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Sarcopenia is a chronic degenerative disease affecting primarily older adults. A
growing aging population is gradually increasing the number of patients suffering
from sarcopenia, placing increasing financial pressure on patients’ families and
society in general. There is a strong link between mitochondrial dysfunction and
sarcopenia pathogenesis. As a result, treating sarcopenia by improving
mitochondrial dysfunction is an effective strategy. Numerous studies have
demonstrated that exercise has a positive effect on mitochondrial dysfunction
when treating sarcopenia. Exercise promotes mitochondrial biogenesis and
mitochondrial fusion/division to add new mitochondria or improve
dysfunctional mitochondria while maintaining mitochondrial calcium
homeostasis, mitochondrial antioxidant defense system, and mitochondrial
autophagy to promote normal mitochondrial function. Furthermore, exercise
can reduce mitochondrial damage caused by aging by inhibiting mitochondrial
oxidative stress, mitochondrial DNA damage, and mitochondrial apoptosis.
Exercise effectiveness depends on several factors, including exercise duration,
exercise intensity, and exercise form. Therefore, Moderate-intensity exercise over
4 weeks potentially mitigates sarcopenia in older adults by ameliorating
mitochondrial dysfunction. HIIT has demonstrated potential as a viable
approach to addressing sarcopenia in aged rats. However, further investigation
is required to validate its efficacy in treating sarcopenia in older adults.

KEYWORDS

sarcopenia, exercise, mitochondrial dysfunction, mitochondrial biogenesis,
mitochondrial apoptosis

Introduction

Sarcopenia is characterized by a progressive decline in skeletal muscle strength, mass,
and function. It is also a progressive and generalized degenerative disease of aging (Cruz-
Jentoft and Sayer, 2019). Sarcopenia is characterized by symptoms such as weakness, loss of
muscle strength, and loss of muscle mass, which are affected by several factors, including age,
gender, physical activity, and chronic illness (Wu et al., 2022). Sarcopenia may worsen
symptoms of chronic diseases such as chronic obstructive pulmonary disease, chronic heart
failure, diabetes, and osteoporosis. In addition, it can cause motor dysfunction in these
patients, increasing the risk of falls, fractures, and even the loss of independence. Global
aging and sedentary lifestyles have led to an increased prevalence of sarcopenia (de Rezende
et al., 2014; Chen Z. et al., 2021). A meta-analysis found that 10%–27% of people globally
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suffer from the condition (Petermann-Rocha et al., 2022). Therefore,
sarcopenia has become a serious health concern. Moreover,
Sarcopenia places a tremendous financial burden on the patient’s
family and society as a whole. The current systematic review
indicates that exercise can significantly improve muscle strength
and physical performance in older adults with sarcopenia, but does
not alter muscle mass (Escriche-Escuder et al., 2021; Wang H. et al.,
2022). This may be due to the close connection between muscle
strength and physical performance (Kim YH. et al., 2016).
Resistance exercise, aerobic exercise, and mixed exercise are
common exercise forms for treating sarcopenia (Chen N. et al.,
2021; Talar et al., 2021; Huang et al., 2022; Shen et al., 2023).
However, resistance and mixed exercise are generally recognized as
the most effective intervention for increasing muscle mass (Lu et al.,
2021; Shen et al., 2023). Additionally, HIIT, blood flow restriction
training, and vibration exercise may be effective strategies for
improving muscle strength and physical performance in older
adults with sarcopenia (Wu et al., 2020; Hayes et al., 2021; Lu
et al., 2021; Alizadeh Pahlavani, 2022; Liu et al., 2022). A large-scale
clinical trial will be required in the future to verify the efficacy of
HIIT, blood flow restriction training, and vibration training.

Besides improving muscle mass, strength, and physical
performance, exercise for sarcopenia causes adaptive changes in
mitochondrial function as well. Mitochondria are the most critical
organelles for energy production, metabolism of free radicals, and
programmed apoptosis of cells. The mitochondrial quality control
system protects mitochondrial quantity and quality through the
regulation of mitochondrial biosynthesis, mitochondrial dynamic
homeostasis, and mitochondrial autophagy (Stotland and Gottlieb,
2015). In this way, mitochondrial dysfunction caused by aging can
be alleviated. Therefore, previous studies provided preliminary
evidence that dysfunctional mitochondrial quality control may
contribute to muscle atrophy and physical disability associated
with aging (Joseph et al., 2012). Moreover, increased reactive
oxygen species (ROS) in older patients with sarcopenia can
disrupt the balance between oxidative stress and antioxidant
defenses in mitochondria. As a result, mitochondrial apoptosis
and damage to mitochondrial DNA (mtDNA) are increased,
mitochondrial calcium (Ca2+) homeostasis is disrupted, and
mitochondrial fusion/fission and mitochondrial biogenesis are
inhibited (Chabi et al., 2008; Andersson et al., 2011; Alway et al.,
2017). Therefore, mitochondrial dysfunction not only results from
aging but also plays a crucial role in the pathogenesis of Sarcopenia.
However, no studies have confirmed that pharmacological therapies
can restore mitochondrial function in aging skeletal muscles.
Exercise improves mitochondrial dysfunction and prevents
progressive loss of muscle function and mass with age (Carter
et al., 2015). Therefore, exercise is an effective strategy for
improving muscle function and quality of life in older adults by
stimulating mitochondrial adaptation. Nevertheless, it is unclear
what form, frequency, and duration of exercise can be prescribed for
the treatment of sarcopenia. The purpose of this paper is to review
the research literature on exercise for improving mitochondrial
dysfunction in the treatment of sarcopenia in recent years and
summarize the mechanisms by which exercise regulates
sarcopenia through mitochondria, to provide a theoretical
foundation and references for studies regarding optimal exercise
recommendations for alleviating sarcopenia.

Diagnosis of sarcopenia

The concept of sarcopenia is constantly evolving (Dent et al.,
2021). Sarcopenia was initially understood to be a decrease inmuscle
strength (Langer et al., 2019). As clinical medicine has developed,
the European Working Group on Sarcopenia in Old People
(EWGSOP) introduced a contemporary definition of sarcopenia
in 2010, which includes low muscle mass, low muscle strength, and/
or low physical performance (Cruz-Jentoft et al., 2010). Currently,
there is no gold standard for diagnosing sarcopenia. However,
sarcopenia can also be diagnosed by low muscle mass, low
muscle strength, and low physical performance. Recently,
EWGSOP (Cruz-Jentoft et al., 2019), the Asian Working Group
for Sarcopenia (AWGS) (Chen et al., 2020), and the Sarcopenia
Definition and Outputs Consortium (SDOC) (Bhasin et al., 2020)
have updated the diagnostic consensus for sarcopenia (Table 1).
These consensus guidelines differ in their diagnostic criteria for
sarcopenia. EWGSOP and AWGS evaluation content are similar,
but critical values differ. The two consensuses may target different
ethnic and geographical groups (Woo et al., 2014). The SDOC
excludes muscle mass from sarcopenia diagnostic criteria, perhaps
due to its inability to accurately predict adverse health outcomes
(Bhasin et al., 2020). Consequently, it will be necessary to develop a
universally applicable diagnostic method for sarcopenia in the
future.

Exercise ameliorates sarcopenia by
increasing mitochondrial biogenesis

Mitochondrial biogenesis is the process of intracellular
production of newly formed and functioning normal
mitochondria (Johnson et al., 2021). Some proteins play a
significant role in mitochondrial biogenesis, but their expression
decreases with age (Carter et al., 2018). PGC-1α plays a major role in
regulating mitochondrial biogenesis in muscle cells and is positively
associated with mitochondrial biogenesis. Numerous studies have
confirmed that PGC-1α is regulated by AMP-activated protein
kinase (AMPK), silence information regulator 1 (SIRT1), and p53
(Zong et al., 2002; Saleem et al., 2009; Menzies et al., 2013). Under
stress conditions such as exercise, PGC-1α controls the expression of
multiple transcription factors (nuclear respiratory factors-1 (NRF-1)
and nuclear respiratory factors-1 (NRF-2) and the expression of
mitochondrial transcription factor A (TFAM) to produce newly
formed mitochondria (Scarpulla et al., 2012; Granata et al., 2018). In
addition, the expression of PGC-1α in older muscles is decreased as a
result of a decrease in upstream signaling (Ljubicic and Hood, 2009;
Carter et al., 2018). Therefore, PGC-1α expression cannot be ignored
when researching the effects of exercise on mitochondrial biogenesis
in sarcopenic patients. But there are also studies suggesting that
PGC-1α、P53 is not necessary for adaptive response to exercise
training (Rowe et al., 2012; Beyfuss et al., 2018). Even older skeletal
muscles without PGC-1α and P53 can adapt to exercise to maintain
normal metabolic functions (Table 2).

Exercise form plays a critical role in mitochondrial biogenesis
(Table 2). Kitaoka found that a 4-week resistance exercise had little
effect on mitochondrial biogenesis in a somatic animal model
(Kitaoka et al., 2015). Further, Mesquita investigated the
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TABLE 1 Clinical consensus comparison of the main diagnostic tools for sarcopenia in older adults.

Name year Muscle strength Muscle Mass Physical performance Diagnosis

EWGSOP
2019 Cruz-Jentoft et al.
(2010)

Grip strength: M: < 27 kg F:
<16 kg

DXA ASM: M:<
20 kg F:< 15 kg

Gait speed: ≤ 0.8 m/s Sarcopenia = Low Muscle Mass + Low
Muscle Strength OR Low Physical
Performance

Chair stand: >15 s for five
rises

ASM/height2 M:<
7.0 kg/m2 F: <
5.5 kg/m2

SPPB: ≤ 8 point score Severe Sarcopenia = Low Muscle Mass +
Low Muscle Strength + Low Physical
Performance

TUG: ≥ 20 s 400 m walk test: Non-
completion or ≥6 min for completion

AWGS 2020 Cruz-Jentoft
et al. (2019)

Handgrip strength: M: <
28 kg F: < 18 kg

DXA-ASM: M: <
7.0 kg/m2 F: <
5.4 kg/m2

6-m walk: < 1 m/s Probably Sarcopenia = Low Muscle
Strength

BIA-ASM: M: < 7.0 kg/
m2 F: < 5.7 kg/m2

5-time chair stand test: ≥ 12 m/s Sarcopenia = Low Muscle Mass OR Low
Muscle Strength

SPPB: ≤ 9 point score Severe Sarcopenia = Low Muscle Mass +
Low Muscle Strength + Low Physical
Performance

SDOC 2020 Chen et al.
(2020)

Handgrip strength
(maximal): M: < 35.5 kg F:
< 20 kg

Gait Speed (usual): M:> 0.8 m/s F:
>0.8 m/s

Sarcopenia = Low Grip Strength and Low
usual Gait Speed

EWGSOP, the EuropeanWorking Group on Sarcopenia in Older People; DXA, Dual-energy X-ray absorptiometry; ASM, appendicular skeletal muscle mass; SPPB, short physical performance

battery; AWGS, asian working group for sarcopenia; TUG, time up and go test; BIA, bioelectrical impedance analysis; SDOC, sarcopenia definition and outcomes consortium; F, female; M,

male.

TABLE 2 An overview of studies on exercise’s effects on mitochondrial biogenesis.

Author year Subjects Exercise forms Exercise duration Exercise intensity Protein level Change

Kitaoka 2015 Beyfuss
et al. (2018)

rat Resistance exercise 4 weeks, 3 day/week no change

Mesquita 2020 Kitaoka
et al. (2015)

older adults resistance training 10 weeks, 2 day/week PGC-1α, TFAM,NRF1 no change

Koltai 2012 Mesquita
et al. (2020)

rat treadmill running 6 weeks, 7 days/week 60% Vo2max PGC1α,SIRT1,TFAM,NRF1 Increase

Kang 2013 Koltai et al.
(2012)

rat treadmill running 12 weeks, 5 day/week Moderate strength PGC-1α, SIRT1,AMPK Increase

Moore 2019 Kang et al.
(2013)

mice treadmill running 90 mint Moderate strength PGC-1α, TFAM,NRF-1 Increase

Gao 2021 Moore et al.
(2019)

rats treadmill running 8 months Moderate strength AMPK, PGC-1α Increase

Han 2022 Gao et al.
(2021)

rats treadmill running 8 months, 5 days/week MICT:75%–80% O2max HIIT:
45%–55% + 85–95% O2max

SIRT3, PGC-1α Increase

Pirani 2023 Han et al.
(2022)

old rats treadmill running 12 weeks HIIT:16-
18 min MICT:30-
60 mim

MICT: 65%–70% VO2max HIIT:
85%–90% + 45%-75%VO2max

AMPK, PGC-1α,ERR Increase

Heather 2018 (Johnson
et al., 2021)

rats Acute contractile
activity

NRF-2, PGC-1α Increase

Edgett 2013 Pirani et al.
(2023)

adults cycle ergometer 3 h the peak work rate of 100% or
73% or 133%

PGC-1α Increase

Granata 2016 Edgett
et al. (2013)

adults cycle 4 weeks, 3 days/week 200% or 90% or 65% of peak
power output

PGC-1α, p53 Increase

Granata 2020 Granata
et al. (2016)

adults electronically braked
cycle ergometer

20 days, 2 times/day HVT PGC-1α, p53 Increase
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histopathology of the lateral femoral muscle in older adult subjects
and concluded that 10-week resistance exercise did not affect
mitochondrial biogenesis as well (Mesquita et al., 2020).
Therefore, resistance exercise does not affect mitochondrial
biogenesis. However, 6 weeks of endurance exercise can reverse
the decline in SIRT1, AMPK, and PGC-1α in aged rats, and
diminish the gap in mitochondrial biogenesis-related proteins
between aged and young rats (Koltai et al., 2012). Aged rats
undergoing endurance exercise for 12 weeks exhibited
significantly higher levels of PGC-1α, TFAM, SIRT1, and AMPK
than other sedentary rats (Kang et al., 2013). Therefore, upregulation
of PGC-1α signaling may be responsible for promoting
mitochondrial biogenesis in aged rat skeletal muscle after
endurance training. This conclusion has also been confirmed by
human experiments. Endurance exercise can increase mitochondrial
biogenesis by increasing the expression of mitochondrial biogenesis-
related proteins (e.g., PGC-1α, TFAM, NRF-1), as well as activating
the AMPK/PGC-1A signaling pathway (Moore et al., 2019; Gao
et al., 2021). Therefore, endurance training promotes mitochondrial
biogenesis and is correlated with the duration of endurance training.
However, research has shown that HIIT promotes mitochondrial
biogenesis more effectively than moderate-intensity continuous
training (MICT) (Han et al., 2022; Pirani et al., 2023). Therefore,
HIIT has demonstrated superior efficacy in augmenting
mitochondrial biogenesis in aged rats with sarcopenia.

Exercise increases PGC-1α expression in older adults, pointing
to the possibility that older muscles can respond to exercise
efficiently to increase mitochondrial biogenesis (Carter et al.,
2018). In addition, it was confirmed that PGC-1α and
p53 protein levels increased with training volumes, and a short-
term decrease in training volumes decreased the levels of both
proteins, indicating that training volume remains a factor
influencing training-induced mitochondrial biogenesis (Granata
et al., 2018). Nonetheless, the upregulation of PGC-1α does not
exhibit a linear correlation with escalating training volumes. Edgett’s
experimental findings indicate that HIIT with 100% peak aerobic
power is the most effective in promoting PGC-1α expression
following a single exercise session of varying intensities (Edgett
et al., 2013). While the 73% and 133% conditions have comparable
effects on mitochondrial biogenesis, both fall slightly short of the
biogenesis observed under 100% conditions (Edgett et al., 2013).
Furthermore, the activation of PGC-1α transcription by AMPKmay
not be influenced by exercise intensity andmay not be augmented by
ultra-high-intensity exercise (Edgett et al., 2013). Moreover, it has
been observed that as the level of physical exertion escalates, the
manifestation of PGC-1α is inferior to that of Electromyography
derived muscle activation, potentially leading to a dampening of
PGC-1α signaling mediated activation. Consequently, it remains
uncertain whether a single bout of supramaximal intensity training
can confer exercise advantages that surpass those attained through
submaximal and maximal intensity exercises. Conversely, Granada
has demonstrated that the intensity-dependent regulation of PGC-
1α protein may persist beyond the pinnacle of power after prolonged
durations and intensities of exercise (Granata et al., 2016). The
inconsistent timing of muscle biopsy, exercise duration, and exercise
frequency in the two experiments may have contributed to the
observed possibility. However, Granata confirmed this conclusion
with guaranteed consistent muscle biopsy timing (Granata et al.,

2020). These findings underscore the significance of exercise
intensity in mitochondrial biogenesis. While optimal exercise
intensity remains a topic of debate, both endurance training and
HIIT have been shown to promote mitochondrial biogenesis. For
older adults, endurance training is recommended based on their
physical condition.

Exercise ameliorates sarcopenia by
balancing mitochondrial dynamics

Mitochondrial dynamics include mitochondrial fusion and
fission. Mitochondrial autophagy, aging, and decreased physical
activity promote mitochondrial fragmentation, which leads to
mitochondrial dysfunction (Wai and Langer, 2016).
Mitochondrial fission isolates dysfunctional mitochondria,
improving mitochondrial function (Wai and Langer, 2016).
Additionally, mitochondrial fusion plays a significant role in
maintaining mitochondrial function. For example, mitochondrial
fusion regulates oxidative phosphorylation (OXPHOS) and
mitochondrial DNA replication (Silva Ramos et al., 2019).
Mitochondrial fusion processes include mitofusin 1 (Mfn1) and
mitofusin 2 (Mfn2) mediated mitochondrial outer membrane fusion
and optical atrophy protein 1 (Opa1) mediated mitochondrial inner
membrane fusion (Bell et al., 2019). Mahmoodzadeh
(Mahmoodzadeh et al., 2021) also confirmed that Ahnak1 is
likely located in the outer mitochondrial membrane and plays an
important role in mitochondrial fusion. The mitochondrial division
is mediated by mitochondrial fusion protein 1 (FIS1), dynamin-
related protein 1 (Drp1), and mitochondrial fission factor (MFF)
(Liu et al., 2021). In contrast, to direct mitochondrial fission, there
has been evidence that FIS1 inhibits mitochondrial fusion (Yu et al.,
2019). The downregulation of Mfn2, FIS1, Drp1, and Opa1 in
sarcopenia in old people can be associated with a significant
decline in exercise performance (Liu et al., 2021). This suggests
that aging and exercise can alter the dynamic balance of
mitochondria. Therefore, the mitochondrial dynamic imbalance
is associated with sarcopenia and skeletal muscle atrophy.

Observations of mitochondria in skeletal muscles after exercise
indicate that they exist in a more fused state (Mishra et al., 2015). But
acute exercise does not alter mitochondrial fusion proteins
expression. For example, Picard found that after a voluntary
round run of 3 hours on mice, mitochondrial morphology and
Mfn2 and Opa1 abundance did not change (Picard et al., 2013).
Acute resistance exercise in rats has also verified this conclusion
(Kitaoka et al., 2015). Moreover, Marshall demonstrated in human
experiments that acute resistance exercise may not alter
mitochondrial function in an older adult with muscle disuse
(Marshall et al., 2022). However, research has shown that
prolonged exercise training may result in mitochondrial fusion.
Resistance training for 4 weeks increased the levels of Mfn1,
Mfn2, and Opa1 proteins in the gastrocnemius muscles of rats
(Kitaoka et al., 2015). Nevertheless, this only increased
mitochondrial bulk density, regardless of mitochondrial content.
Furthermore, resistance training for 10 weeks can also increase the
levels of Mfn1, Mfn2, and Opa1 proteins in older people (Mesquita
et al., 2020). Aerobic exercise for 20 weeks can increase the levels of
OPA1 and MFF in the gastrocnemius muscle of healthy adult males
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(Zoladz et al., 2022). The use of HIIT and MICT for 12 weeks has
been shown to reduce Drp1 and FIS1 levels and to increase the levels
of Mfn1, Mfn2, and Opa1 to promote mitochondrial fusion (Li B.
et al., 2019). However, Wyckelsma believes that HIIT is more
effective (Wyckelsma et al., 2017). As a result of the correlation
between exercise intensity and Mfn2 expression (Fiorenza et al.,
2018). While the majority of studies have been conducted on healthy
adults, the number of mitochondria in the muscles of young and
healthy older adults is similar (Wyckelsma et al., 2017). Therefore,
chronic exercise for 4 weeks or more reduces sarcopenia by
activating mitochondrial fusion.

FIS1 and Drp1 protein levels in the mitochondria of the
gastrocnemius muscle did not change within 1 h following acute
resistance exercise (Kitaoka et al., 2015). However, Moore developed
a mouse model (mDrp1) which maintained high levels of FIS1 and
Opa1 for 3 h following the cessation of endurance training (Moore
et al., 2019). These results demonstrate that exercise form and
Drp1 signal transduction play a significant role in regulating
exercise performance and adapting to endurance training. In
contrast, acute sprint interval training of different intensities can
increase DRP1 levels in the lateral femoral muscle (Granata et al.,
2017). DRP1 expression is influenced by the impact of high-intensity
exercise on β-adrenergic stimulation of adrenaline (Fiorenza et al.,
2018). Moreover, Ding found that the levels of FIS1 mRNA and
protein increased significantly after 120–150 min of endurance
training (Ding et al., 2010). The rapid expression of the
FIS1 gene in skeletal muscle may be a result of increased
metabolic demands during exercise. This may have a significant
impact on the efficiency of oxidative phosphorylation. Therefore,
exercise can improve mitochondrial dynamics in older adults with
sarcopenia. Long-term, moderately intense, or highly intense
exercise can reduce sarcopenia and muscle atrophy in older adults.

Exercise ameliorates sarcopenia by inducing
mitochondrial autophagy

The mitochondria within the cell undergo depolarization due to
external stimuli such as ROS, a lack of nutrients, and the aging of the
cells. Mitochondrial autophagy mechanisms are usually divided into
two categories: ubiquitin-dependent pathways and non-ubiquitin-
dependent pathways (Lu et al., 2023). The ubiquitin-dependent
pathway refers to the widespread ubiquitination of mitochondrial
surface proteins that promote mitochondrial autophagy. The PTEN-
induced oxidative kinase protein 1 (PINK1)/Parkin pathway is
currently the most extensively studied pathway (Guan et al.,
2018). When mitochondrial membrane potential (MMP, ΔΨ m)
When damaged, the pathway of PINK1 entering the inner
mitochondrial membrane is blocked, leading to the stable
aggregation of PINK1 on the cytoplasmic surface of the outer
membrane of mitochondria. In parallel, this will recruit and
activate Parkin, and the spatial conformation of Parkin protease
will change into activated E3 ubiquitin ligase, which will ubiquitinate
proteins in mitochondria (Riley et al., 2013). In addition,
PINK1 directs the recruitment of autophagic receptor proteins
(such as Nip3-like protein X (NIX), BCL2-interacting protein
3(BNIP3), and FUN14 domain containing 1(FUNDC1)) to
mitochondria through ubiquitin phosphorylation (Lu et al.,

2023). The receptor proteins recruit LC3, which enables
autophagosomes to engulf mitochondria. Moreover, the
expression of LC3, BNIP3, beclin1, Atg7, p62, and Parkin
decreases with age (Liang et al., 2020). Therefore, autophagy
levels are low in the skeletal muscles of older animals. Under
stress factors, such as exercise, AMPK promotes autophagy by
promoting mitochondrial division (Zhang and Lin, 2016).

A cross-sectional study has shown that older adults who exercise
have higher levels of mitochondrial phagocytosis proteins Parkin
and BNIP3 (Dethlefsen et al., 2018; Balan et al., 2019). Therefore, an
active lifestyle contributes to mitochondrial autophagy.
Nevertheless, mitochondrial autophagy varies according to the
age at which exercise is initiated. As compared with mice aged
18 months, mice aged 8 months had increased mitochondrial
autophagy activity, improving their physical function (Gao et al.,
2020). Therefore, older adults should begin training as early as
possible and maintain their exercise habits to effectively prevent
sarcopenia. Acute exercise such as downhill running acutely,
swimming, or running on a treadmill can promote the expression
of mitochondrial autophagy-related proteins (Kim et al., 2012;
Lenhare et al., 2017; Shang et al., 2019). Moreover, chronic
exercises such as endurance training, downhill/uphill training,
and resistance training increased autophagic activity in the
gastrocnemius muscle of aged rats (Kim et al., 2013; Kim JS.
et al., 2016; Zeng et al., 2020). Therefore, exercise duration,
exercise form, and exercise intensity are associated with
differences in autophagy marker expression. Meta-analyses have
shown that long-term aerobic and resistance exercise may increase
the expression of autophagy-related proteins in aging skeletal
muscles (Wang C. et al., 2022). However, a prolonged period of
high-intensity exercise may lead to excessive autophagy, while a
short period of low-intensity exercise (intervention duration<
12 weeks, frequency< 3 times/week) may not reach the level of
exercise-induced autophagy that is required for metabolic
adaptation. This conclusion was also supported by Yu’s
comparative experiment (Yu et al., 2020). Furthermore, Yu found
that exercise can increase the LC3-II/LC3-I ratio as well as decrease
the expression of the p62 protein (Yu et al., 2020). But under the
same exercise intensity, the autophagy activity of skeletal muscle
mitochondria after 4 weeks of exercise is higher than that after
2 weeks of exercise (Yu et al., 2020). Under the same exercise time,
the mitochondrial autophagy activity of high-intensity exercise was
higher than that of moderate-intensity exercise (Yu et al., 2020).
Therefore, different exercise durations and intensities have varying
effects on autophagy-related protein expression. However, Yu’s
experimental time was relatively short, and the results of the
meta-analysis may be heterogeneous. Nevertheless, moderate-
intensity exercise for more than 4 weeks increases mitochondrial
autophagy.

Exercise ameliorates sarcopenia by
improving mitochondrial Ca2+ homeostasis

The mitochondrial uptake of Ca2+ is crucial to the regulation of
their intrinsic functions. Ca2+ in mitochondria plays a significant
role in regulating metabolic activity (Gherardi et al., 2020). The
mitochondrial calcium transporter (MCU) is one of the most
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important Ca2+ transport complexes within mitochondrial Ca2+

uptake channels. A disturbance in mitochondrial Ca2+ may lead
to impaired function of the MCU and abnormalities in
mitochondrial metabolism and kinetics (Wu et al., 2021).
Furthermore, mitochondrial Ca2+ overload can lead to the
opening of the mitochondrial membrane permeability
transformation pore (mPTP), swelling of mitochondria, and the
production of ROS (Strubbe-Rivera et al., 2021). Researchers have
reported that fatigue patients and aging mice have reduced
mitochondrial Ca2+ uptake and muscle function (Debattisti et al.,
2019; Yang et al., 2021). Therefore, mitochondrial Ca2+ uptake
imbalances impair muscle fiber contraction, and restoring
mitochondrial Ca2+ uptake can improve skeletal muscle function
in aging mice (Debattisti et al., 2019; Yang et al., 2021).

Research has demonstrated that regular exercise promotes the
repair and maintenance of Ca2+ release units, Ca2+ entry units, and
mitochondria during denervation and aging (Protasi et al., 2021). Li
compared the effects of HIIT and MICT on Ca2+ conduction in an
aged rat model (Li FH. et al., 2019). According to the study, HIIT can
increase the expression of some genes, thereby improving Ca2+

signal transduction and systolic function by supporting these
proteins. Both HIIT and MICT improved Ca2+ signaling and
muscle contractile protein expression in older skeletal muscles,
which offset age-related changes in excitatory contraction
coupling. Additionally, Zampieri examined mitochondrial Ca2+

homeostasis in response to neuromuscular electrical stimulation
and proprioceptive training (Zampieri et al., 2016). Based on
9 weeks of training, both types of training can increase MCU
protein levels, thus improving muscle function and structure.
Under electron microscopy, ultrastructural analysis has revealed
that mitochondrial changes in neuromuscular electrical stimulation
training muscles may be mediated by increases in the expression of
mitochondrial fusion protein OPA1. Furthermore, mitochondria
that lack Drp1 have a larger morphology and are more
dysfunctional. Therefore, mitochondrial dynamic balance is
essential for maintaining mitochondrial Ca2+ homeostasis (Favaro
et al., 2019). Exercise has been shown to maintain mitochondrial
Ca2+ homeostasis in older skeletal muscle based on current evidence.
Nevertheless, more research is required in the future to determine
the optimal exercise form, intensity, and duration.

Exercise ameliorates sarcopenia by
inhibiting mitochondrial oxidative stress

Two fundamental biological processes determine the level of
oxidative stress in the older adult with sarcopenia: the production of
ROS and the decline in antioxidant defenses caused by aging (Ji,
2002). The imbalance between ROS production and antioxidant
defense systems results in mitochondrial oxidative stress. Several
pathways (e.g., electron transfer chain (ETC.) and aging can
promote excessive ROS production, which can cause
mitochondrial damage (Selivanov et al., 2011; Brand, 2016;
Thoma et al., 2020). A lack of exercise also elevates ROS, which
further reduces muscle function and mass (Waltz et al., 2018). It has
been demonstrated that increased ROS is associated with fiber
atrophy and necrosis in sarcopenia cases (Brioche and Lemoine-
Morel, 2016). Therefore, high ROS levels in mitochondria contribute

to the pathogenesis of sarcopenia in older adults. The mitochondrial
antioxidant defense system includes catalase (CAT) and superoxide
dismutase (SOD). A higher level of CAT is effective at reducing ROS
production, prolonging lifespan, and reducing fatigue and atrophy
in muscles (Selsby, 2011; Xu et al., 2021). Moreover, an imbalance
between ROS and antioxidant defenses leads to high levels of
oxidative stress that exacerbate ROS-induced sarcopenia
(Sullivan-Gunn and Lewandowski, 2013). Therefore, inhibiting
mitochondrial oxidative stress is crucial.

Exercise-induced ROS production improves mitochondrial
efficiency, while chronic ROS production is detrimental to
mitochondria. This may be because exercise can improve the
coupling efficiency of, ETCs, reduce electron leakage and
excessive mitochondrial ROS production, as well as restoring the
balance of mitochondrial oxidative stress in the body to a healthy
level (Corsetto et al., 2019). Furthermore, studies have shown that
training time has a significant effect on CAT activity. An aerobic
exercise can cause a transient peroxidation state in white adipose
tissue, increasing the expression of antioxidant defenses (Matta
et al., 2021). This may be due to the activation of the redox
effector factor-1 (Ref1) and nuclear factor e2-related factor 2
(Nrf2) antioxidant defense pathways, which may prevent cellular
oxidative stress resistance during acute exercise (Wang et al., 2016).
Furthermore, chronic exercise can improve the antioxidant defense
system. An 8-week aerobic and resistance exercise program
increased SOD2 and CAT activity in aged rats (Vilela et al.,
2018). Furthermore, 8-month HIIT and MICT can upregulate
the expression of SOD2 and Acetaldehyde dehydrogenase
(ALDH) (Li FH. et al., 2019). Nevertheless, the level of SOD2 in
the MICT group did not reach statistical significance. Further, HIIT
provides greater benefits to aged rats than MICT in terms of
combating chronic low-level inflammation and oxidative stress
(Li et al., 2018). A possible explanation for this may be related to
the tissue-specific oxidative stress response of HIIT and MICT
(Groussard et al., 2019). Therefore, acute aerobic exercise and
chronic HIIT improve mitochondrial oxidative stress more
effectively.

Exercise ameliorates sarcopenia by inhibiting
MtDNA

Mitochondrial DNA replication, deletion, and mutation degrees
increase with age, directly affecting cell metabolism and mitochondrial
function (Cortopassi and Arnheim, 1990; Harper et al., 2021; Herbst
et al., 2021). Additionally, mtDNAmutant mice showed a higher level of
mitochondrial fission, autophagy, and mitochondrial oxidative stress
(Joseph et al., 2013; Ma et al., 2020). As a result, in older adults with
mitochondrial dysfunction, mutated mtDNA may result in reduced
oxidative phosphorylation. The effect of this is to affect the assembly of
functional, ETC., complexes. However, it does not increase oxidative
stress, resulting in skeletal muscle apoptosis and sarcopenia in the long
run (Hiona et al., 2010). In muscle fibers containing, ETC., defects,
mtDNA deletion mutations increased by 1,200%, muscle fiber numbers
decreased by 18%, andmuscle mass loss worsened by 22% (Herbst et al.,
2016). These results confirm the importance of mitochondrial DNA
deletions and mutations in the development of muscle atrophy in older
adults. This is in contrast to the reactions observed in normal aging
muscles and may provide a means for detecting muscle atrophy at an
early stage.
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Exercise can regulate mtDNA levels in the skeletal muscles of the
older adult. For example, exercise can promote mtDNA replication
in older skeletal muscles. Upon reviewing the literature, Erlich found
that exercise-induced mitochondrial biogenesis occurred
simultaneously with an increase in mtDNA copy number (Erlich
et al., 2016). Furthermore, exercise may stimulate the synthesis of
mtDNA in human skeletal muscle (Robinson et al., 2011). Acute
endurance exercise is capable of increasing P53 and mitochondrial
DNA levels (Saleem and Hood, 2013). Therefore, exercise may be an
effective mechanism for sarcopenia treatment by activating P53 to
promote metabolic function. P53 can also interact with TFAM and
DNA polymerase gamma to promote the binding of mtDNA and
maintain mtDNA integrity (Achanta et al., 2005; Park et al., 2009;
Park et al., 2016). Moreover, exercise can reduce mtDNA mutations
in skeletal muscle and normalize protein levels (Maclaine et al.,
2020). Safdar found that mtDNA in sedentary and exercised PolG
mice contained similar numbers of mutations (Safdar et al., 2016).
Nevertheless, sedentary mice suffer from more non-mutational
damage, which can be mitigated through exercise. Additionally,
the significant relief of mtDNA mutation phenotypes in muscle
from exercise may not be due to a reduction in mutation load, but
rather to a reduction in damage to mtDNA and/or oxidative stress.
Therefore, endurance exercise promotes mtDNA replication and
inhibits mtDNA mutations. Nevertheless, further investigation is
required to identify the mechanisms of mitochondrial dysfunction
and mtDNA dysfunction.

Exercise ameliorates sarcopenia by
inhibiting mitochondrial apoptosis

Upon stimulation by internal apoptotic factors, such as oxidative
stress, calcium overload, and DNA damage, an imbalance between
anti-apoptotic proteins (e.g., B-cell lymphoma-2 (Bcl-2), Bcl-xL)

and pro-apoptotic proteins (e.g., Bcl-2-associated X protein (Bax),
Bak, Bid) occurs, increasing mitochondrial outer membrane
permeability and opening of the mitochondrial permeability
transition pore (mPTP) (Lindsay et al., 2011). This process leads
to the release of mitochondrial pro-apoptotic factors, including
cytochrome C (cyto C), apoptosis-inducing factor (AIF), the
second mitochondria-derived activator of caspases/direct
inhibitor of apoptosis-binding protein with low pI (SMAC/
DIABLO), high-temperature requirement protein A2/omi
(HTRA2/OMI), and endonuclease G (ENDOG), into the
cytoplasm (Bano and Prehn, 2018). Upon being released into the
cell, cyto C engages in an interaction with Apaf-1, resulting in the
formation of an apoptotic complex that is facilitated by ATP and
dATP (Yadav et al., 2020). This complex serves to recruit and
activate Pro-Caspase9, ultimately giving rise to the
Caspase9 holoenzyme. The entire Caspase9 enzyme then
proceeds to activate Caspase3 and Caspase7, thereby initiating
the caspase cascade reaction and ultimately culminating in cell
apoptosis (Ola et al., 2011). The activation of Caspase3 and
Caspase7 can be inhibited by Apoptosis inhibitory proteins
(IAPs), which in turn can impede the process of cell apoptosis
(Scott et al., 2005). The release of SMAC/DIABLO and HTRA2/
OMI from mitochondria into the cell results in their binding to
IAPs, thereby releasing the inhibitory effect of IAPs and indirectly
promoting apoptosis (Scott et al., 2005; Vande Walle et al., 2008).
Simultaneously, apoptosis can activate the E3 ubiquitin ligase
MAFbx/atrogin-1 and Muscle RING finger 1 (MuRF1), leading
to increased protein degradation and exacerbating aging-induced
skeletal muscle loss (Cheema et al., 2015) (Figure 1). Consequently,
the upregulation of pro-apoptotic processes may contribute to age-
related muscle mass and cachexia loss.

Exercise training has been shown to reduce metabolic changes
caused by mitochondrial apoptosis. As an example, exercise training
at 60% VO2 max for 6 weeks can reverse age-related catabolism and

FIGURE 1
The mitochondrial apoptosis pathway. Upon exposure to apoptotic signals, the upregulation of pro-apoptotic proteins occurs, resulting in their
binding to anti-apoptotic proteins. This interaction leads to an increase in mitochondrial permeability and the subsequent opening of the mPTP,
ultimately resulting in the release of apoptotic factors (Cruz-Jentoft and Sayer, 2019). Cyt C binds to Apaf-1, forming a mitochondrial complex facilitated
by ATP/dATP. This complex recruits Caspase 9 proenzyme, forming apoptosomes and initiating downstream Caspase cascade reactions (Wu et al.,
2022). SMAC, Omi/HtrA2 can bind to IAPs, inhibiting Caspase 3 and 9 (Chen Z. et al., 2021). AIF and Endo G translocate to the nucleus, causing chromatin
condensation and large-scale DNA fragmentation. In the cytoplasm, AIF activates Caspase 3 and subsequently activates Caspase 9.
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apoptosis (Ziaaldini et al., 2015). Additionally, treadmill exercise
training for 12 weeks decreased Caspase-3, Bax, and Bax/Bcl-
2 ratios, as well as increased anti-apoptotic Bcl-2 in the white
gastrocnemius and soleus muscles of aged rats (Song et al.,
2006). The activity of nuclear factor kappa B (NF-B) increases
with exercise training and decreases with aging (Song et al.,
2006). Based on these results, aerobic exercise may be able to
reduce fiber atrophy and proapoptotic signal transduction in
aging skeletal muscle. Compared to the effects of not exercising
during adulthood or starting regular exercise later in life, lifelong
exercise in rats increases autophagic activity and prevents skeletal
muscle apoptosis (Gao et al., 2021). Additionally, Zeng believes that
both aerobic exercise and resistance exercise can inhibit excessive
apoptosis caused by the upregulation of Bcl-2 and downregulation of

Bax in the skeletal muscles of aged rats (Zeng et al., 2020).
However, resistance exercise has a greater impact on anti-
apoptosis (Zeng et al., 2020). It may be possible that
resistance exercise increases autophagic activity and reduces
apoptosis in older adult skeletal muscle by regulating insulin-
like growth factor-1 (IGF-1) and its receptors, and
downregulating Akt/mTOR and Akt/FOXO3a signaling
pathways (Luo et al., 2013). Alternatively, resistance exercise
stimulation of autophagy may prevent NOD-like receptor
thermal protein domain associated protein 3 (NLRP3)
activation and reduce apoptosis in peripheral blood
mononuclear cells (PBMCs) of the older adult (Mejías-Peña
et al., 2017). To compare the effects of HIIT and resistance
exercise, Su conducted a 32-week intervention and found that

FIGURE 2
Exercise to improve mitochondrial dysfunction in the treatment of sarcopenia. Mitochondrial dysfunction is characterized by alterations in
mitochondrial biogenesis, mitochondrial dynamics, mitochondrial autophagy, mtDNA, mitochondrial calcium homeostasis, mitochondrial oxidative
stress, and mitochondrial apoptosis. Exercise may be able to reverse the aging process of skeletal muscle by modulating mitochondrial dysfunction (A)
Exercise promotesmitochondrial biogenesis. By activating the AMPK, P53, and SIRT1 pathways and promoting PGC-1α expression, exercise reverses
aging effects (B)Exercising balances mitochondrial dynamics. By increasing the expression of Mfn1/2, OPA1, DRP1, and FIS1, exercise reverses aging
effects (C) Exercise enhances mitochondrial autophagy. By increasing the expression of AMPK and PINK1/Parkin pathways, promoting LC3-II/LC3-I ratio
and BNIP3 expression, and downregulating p62 expression, exercise reverses aging effects (D) Exercise maintains mitochondrial Ca2+ homeostasis. By
promoting MCU and OPA1 expression and restoring mitochondrial Ca2+ uptake, exercise reverses aging effects (E) Exercise reduces mitochondrial
oxidative stress. By inhibiting mitochondrial ROS synthesis and promoting the production of antioxidant defense systems (CAT, SOD2, ALDH2), exercise
reverses aging effects (F) Exercise reverses aging effects by promoting mitochondrial DNA synthesis and replication through P53 and inhibiting mtDNA
mutations (H) Exercise decreases mitochondrial apoptosis. By downregulating Akt/mTOR and Akt/FOXO3a signaling pathways, and upregulating IGF-1,
NF-κB, and Bcl-2/Bax ratios, exercise reverses aging effects.
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both showed a decrease in mitochondrial apoptosis (Su et al.,
2022). Resistance training has a greater effect on reversing age-
related muscle loss than HIIT. In contrast, HIIT is more effective
in suppressing proapoptotic factors over the long term (Su et al.,
2022). However, Further research is required to validate the
potential of HIIT in enhancing sarcopenia among older adults
through the inhibition of mitochondrial apoptosis.

Conclusions and perspectives

With aging and inactivity, mitochondrial dysfunction, muscle
reduction, or even muscle atrophy occur within the skeletal muscles
of older adults and animals. This review analyzes the effects of
exercise on mitochondrial biogenesis, mitochondrial dynamics,
mitochondrial autophagy, mtDNA, mitochondrial Ca2+

homeostasis, mitochondrial oxidative stress, and mitochondrial
apoptosis in aged rats and adults with sarcopenia. This review
also sheds light on the interaction and potential mechanisms of
mitochondrial dysfunction following exercise (Figure 2).
Furthermore, this review summarizes the best exercise forms,
intensities, and timings for regulating mitochondrial dysfunction.
There is evidence that exercise improves the mitochondrial function
of older adults with Sarcopenia. However, exercise form, intensity,
and duration are significant factors that affect exercise effectiveness.
HIIT has been shown to effectively stimulate mitochondrial
biogenesis and dynamics in aged rats, thereby facilitating the
generation of new mitochondria or the restoration of
dysfunctional ones. Moreover, it has been observed to mitigate
oxidative stress and mitochondrial apoptosis in aged rats.
Moderate-intensity exercise maintains mitochondrial dynamic
balance, promotes mitochondrial autophagy, reduces
mitochondrial DNA damage and apoptosis, and eliminates
dysfunctional mitochondria from the body. Acute exercise can
promote mitochondrial fission and reduce mitochondrial
oxidative stress. Chronic exercise is more suitable for improving
mitochondrial dysfunction in older sarcopenia patients. Therefore,
Moderate-intensity exercise over 4 weeks potentially mitigates
sarcopenia in older adults by ameliorating mitochondrial
dysfunction. HIIT has demonstrated potential as a viable
approach to addressing sarcopenia in aged rats. However, further

investigation is required to validate its efficacy in treating sarcopenia
in older adults.
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