creatinine, 3-HIB, hippurate, pseudouridine, and
trigonelline were lower in elite swimmers. Notably, 2-KC and 3-HIB exhibited the
most substantial differences. An identification model was developed to estimate
physical performance and athletic level of swimmers while adjusting for different
covariates and including 2-KC and 3-HIB. The urinemetabolitesmodel showed an
area under the curve (AUC) of 0.852 (95% CI: 0.793–0.912) for discrimination.
Among the three identificationmodels tested, the combination of urine and blood
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metabolites showed the highest performance than either urine or blood
metabolites, with an AUC of 0.925 (95% CI: 0.888–0.963).

Conclusion: The two urine metabolites, 2-KC and 3-HIV, can serve as significant
urine metabolic markers to establish a discrimination model for identifying the
athletic status and competitive potential of Chinese elite swimmers. Combining
two screened urine metabolites with four metabolites reported exhibiting
significant differences in blood resulted in improved predictive performance
compared to using urine metabolites alone. These findings indicate that
combining blood and urine metabolites has a greater potential for identifying
and predicting the athletic status and competitive potential of Chinese
professional swimmers.

KEYWORDS

metabolomics, urine metabolites, swimmers, athletic status, identification model, nuclear
magnetic resonance

1 Introduction

As a competitive sport, swimming is characterized by its cyclical
nature, with elite athletes demonstrating an extended developmental
trajectory thus emphasizing the need for rigorous selection and
training criteria that ensure optimal performance and competitive
success (Lahart andMetsios, 2018). Following elite swimmers’ training,
physiological parameters such as hemoglobin, hematocrit, creatine
kinase, urea, lactic acid, testosterone, and cortisol levels in the blood are
reliable indicators to assess athletes’ physical fitness (Julian et al., 2017;
Pla et al., 2019; González-Ravé et al., 2023). Another approach to
evaluate athletes’ physical fitness is through analyzing the metabolites
such as urea, creatinine, ketone bodies, phosphate, and nitrogenous
compounds in urine (Moreira et al., 2018). In an experimental study
involving rats, both plasma and skeletal muscle specimens were
procured from the subjects post-swimming. The findings revealed a
significantly lower incidence of oxidative damage in those rats which
had been supplemented with hydrolyzed protein prior to swimming.
This reduction in oxidative damage might be attributed to elevated
levels of plasma leucine, isoleucine, and methionine observed in these
subjects (Wang et al., 2014). In a separate experimental study,
swimming athletes were administered branched chain amino acids
as a supplement prior to their swimming activity. In comparison to the
control group, the athletes in the experimental group exhibited a
reduced degree of muscle protein proteolysis. This observed
phenomenon could potentially be associated with the minor
alterations in urinary concentrations of urea nitrogen,
hydroxyproline, and methyl histidine (Tang, 2006). In a regime of
high-intensity intermittent swimming training, the supplementation of
branched-chain amino acids, along with arginine and citrulline prior to
swimming, appeared to enhance the competitive performance levels of
the swimmers (Hsueh et al., 2018). The foregoing research findings
suggest a certain correlation between alterations in physical
performance and metabolic changes experienced during swimming.
The exploration of critical metabolic indicators and their respective
changes could potentially serve as an efficacious approach to furthering
our understanding of the physiological responses during swimming.

Metabolomics, a high-throughput analytical approach, has been
employed across various fields, including microbiology, human
disease, motion analysis, as well as animal and plant research
(Abdelhafez et al., 2020; Klein et al., 2021; Bauermeister et al., 2022;

Deutsch et al., 2022). Untargeted metabolomics analysis techniques
primarily utilize nuclear magnetic resonance (NMR) spectroscopy and
chromatography-mass spectrometry (Heaney et al., 2019). NMR
spectroscopy enables the detection and quantification of small
molecules in large populations, revealing significantly altered
micrometabolites that are challenging to detect using conventional
methods (Castagné et al., 2017). This technique plays a pivotal role in
identifying and quantifying small molecules in blood, urine, and other
samples, enabling in-depth exploration beyond basic physiological
indicators. In metabolomic analyses, researchers may employ
single-sample blood or urine metabolomic analysis (Brezmes et al.,
2022; Talmor-Barkan et al., 2022) or combined blood and urine
metabolomics analysis (Pal et al., 2022). As a vital complementary
method to genomics, transcriptomics, and proteomics, metabolomics
has garnered increasing attention in exercise research (Muthubharathi
et al., 2021). Frequently, blood, urine, or saliva samples are used for
analysis in exercise metabolomics studies (Lv et al., 2022). The
identification of biomarkers and prediction of athletes’ competitive
level and physiological state through exercise metabolomics are crucial
for screening and tailoring training programs for athletes at different
levels (Khoramipour et al., 2022;Weiss et al., 2022). Metabolomics, the
comprehensive study of small molecules or metabolites within
biological systems, has found increasing application in the field of
sports science (Khoramipour et al., 2022). By analyzing the
biochemical changes in an athlete’s body, metabolomics can
provide valuable insights into their physiological adaptations,
training responses, and overall performance (San-Millán, 2019).

The assessment of specific sports skills is critical for athlete
development as it not only distinguishes levels of performance but
also predicts future development potential (Koopmann et al., 2020). The
emergence of metabolomics, due to its high-throughput and non-target
properties, can detectmultiplemetabolites at once, providing a powerful
tool for detecting differences in physicalfitness and performance among
athletes (Wang et al., 2020; da Cruz et al., 2022). Metabolomics is an
omics field that primarily focuses on the study of motor metabolism in
biological fluids such as blood and urine (Khoramipour et al., 2022). By
analyzing exercise metabolomics, it may provide some reference for
developing training plans, dietary regimens, and preventive measures
for sports injuries based onmetabolic characteristics (Bongiovanni et al.,
2019). A blood metabolomics analysis was performed on athletes who
had undergone high-intensity exercise and had varying levels of output
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per stroke and blood pressure. Similarly, to gain insight into the
relationship between players’ movement patterns, metabolic
characteristics, and different positions, saliva samples from elite male
basketball players were collected and subjected to metabolic analysis.
The findings showed that backcourt players had more aerobic
metabolites, while frontcourt players exhibited more anaerobic
metabolites (Khoramipour et al., 2022). Furthermore, metabolic
profiling of athletes’ blood after the ingestion of nutritional β-glucan
was conducted to determine whether it had an impact on their muscle
strength. After supplementing with β-glucan for 4 weeks, the mean grip
strength, right hand grip strength, left triceps strength, and upper limb
muscle mass of athletes significantly increased, and there was a
statistically significant difference in mean grip strength and right-
hand grip strength compared to the control group. The increase in
athlete muscle strength may be related to β-glucan affecting creatine-
related pathways to increase aerobic endurance and enhance immune
function. This measure is simple and has a direct correlation (Wang
et al., 2022). Several researchers have successfully differentiated
professional athletes from labor workers through the distinct
characteristics present in urine metabolomics (Chen et al., 2016).
This approach offers intriguing insights for our consideration. The
variations in urine metabolomic characteristics can be utilized to
identify swimmers across different levels of training and competitive
status. This is substantiated by the disparities in urine metabolomic
features observed amongst swimmers with varying competitive
standings (Li et al., 2006). Comparable findings have been
corroborated in research focusing on blood metabolomics (Cai et al.,
2022). Based on these findings, we attempted to detect the urine
metabolites of swimmers at different levels through metabolomics
and select different metabolites to establish the model related to
their athletic performance and competitive status. Simultaneously,
incorporating findings from our preceding investigations on the
blood metabolomics of swimmers (Cai et al., 2022), we propose that
a multi-component identification model is anticipated to demonstrate
enhanced recognition accuracy. This is owing to its assimilation of a
more exhaustive range of information, thereby providing a more
comprehensive portrayal of the swimmer’s athletic performance and
competitive status as compared to a model based on a single
component. This study will offer valuable insights and exploratory
efforts for refining the practical application of evaluating the athletic
status and competitive potential of Chinese swimmers.

2 Materials and methods

2.1 Ethics approval

This study was conducted in compliance with the Declaration of
Helsinki and approved by the Ethics Committee at the School of Life
Sciences, Fudan University, China. Written informed consent was
obtained from all participants.

2.2 Study design

All participants were in their post-competition recovery period.
Two weeks prior to urine sample collection, all swimmers adhered to a
standardized training program consisting of similar exercise volume

and intensity. The program included 30 min of land exercises before
swimming, which consisted of 15 min of stretching exercises and
15 min of relaxation exercises, followed by an 80–90-min swimming
session, during which the swimmers completed 4,000 m of swimming
at around 60% of their maximum intensity. The session ended with
15 min of relaxation exercises. The daily diet was a unified recipe
menu for athletes, which was supervised by the coach in charge and
followed from Monday to Sunday at the training base. Athletes who
took medication, did not follow the training program, or did not
adhere to the diet during the 2 weeks prior to sample collection were
excluded from the study. All qualified swimmers were divided into
elite and sub-elite groups according to the athletic level certified by the
Chinese Swimming Association (the athletic level is determined based
on specific competition performance). The elite group consisted of
swimmers with a national certification level of International Master
and National Master, while the sub-elite group consisted of swimmers
with a national certification level of first and second class. After
2 weeks, morning urine samples of all swimmers were collected at the
same time point. Prior to the subsequent collection of morning urine,
participants were instructed to refrain from eating and urinating upon
waking. This ensured that the sampled urine was the first void of the
day, post-awakening. All urine samples were analyzed for
metabolomics using nuclear magnetic resonance (NMR)
spectroscopy. The urine metabolites identified were compared
between groups, and multiple logistic regression analysis was
utilized to select significant metabolites for modeling. Subsequently,
Using the selected urine metabolites, combined with the baseline and
physical performance test data, the model was fitted and corrected to
find a better model to identify and predict the athletic status and
competitive potential of swimmer. By utilizing the data and outcomes
of previous study on blood metabolomics (Cai et al., 2022), a
comparative analysis was conducted to evaluate the effects of
single-component models (either urine or blood metabolites) and
combined-component model (urine and blood metabolites) corrected
by baseline and physical performance data in identifying and
predicting the athletic status and competitive potential of
swimmers. The study design process is depicted in Figure 1.

2.3 Participants

A total of 103 elite swimmers, comprising 53 male athletes
(height = 184.7 ± 5.2 cm, body mass = 78.7 ± 9.3 kg, age range:
18–29 years, training years: >10 years) and 50 female athletes
(height = 171.8 ± 5.0 cm, body mass = 62.2 ± 6.3 kg, age range:
16–27 years, training years: >8 years), were recruited from the
Shanghai and Zhejiang professional swimming teams who had
previously competed at international or national swimming
competitions.

The sub-elite group consisted of 84 first- and second-grade
swimmers from the Shanghai professional swimming team,
Shanghai University of Sport, Shanghai Jiao Tong University, and
Tong Ji University. These athletes had participated in provisional or
university swimming competitions. Among them, 52 were male
(height = 180.1 ± 6.3 cm, body mass = 77.1 ± 10.1 kg, age ranges:
17–23 years, training years: >9 years) and 32 were female (height =
168.7 ± 4.9 cm, body mass = 59.8 ± 8.6 kg, age ranges:16–22 years,
training years: >8 years).
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2.4 Urine samples collection and
metabolomics analysis

On the second morning after an overnight fast, a 500 μL urine
sample was collected from swimmers for metabolomics analysis. To
prepare the samples, 14 μL of KF solution (5M) was added to a
1.5 mL EP tube, followed by the addition of 500 μL of urine sample.
The mixture was vortexed and left to stand for 10 min, then
centrifuged at 4°C and 12,000 rpm for 10 min using a centrifuge
5702R (Eppendorf AG, Hamburg, Germany). For NMR analysis,
20 μL of 0.1M EDTA-d12 was added to a 5 mm NMR tube, and
450 μL of the supernatant from the above centrifugation was added
to the NMR tube. Finally, 45 μL of Na+/K+ buffer (1.5M) was added
and manually mixed to complete the preparation. All 1D 1H NMR
spectra of the samples were collected on a Bruker AVIII 600 MHz
NMR spectrometer equipped with a super low temperature probe,
with the proton resonance frequency set to 600.13 MHz and the
experimental temperature set to 298 K. For the analysis of urine
samples, the NOESYGPPR1D sequence (RD-90°-t1-90°-tm-90°-
ACQ) was used, where RD = 2s, t1 = 4 μs, tm = 100 ms. The
spectral width was set to 20ppm, the sampling time was 1.36s, and
32K data points were collected.

Before Fourier transformation, all NMR spectra FID signals
were added with an exponential window function with a

broadening factor of 1Hz using MestReNova software
(MestReNova 8.1, Spain). The TSP (δ 0.00) signal was used
for chemical shift calibration, and manual phase and baseline
correction were performed. The urine NMR spectra region
(0.5–9.5) was integrated using AMIX package (v3.9.2, Bruker
Biospin). During the integration process, residual water peak
signals and urea signals were removed, and each integration
interval size was set to 0.002 ppm. After correcting signals
with obvious drift, the total area was normalized. The
normalized data was imported into the SIMCA-P+ software
package (V.13.0, Umetrics, Sweden) for multivariate statistical
analysis, including principal component analysis (PCA) and
orthogonal partial least squares discriminant analysis (OPLS-
DA). The validity of these assignments was subsequently verified
using publicly accessible databases, namely, the Human
Metabolome Database (HMDB) and the Biological Magnetic
Resonance Bank (BMRB) (Jiang et al., 2012; Song et al., 2015).

PCA was conducted on the data using Centered (Ctr)
standardization. The resulting scores were plotted in score plots,
which were used primarily to visualize the overall clustering of the
samples and to identify any potential outliers. On the other hand,
OPLS-DA was conducted on the data using Unit Variance scaling.
The results were visualized using score plots and correlation
coefficient loading plots. The primary purpose of these plots was
to uncover the relationship between the NMR data (X variables) and
the grouping information (Y variables). To validate the OPLS-DA
model, a 7-fold cross-validation and CV-ANOVA were performed.
The CV-ANOVA test yielded a p-value < 0.05, indicating a
statistically significant model. The standardized data was used for
multivariate analysis. The 7-fold cross-validation was performed
using soft independent class analogy (SIMCA)-P1 (van 12.0,
Umetrics, Sweden). The model was assessed based on R2Y, an
indicator of the Y variable explained by the model, and Q2,
which reflects the predictability of the model. To facilitate the
biological interpretation of the loads generated in the model, the
loads were first inverted and then color-coded using OPLS-DA. The
color-coding was based on the absolute value of the OPLS-DA
correlation coefficient, |r|. This coefficient represents the
contribution of the corresponding variable to the component
separation. The significance of the model was further verified
using CV-ANOVA with a p-value < 0.05.

2.5 Assessment of covariates

Participants’ gender, birth date, and years of professional
training were obtained through a questionnaire. Body mass index
(BMI) was calculated as weight in kilograms divided by height in
meters squared. Body fat percentage was assessed using Inbody720
(InBody Co., Ltd., Seoul, South Korea). Standardized test methods
(Yang and Shen, 2019) were employed to measure physical
performance and function covariates that were relevant to
swimmers’ physical performance, such as grip, back strength,
standing long jump (SLJ), standing vertical jump (SVJ),
abdominal curl, vital capacity, sit-and-reach, acoustic reaction
time, and heart rate at rest. Health covariates including
hemoglobin, erythropoietin (EPO) and myoglobin (MYO) were
tested using an automatic biochemical instrument (Access2,

FIGURE 1
Flowchart of study design.
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Beckman Inc., United States). 1mL blood sample was collected with
2 mL of EDTA anticoagulant tube for hemoglobin testing, and 2 mL
blood sample was collected with 5 mL of heparin lithium
anticoagulant tube for EPO and MYO.

2.6 Statistical analysis

Baseline characteristics and physical performance measures
of elite and sub-elite swimmers were compared using continuous
and categorical variables. Continuous variables were expressed as
mean ± standard deviation or median (with interquartile range,
IQR), whereas categorical variables were depicted as frequencies
(percentages), as appropriate. Student’s t-test or Mann-Whitney
U test was employed to compare continuous variables, while
Pearson’s chi-squared test was used for comparisons involving
categorical variables. Additionally, the Student’s t-test was
applied to compare urine metabolites between elite and sub-
elite swimmers and to identify significantly different metabolites.
Logistic regression was performed for dimensionality reduction
to select metabolomic markers, and correlation analysis was
conducted to explore the association between significant
metabolites and baseline characteristics. Based on the chosen
metabolites and various covariates, three models were established
using multivariable logistic regression: Model 1 was unadjusted

by any covariate, Model 2 was adjusted by baseline covariates,
and Model 3 was adjusted by both baseline and physical
performance covariates. To avoid biased estimation, average
values of AUC were obtained from 10-fold cross-validation in
ROC analysis. The dataset was randomly partitioned into ten
subsets, utilizing nine of them sequentially as the training set and
one as the test set. The optimal combination of specificity and
sensitivity was ascertained by the Youden index method
(Youden, 1950). Using data from previous studies and results
from blood metabolomics (Cai et al., 2022), ROC analysis was
performed to compare the identification and prediction
capabilities of the urine metabolites model, serum metabolites
model, and combined urine and serum metabolites models. All
the analyses were executed using IBM SPSS Statistics 26.0 for
Windows and R Studio (R core 4.1.0). A p-value of less than
0.05 was considered indicative of statistical significance.

3 Results

3.1 Baseline characteristics and covariates of
swimmers

Table 1 presented a summary of the baseline characteristics,
physical performance, and health indicators of all participants

TABLE 1 Baseline, physical performance, and health characteristics of swimmers.

Characteristics All subjects Elite level swimmers Sub-elite level swimmers p value

Participants,n(%) 187(100.0) 103(55.1) 84(44.9) —

Gender

Male,n(%) 105(100) 53(50.5) 52(49.5) 0.152

Female,n(%) 82(100) 50(61.0) 32(39.0)

Age,years, mean ± SD 19.3 ± 2.7 19.0 ± 3.3 19.5 ± 1.7 0.167

Years of professional training, median(IQR) 7.3(4.7,11.5) 6.2(3.9,7.7) 11.1(7.3,13.1) <0.001

BMI,kg/m2,mean ± SD 22.5 ± 2.6 22.1 ± 2.2 22.9 ± 2.9 0.027

Body fat percentage, %, mean ± SD 16.8 ± 6.5 15.4 ± 5.9 18.6 ± 6.7 0.001

Grip,kg,mean ± SD 39.1 ± 10.1 39.3 ± 10.4 38.9 ± 9.8 0.761

Back strength,kg,mean ± SD 100.6 ± 28.8 103.3 ± 28.9 97.3 ± 28.4 0.167

SLJ,cm,mean ± SD 224.7 ± 31.2 228.6 ± 31.7 220.0 ± 30.1 0.064

SVJ,cm,mean ± SD 38.7 ± 8.4 39.2 ± 8.8 38.2 ± 7.9 0.458

Abdominal curl,n/min, mean ± SD 55.2 ± 8.6 57.7 ± 8.2 52.1 ± 8.1 <0.001

Vital capacity, litre, mean ± SD 5.1 ± 1.2 4.8 ± 1.1 5.4 ± 1.1 <0.001

Sit-and-reach,cm,mean ± SD 20.0 ± 8.3 22.0 ± 8.1 17.6 ± 7.9 <0.001

Acoustic reaction time,ms,mean ± SD 260.6 ± 28.1 258.0 ± 26.8 263.7 ± 29.5 0.169

Resting heart rate,n/min,mean ± SD 73.1 ± 11.2 71.1 ± 11.0 75.8 ± 10.9 0.005

Hemoglobin,g/L,mean ± SD 141.4 ± 14.7 139.8 ± 14.9 143.4 ± 14.3 0.095

EPO,mIU/mL,mean ± SD 8.6 ± 3.4 8.4 ± 2.5 8.8 ± 4.2 0.446

MYO,ng/mL,median(IQR) 19.3(15.8,23.4) 18.9(15.7,22.5) 19.8(16.0,24.3) 0.141

Abbreviation: BMI, body mass index; SLJ, standing long jump; SVJ, standing vertical jump; EPO, erythropoietin; MYO, myoglobin; SD, standard deviation; IQR, interquartile range. p <
0.05 marked in bold.
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according to their athletic status. This study revealed that sub-elite
level swimmers exhibited a longer duration of training than their
elite counterparts (p < 0.001). In terms of physical performance
covariates, elite level swimmers demonstrated superior performance
in abdominal curl/min and sit-and-reach tests (p < 0.001), while
displaying lower values in BMI, body fat percentage, vital capacity,
and resting heart rate (with p < 0.05, p < 0.01, and p < 0.001,
respectively) relative to their sub-elite counterparts. However, no
significant differences were observed in other baseline
characteristics, physical performance, and health covariates
between the two groups (p > 0.05).

3.2 NMR spectral analysis and urine
significant metabolites detection

The 1H NMR spectra of urine samples were acquired from all
swimmers (Supplementary Figure S1). Identification of specific
metabolites was accomplished by assigning resonance peaks to
known metabolites through a combination of published data and
2D NMR spectra. Such an approach enhances the reliability and
accuracy of the metabolite identification process. Thirty-nine
metabolites were identified and assigned, implicating the
involvement of multiple interconnected metabolic pathways
(Supplementary Table S1).

The present study investigated differences in urine metabolite
profiles between elite and sub-elite level swimmers, utilizing SIMCA
statistical methods of PCA (Figure 2A) and OPLS-DA analyses
(R2Y = 0.507, Q2 = 0.167, p < 0.001) (Figure 2B). The coefficient plot
revealed that 14 metabolites exhibited differential patterns between
the two groups, including 2-ketoisocaproate (2-KC), 3-
aminobutyrate (3-AB), 3-hydroxyisovalerate (3-HIV), citrate, cis-
aconitate, taurine, phenylacetylglycine (PAG), creatinine, hippurate,
formate, 3-hydroxyisobutyrate (3-HIB), lactate (Lac),
pseudouridine, and trigonelline (Figure 2C).

3.3 Metabolites screening and establishment
of identification and prediction model

Among the 14 metabolites analysed, 10 exhibited differential
expression patterns in swimmers categorized as either elite or sub-
elite including 2-KC, 3-HIV, cis-aconitiate, creatinine, hippurate,
formate, 3-HIB, Lac, pseudouridine, and trigonelline (Table 2).
According to our analysis, elite swimmers exhibit significantly
higher levels of 2-ketocaproic acid (2-KC), cis-aconitate, formate,
and lactate (LAC) in comparison to their sub-elite counterparts.
Conversely, levels of 3-hydroxyisovaleric acid (3-HIV), creatinine,
3-hydroxyisobutyric acid (3-HIB), hippurate, pseudouridine, and
trigonelline were found to be significantly lower (p < 0.05) in elite

FIGURE 2
PCA, OPLS-DA analysis and coefficient of urine metabolites. (A) PCA analysis; (B) OPLS-DA score plot; R2Y = 0.507, Q2 = 0.167 (p < 0.001); (C)
Multicolor loading graph of urine metabolites analysis. 1: sub-elite level swimmers, 2: elite level swimmers.
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swimmers (Figure 3). These findings suggest that metabolic profiles
may differ significantly between elite and sub-elite swimmers, with
elite swimmers exhibiting a distinct metabolic profile.

Multivariable logistic regression was performed on ten
metabolites to establish models for identification and prediction
of elite and sub-elite swimmers. Among them, 2-KC and 3-HIB were
the most significant predictors for the outcome variable of elite or
sub-elite swimmers. The associations between these two metabolites
and baseline characteristics were examined. Only a few baseline
features showed significant but weak correlations with the two
metabolites (Table 3).

Three models were generated, including two metabolites
unadjusted or adjusted for different covariates. Model one
incorporated two metabolites without any covariates, while model
two was adjusted for baseline characteristics, including age and years
of professional training, using model one as a foundation. Model
three, which was built upon model two, was further adjusted for
physical performance indicators such as vital capacity and sit-and-
reach. In these models, the two urine metabolites were identified as
independent influencing factors on the athletic status of swimmers
(p < 0.05) (Table 4).

3.4 Comparison of three models and
selection of the optimal model

In light of prior blood metabolism research (Cai et al., 2022),
this study incorporated two significant urine metabolites
alongside four serum metabolites, establishing a model that
combined both blood and urine metabolites with covariates.

The effectiveness of three models in determining the athletic
status and competitive potential of swimmers was compared
using Receiver Operating Characteristic (ROC) analysis
(Figure 4): the urine metabolite model (including two urine
metabolites), the blood metabolite model (including four
blood metabolites), and the blood-urine metabolite combined
model (including four blood and two urine metabolites). The
Area Under the Curve (AUC) for the urine metabolite model was
found to be 0.852 (95% CI: 0.793–0.912) (Figure 4A), while the
AUC for the blood metabolite model was 0.904 (95% CI:
0.862–0.947) (Figure 4B) (Cai et al., 2022). The AUC for the
blood-urine metabolite combined model was 0.925 (95% CI:
0.888–0.963) (Figure 4C). Among the three models, the blood-
urine metabolite combined model demonstrated the highest
AUC value and the most effective predicting capability, with
an AUC exceeding 0.9. This indicates that the combined model
has substantial practical application value within the field.

4 Discussion

The combination of both blood and urine samples can provide a
more robust predictor of athletes’ exercise level or physical function.
In this study, urine metabolites were examined using a high-
throughput 1H-NMR method, which identified 10 significantly
different metabolites between elite and sub-elite swimmers.
Among elite swimmers, four metabolites were observed to be
higher, while the remaining six were lower. The two most
significant metabolites, 2-KC and 3-HIB, were identified through
multivariate logistic regression analysis.

TABLE 2 Urine metabolites with significant differences between elite and sub-elite level swimmers.

Elite level swimmers vs. sub-elite level swimmers

Fold change p-value adj.p-value

2-KC 1.080 2.31E-04 3.24E-03

3-AB 0.871 2.78E-01 2.99E-01

3-HIV 0.899 9.13E-03 3.20E-02

citrate 0.848 9.56E-02 1.22E-01

cis-aconitate 1.130 1.98E-02 4.63E-02

taurine 1.059 1.24E-01 1.45E-01

PAG 1.019 3.91E-01 3.91E-01

creatinine 0.951 3.52E-02 4.93E-02

hippurate 0.829 2.71E-02 4.93E-02

formate 1.149 3.46E-03 1.61E-02

3-HIB 0.941 1.55E-02 4.33E-02

Lac 1.080 3.46E-02 4.93E-02

pseudouridine 0.933 2.75E-03 1.61E-02

trigonelline 0.873 2.86E-02 4.93E-02

p < 0.05 marked in bold. adj.p-value: p-value after FDR (false discovery rate) correction by the Benjamini Hochberg method.
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In the present study, 2-Ketoisocaproate (2-KC/KIC) levels in
elite athletes were higher compared to those in sub-elite athletes.
2-KC is known to reduce the opening of potassium channels and
depolarize pancreatic β cells, subsequently leading to increased
insulin secretion (Ashcroft et al., 1987). Insulin plays a pivotal
role in glycogen formation, protein biosynthesis, and the
inhibition of protein breakdown, which may enhance athlete
performance and muscle strength (Thevis et al., 2010). KIC
serves as the final intermediate in the biosynthesis of

l-leucine (Vogt et al., 2015), a branched-chain amino acid
(BCAA) that has several critical functions. BCAA can not
only augment protein synthesis by activating the mechanistic
target of rapamycin (mTOR) signaling pathway in skeletal
muscle and adipose tissue, but also boost energy metabolism
through glucose uptake, mitochondrial biogenesis, and fatty acid
oxidation. Furthermore, it can provide energy for protein
synthesis and inhibit protein degradation (Duan et al., 2016).
A mouse study demonstrated that exercise activates the mTOR

FIGURE 3
The violin plots of urine metabolites with significant differences between elite and sub-elite level swimmers. (A) Comparison of 2-KC between Elite
and Sub-elite swimmers. (B) Comparison of 3-HIV between Elite and Sub-elite swimmers. (C) Comparison of cis-aconitate between Elite and Sub-elite
swimmers. (D) Comparison of creatinine between Elite and Sub-elite swimmers. (E) Comparison of hippurate between Elite and Sub-elite swimmers. (F)
Comparison of formate between Elite and Sub-elite swimmers. (G)Comparison of 3-HIB between Elite and Sub-elite swimmers. (H)Comparison of
Lac between Elite and Sub-elite swimmers. (I) Comparison of pseudouridine between Elite and Sub-elite swimmers. (J) Comparison of trigonelline
between Elite and Sub-elite swimmers.
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pathway, resulting in neuronal activation and axonal
myelination, which in turn improves motor learning (Chen
et al., 2019). After aerobic and strength exercises, plasma or
serum leucine levels have been found to decrease (Mero, 1999).
The result of this study suggests that their leucine levels either
decreased to a lesser extent or recovered more rapidly within the
body. Consequently, the metabolite 2-KC level may serve as a

distinguishing indicator of athletes’ competitive ability and
physical fitness.

3-Hydroxyisobutyric acid (3-HIB) is an intermediate in the
degradation of valine, a branched-chain amino acid (BCAA) (Letto
et al., 1986). 3-HIB, produced by valine, facilitates the uptake of fatty
acids in skeletal muscle, resulting in the accumulation of incompletely
oxidized lipids in skeletal muscle, which may contribute to insulin

TABLE 3 Correlation analysis between two significant urine metabolites and baseline characteristics.

Characteristics 2-ketoisocaproate 3-hydroxyisobutyrate

r p-value r p-value

Gender −0.067 0.375a −0.069 0.362a

Age −0.101 0.185b 0.072 0.341b

Years of professional training −0.026 0.728c −0.062 0.417c

BMI −0.052 0.493d 0.169 0.026d

Body fat percentage −0.126 0.097d 0.067 0.377d

Grip 0.048 0.526d 0.113 0.137d

Back strength 0.065 0.395d 0.149 0.050d

SLJ 0.088 0.248d −0.008 0.917d

SVJ 0.045 0.552d −0.016 0.830d

Abdominal curl 0.088 0.247d −0.004 0.953d

Vital capacity −0.019 0.801d 0.094 0.216d

Sit-and-reach 0.044 0.562d −0.013 0.867d

Acoustic reaction time 0.082 0.283d 0.043 0.576d

Resting heart rate 0.013 0.866d 0.060 0.430d

Hemoglobin 0.167 0.028d 0.159 0.036d

EPO 0.061 0.427d 0.059 0.436d

MYO −0.090 0.237d 0.021 0.786d

BUN 0.102 0.182d −0.098 0.197d

r: correlation coefficient; a: correlation analysis adjusted with sports level (elite and sub-elite), age and years of professional training; b: correlation analysis adjusted with sports level, gender, and

years of professional training; c: correlation analysis adjusted with sports level, gender, and age; d: correlation analysis adjusted with sports level, gender, age, and years of professional training.

p < 0.05 marked in bold.

TABLE 4 Multivariable logistic regression analysis between significant urine metabolites and athletic status in swimmers.

Metabolites Elite athletic status AUC

OR 95%CI p-value

2-ketoisocaproate

Model 1 9.87E+09 1.57E+04-6.21E+15 7.29E-04 0.709

Model 2 6.13E+08 4.29E+02-8.75E+14 5.14E-03 0.828

Model 3 1.79E+07 1.65E+01-1.96E+13 1.85E-02 0.852

3-hydroxyisobutyrate

Model 1 4.50E-09 2.49E-14-8.12E-04 1.86E-03 —

Model 2 3.11E-10 2.64E-16-3.67E-04 2.15E-03 —

Model 3 2.27E-08 7.71E-15-6.69E-02 2.06E-02 —

Model 1 was unadjusted for any covariate; Model 2 was adjusted for age and years of professional training; Model 3 was adjusted for age, years of professional training, vital capacity, and sit-and-

reach. p < 0.05 marked in bold.
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resistance in these tissues (Shou et al., 2019). In a mouse study, 3-HIB
was secreted from muscle cells, activated endothelial fatty acid
transport, stimulated muscle fatty acid uptake, and promoted
muscle lipid accumulation, ultimately leading to insulin resistance
inmice (Jang et al., 2016). These findings underscore the importance of
3-HIB levels in the body, particularly for athletes. In a metabolomic
analysis of marathon runners, valine levels were found to decrease in
their serum post-marathon, suggesting that exercise can reduce lipid
levels in the body (Shi et al., 2020). Interestingly, BCAAs are a common
nutritional supplement for athletes and do not induce insulin
resistance. This phenomenon may be attributed to exercise
enhancing the mitochondrial oxidation potential of BCAAs,
mitigating or even eliminating the accumulation of catabolic
intermediates from BCAAs, promoting their catabolism to β-
aminoisobutyric acid, increasing plasma β-aminoisobutyric acid
concentration, and ultimately improving insulin resistance (Shou
et al., 2019). Blood metabolomics studies have shown that elite
athletes have lower levels of glutamine. Glutamine can be
synthesized from glutamic acid, valine, and isoleucine (Cai et al.,
2022), which is consistent with the observed lower levels of 3-HIB
in elite athletes in this study. Intriguingly, 2-KC is an intermediate for
the synthesis of leucine and 3-HIB is a metabolite of valine, and
together with isoleucine, they form BCAAs. This observation suggests
that BCAAs play a crucial role in athletes. BCAAs can reduce creatine
kinase levels andmuscle soreness after vigorous exercise (Fedewa et al.,
2019; Doma et al., 2021), and can also enhance innate and adaptive
immune responses (Zhang et al., 2017). In research on combat athletes,
BCAAs can maintain exercise performance and improve immunity
(Trushina et al., 2019). Therefore, there is more BCAA in elite
swimmer, aligning with the perspective of blood metabolomics.

Two of the most significant metabolites, 2-KC and 3-HIB, were
identified through logistic regression, and a predictive model was
established. This study demonstrates that the dual-metabolite
model, adjusted for baseline characteristics and physical
performance indicators, can effectively discern the athletic
performance state of swimmers. For diagnostic or predictive
methods, an area under the curve (AUC) value above 0.8 is
generally considered meaningful. When comparing the performance
of two or more diagnostic tests, the one with the highest AUC value is

considered to have better diagnostic or predictive capabilities (Nahm,
2022). In a nuclear magnetic resonance analysis of urinemetabolomics,
detecting changes in metabolites such as triglycerides, hippurate, and
phenylalanine in patients with type 2 diabetes mellitus (DM2) can
predict their risk of developing chronic kidney disease (CKD). The best
model in this case has an AUC value of 0.912 (Lucio-Gutiérrez et al.,
2022). Moreover, L-tyrosine in urinary aromatic amino acid
metabolites plays a crucial role in the emergence of agitation (EA)
symptoms in pediatric patients during the recovery from general
anesthesia. This biomarker has a highly predictive AUC value of
0.81 (Li et al., 2022). In the present study, the best urine-based
model has an AUC value of 0.852, which is close to 0.9. This
model effectively predicts athletes’ competitive levels and physical
quality, providing a theoretical basis for athlete selection.
Furthermore, we established a combined urine and blood model
with an AUC value of 0.925, which is higher than the AUC values
for urine and blood models alone. Consequently, this combined model
can more accurately identify and predict athletes’ performance states
and physical functions. Similarly, in patients with nasopharyngeal
carcinoma, a combined serum and urine metabolomics model
demonstrated greater utility, with an AUC value of 0.973, which is
higher than the 0.809 AUC value of the urine-only metabolite model.
This combined model more effectively distinguishes between healthy
individuals and nasopharyngeal carcinoma patients and identifies
relevant biomarkers, thus revealing associated metabolic pathways
(Liao et al., 2023). Additionally, the combined serum and urine
analysis also yields improved results for acute respiratory distress
syndrome (Yan et al., 2022). The elevated AUC value associated
with the blood-urine combined model signifies enhanced accuracy
in differentiating between distinct swim athlete groups and
performance levels. This improved predictive capacity facilitates
more accurate assessments and informed decision-making for
coaches, trainers, and athletes. For instance, ahead of major
competitions such as the Olympics, athletes in top competitive
status and with adequate preparation can be selected through this
model to join the national team. They can represent the country in the
competition, aiming to achieve superior performance results. By
integrating blood and urine metabolite data, a more comprehensive
perspective of an athlete’s physiological state is obtained. This all-

FIGURE 4
The ROC analyses of three pattern prediction models (A) ROC curve analysis of the model only including urine metabolites. AUC: Area Under the
Curve. (B) ROC curve analysis of the model only including serummetabolites. AUC: Area Under the Curve. (C) ROC curve analysis of the model including
serum and urine metabolites. AUC: Area Under the Curve.
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encompassing understanding aids in pinpointing factors that impact
performance, subsequently guiding targeted interventions for optimal
training and recovery. With a precise and thorough comprehension of
an athlete’s metabolic profile, sports professionals can devise
individualized training programs catering to specific needs, thereby
maximizing performance improvements and reducing the likelihood of
injury or overtraining. However, there is a dearth of studies that analyze
and compare the predictive and recognition capabilities of combined
blood and urine models with those of individual blood and urine
models in the context of athletic performance. Further research is
required to determine whether this method is universally applicable for
identifying athletes’ performance states and physical functions across
various sports.

Moreover, this study presents several limitations that warrant
discussion. Firstly, the sample size was relatively small, which may
have a certain impact on the final result. Secondly, the absence of
sports interventions for the athletes in this investigation may have
resulted in weaker prediction and recognition of their exercise states.
In a nuclear magnetic resonance analysis of long-distance runners
following 30 min of high-intensity training, significant alterations in
lactic acid, glycine, trimethylamine N-oxide (TMAO), and
creatinine (CR) levels were observed, which were associated with
effective alleviation of post-exercise fatigue based on metabolic
product characteristics (Chen and Wang, 2022). In another
nuclear magnetic resonance investigation, the metabolic products
of football players were assessed one, five, and 10 days post-winter
training season (WTS), facilitating the evaluation of athlete recovery
and determination of optimal recovery time, thus providing valuable
insights for developing training plans. The authors posited that a
five-day recovery period following WTS was most appropriate for
football players (Kim et al., 2022). Consequently, future research
could incorporate swimming and other sports interventions to
further examine athletes’ performance and recovery.

In conclusion, the findings of this study demonstrate that urine
metabolomics effectively aids in the identification of metabolic
biomarkers related to the training status of Chinese professional
swimmers. Among the ten distinct urine metabolites discovered,
two were more closely associated with the athletes’ exercise status.
The metabolic model, established using these two urine metabolites,
proficiently identifies and predicts the competitive level and physical
condition of swimmers. Utilizing this model and the identified
metabolite biomarkers serves as a foundation for differentiating
between elite and sub-elite swimmers. Furthermore, the outcomes
of urine metabolomics investigations align with previous blood
metabolomics studies, providing relevant insights. When comparing
the efficacy of urine and blood metabolites, the combined model
demonstrates superior utility and guidance for athletes’ sports
recognition. Therefore, this study asserts that the combined analysis
of urine and blood metabolomics for elite and sub-elite swimmers is
more advantageous than urine metabolomics analysis alone.
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