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With extended life expectancy, the quality of life of elders is a priority. Loss of
mobility, increasedmorbidity and risks of falls have dramatic individual and societal
impacts. Here we consider the age-related modifications of gait, from a
biomechanical and neurophysiological perspective. Among the many factors of
frailty involved (e.g., metabolic, hormonal, immunological), loss ofmuscle strength
and neurodegenerative changes inducing slower muscle contraction may play a
key role. We highlight that the impact of the multifactorial age-related changes in
the neuromuscular systems results in common features of gait in the immature
gait of infants and older adults. Besides, we also consider the reversibility of age-
related neuromuscular deterioration by, on the one hand, exercise training, and
the other hand, novel techniques such as direct spinal stimulation (tsDCS).
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1 Introduction

With extended life expectancy, the quality of life of elders is a priority. Loss of mobility,
increased morbidity and risks of falls have dramatic individual and societal impacts. Among
themany factors of frailty involved, loss of muscle mass and strength (Akima et al., 2001) and
neurodegenerative changes (Rygiel et al., 2016) play a key role. Whether changes in the
neural control precede or follow the decline of muscle mass and strength and how they both
are related to gait alteration remains yet to be established. More than ever, this needs to be
elucidated to implement interventions that can maintain or improve neuromuscular
function in older adults.

Biomechanical changes with age have garnered considerable scientific attention for
nearly 50 years. The scientific community (Winter et al., 1990; Delabastita et al., 2021) most
often points to a reduction in mechanical power generated by the plantar flexor muscles
during the push-off phase of walking as the hallmark biomechanical ageing features of gait.
However, the 11%–35% decline in force or power-generating capacity of propulsive leg
muscles cannot fully explain the age-related modification of gait in older adults. Indeed,
(i) many old adults underutilize their available muscular capacity for generating propulsive
power in walking and are able to increase it during slope walking or using biofeedbacks
(Waanders et al., 2021), and (ii) age-related changes in kinematics have been found prior to
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the appearance of propulsion decline with increasing age (Sloot
et al., 2021). Taken together, it suggests that the decline of propulsive
power generation is thus not only due to a reduced muscular
capacity, but neural factors are likely to contribute as well.

For instance, with aging motor weakness is due in part to
neuromuscular degeneration, but also to degenerative changes in
the central nervous system. Thus, reduction in grey matter volume
(Good et al., 2001), number of motor cortical (Henderson et al.,
1980) and spinal motor neurons (Doherty, 2003), synaptic density
(Haug and Eggers, 1991), white matter integrity (Davis et al., 2009),
and descending commands for motor activation (Yue et al., 1999)
are some of the factors that may contribute to age-related motor
impairment. Another determinant of functional capacity and
autonomy is the integrity of other components of the
neuromuscular system, which wires the brain and skeletal
muscles via motor neurons and the neuromuscular junction.
However, despite its obvious importance for rhythm generation,
the potential involvement of the spinal cord in age-related
modification of locomotion has received little attention.

Using an electrophysiological approach, a way to get insight into
spinal cord functioning is to look at the spatiotemporal organization
of the total locomotor output by mapping multi-muscles EMG onto
the spinal cord in approximate rostro-caudal locations of the
motoneuron (MN) pools (Ivanenko et al., 2008; Cappellini et al.,
2010; Ivanenko et al., 2013; La Scaleia et al., 2014; Yokoyama et al.,
2017; Dewolf et al., 2019a). By studying the spinal motor output
across various walking conditions in older adults (walking at
different speeds, backward, upslope, downslope, upstairs,
downstairs), similar age-related differences in muscle activations
have been observed despite the various biomechanical constraints
(Dewolf et al., 2021a; Dewolf et al., 2021b). In particular, the activity
profiles of the muscles innervated from the sacral segments were
significantly wider in older adults in all conditions. Interestingly,
similar modification has been observed in young children (Ivanenko
et al., 2013; Dewolf et al., 2020b).

The major consideration of this review is the age-related
remodeling of both the neural and muscular system and its
relationship with locomotion changes with age, to shed light on
the multifactorial age-related changes of gait. The alterations of the
gait pattern in older adults are then compared to immature gait.
Besides, we also consider the reversibility of age-related
neuromuscular deterioration by, on the one hand, exercise
training, and the other hand, novel techniques such as direct
spinal stimulation (tsDCS) to mitigate the reduction of intrinsic
spinal motoneuron excitability in older adults (Orssatto et al.,
2021a), and how it could potentially lead to improved strategies
for promoting locomotor function recovery.

2 Neuromuscular modification with
aging

Aging is a natural and gradual process where the alterations in
motor control and physical fitness are multifactorial (Borzuola et al.,
2020). Strength capacity and muscle mass decrease during aging, in
great part due to sarcopenia. Aging-related sarcopenia is the most
common type of atrophy in humans. Specifically, sarcopenia is a
progressive skeletal muscle disorder identified by low muscle

strength, low muscle quantity or quality, and low physical
performance (Cruz-Jentoft et al., 2019). It is associated with an
increased risk of adverse outcomes, such as functional disability,
poor quality of life, and a higher risk of mortality (Batsis et al., 2014;
Beaudart et al., 2017; Kelley and Kelley, 2017; Liu et al., 2017). In
older adults, the loss of strength seriously affects independence
associated with activities of daily living but also leads to a greater risk
of falls, which is strongly related to mortality (Suzuki et al., 1992;
Landi et al., 2012). From a clinical perspective, it is essential to
understand the mechanisms underlying the modifications in skeletal
muscle morphology and function, which are evident during aging
(Fiatarone et al., 1990). Muscle strength begins to decline after
30 years of age and continues to decline with advancing age (Gava
et al., 2015). Changes related to muscle morphology and its
electrophysiology generally appear after the age of ~40, and it
also continues to decrease progressively (Stålberg and Fawcett,
1982; Oertel, 1986; Murton, 2015). Therefore, changes in strength
appear to precede changes associated with skeletal muscle
morphology. Also, the effect of aging on skeletal muscles
depends on muscle location and function, since leg muscles are
more affected than arm muscles (Stålberg and Fawcett, 1982; Oertel,
1986).

Several age-related modifications of muscle tissue have been
described, such as loss of muscle fibers (Lexell et al., 1983; Lexell,
1995; McPhee et al., 2018) or substantial loss of contractile proteins
(Larsson et al., 1996), such as myosin heavy chain (Siparsky et al.,
2014). Not only the reduction in the total number of fibres occurs,
but also in their cross-sectional area (Lexell and Taylor, 1991). It
should be noted that a differential response is reported in fibre loss
depending on the type of muscle, with a faster decrease mainly
observed in type II fibres (Cade and Yarasheski, 2006; Domingues-
Faria et al., 2016). Also, a change from the fast myosin isoform to the
slow isoform has also been observed, which has a lower capacity to
generate force. This change in fibre type could contribute to both
slowing movement and decreased maximal strength, and in turn
induce age-related changes of gait.

Even the pathogenesis of sarcopenia is not yet fully understood,
multiple etiological factors seem to be involved, including alteration
of muscle proteostasis (Lecker et al., 2004), mitochondrial
dysfunction and mitochondrial DNA deletions (Bua et al., 2006),
deregulation of satellite cells (Shefer et al., 2006), and accumulation
of extracellular matrix called fibrosis and fat infiltration into skeletal
muscle (Song et al., 2004). The cause of sarcopenia cannot be solely
attributed to alterations in skeletal muscles. In fact, the nerve
responsible for stimulating muscle fibers plays a significant role
in sarcopenia. As the skeletal muscles experience degeneration with
age, the decline in neuromuscular function emerges as a crucial
contributing factor (Aagaard et al., 2010). Evidence has shown
alterations associated with a reduction in motor units. Studies
have specifically compared the amount of motor neurons in
young and elderly subjects, with the latter showing a 50%
decrease (Doherty et al., 1993). In addition, the motor neurons
begin to exhibit alterations in firing frequency and rate. The
maximum firing frequency of motor neurons is lower compared
to young subjects (Klass et al., 2008). Other changes have also been
detected during aging related to a decrease in axonal conduction
velocity, which is explained by reduced myelination and internodal
length (Scaglioni et al., 2002). Therefore, evidence suggests that the
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compromised nervous system function may also be one of the
important contributors to functional decline described in
sarcopenia (Rygiel et al., 2016; Kwon and Yoon, 2017). Indeed,
normal innervation and its corresponding regular activation are
necessary to maintain muscle mass through muscle contraction. For
example, there is an association between the loss of muscle fibres and
the loss of motor units in older people (McNeil et al., 2005; Piasecki
et al., 2016; Piasecki et al., 2018). In addition, slow motor neurons
may be more adapted to reinnervation, leading to the loss of fast
motor neurons with age. This could respond to the change in fibre
type that occurs with aging (Larsson et al., 1978; Kadhiresan et al.,
1996; Andersen, 2003).

While the causes of the age-associated loss of motor neurons are
still unsettled, the neuromuscular junction integrity, and in
particular the mitochondrial dysfunction at the neuromuscular
junction, may have an important role (Shigemoto et al., 2010).
The changes in the neuromuscular junction have been reported to be
related to morphological alterations of the pre- and post-synaptic
regions and to the reduction of synaptic vesicles (Jang and Van
Remmen, 2011). The loss of motoneurons also plays an important
role in the alterations of the excitation-contraction coupling process
during aging (Payne and Delbono, 2004). Indeed, the decrease in
isometric strength and contraction velocity appears before the
reduction in muscle mass. Therefore, it has been proposed that

FIGURE 1
General features of gait in older adults. (A) spatiotemporal maps of motoneuron activity of the lumbosacral enlargement in neonates, toddlers,
preschoolers, adults and older adults, and the delay between the activation of lumbar and sacral activation (data from Ivanenko et al. (2013) for neonates,
toddlers, preschoolers and adults, and from Dewolf et al. (2021a) for older adults). (B) Schematic representation of walking like an inverted-pendulum.
Below, representative vertical loading force during stepping in neonates, toddlers, preschoolers, adults and in older adults. The characteristic force
profile was evaluated using the ratio between the leading limb and the tailing limb. (C) Intersegmental coordination assessed by principal component
analysis (PCA) of limb segment elevation angles during walking. From left to right: thigh, shank, and foot elevation angles (relative to the vertical),
corresponding 3D trajectory in segment angle space along with the interpolated plane (modified from Ivanenko et al. (2008)). Three examples of gait
loops are presented (one toddler, one adult and one older adults). Below, changes in the orientation of the covariance plane during walking over different
surfaces in toddlers, adults and older adults (modified from Dominici et al. (2010) and from Dewolf et al. (2021b)).
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the decrease in the number of motor units occurs before the loss of
muscle function (Deschenes et al., 2010; Sheth et al., 2018).
However, there is still insufficient evidence and more studies are
required to complement the current hypothesis.

3 Gait during development and aging: a
brief overview of the twosides of life

The multifactorial age-related changes in the neuromuscular
system, summarized in the last section, are rather well documented.
As people age, those changes result in alterations in gait patterns. In
this section, we present different aspect of gait (presented in
Figure 1) that are affected by age, and that interestingly resemble
those seen in younger infants.

In humans, when EMG activity patterns are mapped onto the
spinal cord in approximate rostrocaudal locations of the
motoneuron (MN) pools, the activation of MNs tends to occur
in bursts that can be associated with the major kinetic events of the
gait cycle (Ivanenko et al., 2008; Cappellini et al., 2010; La Scaleia
et al., 2014; Yokoyama et al., 2017; Dewolf et al., 2019a). In
particular, the first burst occurs around foot contact and is
mainly localized on the lumbar segment whereas the second
burst occurs during the second part of the stance mainly and is
localized on the sacral segment (Figure 1A). This approach provides
information about pattern output in terms of lumbosacral segmental
control (from L2 to S2) rather than in terms of individual muscle
control.

In older adults, across different forms of walking gait, age-
related differences were observed (Monaco et al., 2010; Santuz et al.,
2020; Dewolf et al., 2021a; Dewolf et al., 2021b), suggesting specific
adjustments of the pattern generation circuitries. In particular, the
sacral output was significantly wider in older adults and occurred
earlier in the stance (Figure 1A). Interestingly, this result does not
simply reflect the documented distal-to-proximal modification of
kinetics since the human spinal topography does not reflect the
muscle topography on the lower limbs (Kendall, 2005). Instead, this
potentially highlights a distal to proximal degeneration of the motor
system. Accordingly, when the spinal excitability is estimated using
the Hoffmann reflex technique, no difference is found between
young and older adults on vastus medialis muscle (Mau-Moeller
et al., 2013), whereas age-related modulations of the reflex response
have been reported in soleus muscle (Baudry et al., 2015).
Interestingly, while the craniocaudal gradient of corticospinal
development in infancy is well established (Payne and Isaacs,
2017), less is known about the differential degeneration of
different portions of the corticospinal tract with aging.

Development and aging can be seen as two opposite but
complementary phenomena (Feltes et al., 2015). For example, it
appears that projection tracts, such as the corticospinal tract, which
develop earlier than association tracts in infancy, degenerate later
than association tracts in older subjects. Also, primitive reflexes,
which are commonly present in normal infants and disappear
during development, reappear in patients with diseases of the
nervous system but also in healthy older adults with an incidence
increasing with age (Gossman and Jacobs, 1980; Jacobs and
Gossman, 1980; Damasceno et al., 2005; van Boxtel et al., 2006;
Hobo et al., 2014). Indeed, attempts to elicit primitive reflexes are a

routine part of the standard neurological examination in the elderly,
with the following reflexes tested: e.g., snout, suck, palmomenral,
and hand grasp (described in detail by Koller (Koller, 1984)).
Another reflex observed at the beginning of life is the stepping
reflex: human newborns step on the ground if supported (Thelen
and Fisher, 1982; Forssberg, 1985; Yang et al., 1998; Dominici et al.,
2011; Dewolf et al., 2020b; Dewolf et al., 2020a), and stepping
generally disappears a few weeks after birth unless trained. The
relationship between this reflex and mature walking gait has been
argued (Andre-Thomas and Autgaerden, 1966; Dominici et al.,
2011; Sylos-Labini et al., 2022), with lower ow complexity and
higher variability of neuromuscular signals in neonates. Because
of the less complex and more variable control of muscle in older
adults (Allen and Franz, 2018), and based on the common features
of gait between infants and older adult presented in the present
section (Figure 1), One may speculate about the potential greater
similarities between neonatal stepping and older adult’s gait pattern.

Also from a kinematic point of view, a simpler coordination
pattern among the lower limb segments can be observed both during
childhood and agedness (Ivanenko et al., 2004; Noble and Prentice,
2008; Dominici et al., 2010; Bleyenheuft and Detrembleur, 2012;
Dewolf et al., 2019b; Gueugnon et al., 2019). One way to unravel the
multi-segmental coordinative law is the so-called coplanar variation
(Borghese et al., 1996; Bianchi et al., 1998b). During walking, each
lower-limb segment oscillates back and forth relative to the vertical
with a similar waveform, time-shifted across different segments
(Figure 1C). The lower limb segment angles do not evolve
independently of each other, but they are tightly coupled: when
plotted one vs. the others, they co-vary along a plane, describing a
characteristic loop over each stride (Figure 1C). The specific shape
and orientation of the plane reflects the phase relationship between
segments and therefore the timing of the intersegmental
coordination (Barliya et al., 2009). Even if the intersegmental
coordination in toddlers rapidly evolves toward the adult shape
with experience (Cheron et al., 2001; Ivanenko et al., 2004; Dominici
et al., 2010), when toddlers step in various conditions (slope, stairs,
backward), they do not adapt their segmental coordination as adults
do. Instead, they keep constant phase relationships (Dominici et al.,
2010) (Figure 1C). In older adults, the modification of plane
orientation across gait conditions is less adapted than in young
adults (Dewolf et al., 2019b; Dewolf et al., 2021a; Dewolf et al.,
2021b). Since the changes in planar covariation are thought to reflect
the ability to adapt to different gait conditions (Bianchi et al., 1998b;
Martino et al., 2014; Dewolf et al., 2018), the lack of changes
observed in toddlers and to a lesser extent in older adults suggest
reduced ability to adapt gait to environment or specific constraits
(Dominici et al., 2010).

Because a link between center of mass (COM) trajectory and
functional spinal cord topography has been previously highlighted
(Cappellini et al., 2010; Dewolf et al., 2019a; Dewolf et al., 2020b),
one may expect comparable COM dynamics in older adults and
young infants. Center of mass (COM) mechanics is a fundamental
concept in biomechanics that describes the movement and balance
of an individual’s body. In young adults, during walking the COM
vaults over a relatively stiff limb with the heel well in front of the hip
at the beginning of the stance, and the heel lift with maintained toe
contact at the end of the stance. One of the direct consequences of
such a heel-to-toe roll-over pattern is that the extension of distal
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joints is delayed relative to proximal joints, leading to the typical
double hump shape (so-called ≪m − pattern≫) of the vertical
ground reaction force (Hallemans et al., 2006) (Figure 1A). In
both older adults and younger infants, the walking gait lacks the
specific m-pattern shape of adult heel-to-toe roll-over walking
pattern (Forssberg, 1985; Dominici et al., 2011; Sylos-Labini
et al., 2017), due to the lack of late push-off from the trailing leg
(Dominici et al., 2011, 201; Dewolf et al., 2019b; Gueugnon et al.,
2019). Another similarity is that both young infants and older adults
have limited control over their COM (Foster et al., 2019; Malloggi
et al., 2019). In the next section, we discussed the potential cause of
modification of gait in older adults, resulting in kinematics, kinetics
and neural similarities with the gait observed in children.

4 Could we counteract the age-related
modification of gait?

Based on the well-documented change in muscle strength with
aging described in the last section, a lot of efforts have been made to
counteract it using exercise (Christie, 2011; Hortobágyi et al., 2015;
Keating et al., 2021; Wu et al., 2021). Physical training is reported as
an effective treatment for maintaining muscular function (Kraemer
et al., 2002; Chen et al., 2021; el Hadouchi et al., 2022; Markov et al.,
2022). Guidelines recommend high physical activity levels to
increase health benefits in older adults (Boyer et al., 2012; Taylor,
2014), since it is supposed to enhance daily activities like gait.
Resistance or power training not only increases/maintains muscle
mass, strength, power and functional capacity in older adults, but it
also induces several neuromuscular adaptations, such as an increase
in peak firing frequencies of motoneurons. Also, older adults still
practicing long-distance running reduce the decline in muscle
function with age by enhancing the neural drive to the muscle
(Cogliati et al., 2020).

Resistance training (RT) positively affects walking speed
(Keating et al., 2021). For example, Hortobágyi et al. (2015)
found that RT significantly increases the habitual gait speed of
healthy old adults by 8.4% as a long-term effect. Power training also
impacts gait velocity (Beijersbergen et al., 2017a; Beijersbergen et al.,
2017b; Beijersbergen et al., 2017c), changing the rate of force
development, which is moderately correlated with gait speed
(Stock et al., 2019), and improving the functional performance
(Radaelli et al., 2023). The main related effect of muscular
training is a higher ‘habitual walking speed’ after the exercise
sessions. However, training fails to directly translate to improved
propulsive power generation in walking (Beijersbergen et al., 2013).
For example, a higher level of physical activity in older adults did not
mitigate the age-related modification of kinematic coordination and
distal-to-proximal redistribution (Boyer et al., 2012). Also, greater
muscular power (more than muscle strength) has been reported to
have a strong influence on mobility (Bean et al., 2003), but without a
clear change in gait pattern. Indeed, the biomechanical,
physiological, and motor control adaptations in gait with training
are still unknown, and physical trainers or physiotherapists lack
consistent biomechanical data to understand the adaptation
mechanism (Beijersbergen et al., 2017c). Based on lower limb
coordination, Bianchi et al. (Bianchi et al., 1998a) showed that
trained young subjects can exploit better the dynamic coupling

between segments to save mechanical energy than untrained young
subjects. It is, therefore, plausible that training in older adults may
affect the lower limb intersegmental coordination to allow optimised
gait mechanics.

While walking speed has been suggested to predict frailty and
disability in older adults (Guralnik et al., 2000), we believe that
evaluation of spontaneous walking speed is not the best outcome to
evaluate the age-related decline of gait. Spontaneous gait speed, if
not performed after period of familiarization sessions and following
standardized instructions, may vary with the mood, motivation,
stimuli of the experimenters, etc. For example, in a classical paper,
Bornstein and Borstein (Bornstein and Bornstein, 1976) showed that
the ‘pace of life’, measured as the spontaneous speed, varies with the
size of the local population, regardless of the cultural setting,
suggesting that immediate social and physical environment exert
strong control over individual habitual speed (Levine and
Norenzayan, 1999). Therefore, we believe that there’s an
imperative need to understand the role of physical exercise in the
process of age-related modification of neuromuscular control of gait.
In particular, the data to interpret the mechanism needs to be more
quantitative.

Enhancing physical capacity alone may not be sufficient to
mitigate the age-related decline of the neuro-muscular system,
such as the distal to proximal degeneration of the motor system
highlighted above. A recent rehabilitation approach is the use of
real-time biofeedback to encourage favorable biomechanical
adaptations. For example, it has been showed that the propulsive
power can be increased during walking in older adults using ankle
power biofeedback (Browne and Franz, 2019), resulting in a
reduction of distal-to-proximal redistribution of joint efforts.
Based on the age-related modification of gait highlighted in
Figure 1, one may expect that other parameters, such as the
center of mass trajectory, can be manipulated using real-time
biofeedbacks (e.g., as in Massaad et al., 2007). In particular, using
real-time biofeedback to cue an acute change in the peak of vertical
ground reaction force or in the limb loading may be an effective gait
training intervention to mitigate the effect of age in older adults.
Such approach has been developed in gait retraining following
anterior cruciate ligament reconstruction (Luc-Harkey et al.,
2018; Armitano-Lago et al., 2020) but not, to the best of our
knowledge, with older adults.

Also, not only muscles but also the firing characteristics of our
spinal motoneurons play a critical role in producing force, and so,
performing daily activities. Motoneuron firing is determined by
complex factors, such as ionotropic synaptic input and persistent
inward currents (PICs) (Orssatto et al., 2021b). PICs are
depolarizing currents generated by voltage-sensitive sodium and
calcium channels. Hassan et al. (Hassan et al., 2021) (2021) found
weaker estimates of PICs in older adults than in their younger
counterparts, and propose that this weakening is an underlying
mechanism for the slowing of motoneuron firing with ageing.
Interestingly, the similarities observed between infants’ and older
adults’ locomotor patterns (Figure 1) might be related to the slower
and weaker firing characteristics (Dayanidhi et al., 2013).

As described by Hassan et al. (Hassan et al., 2021), the PICs
weakening might result from amultitude of factors: (1) deterioration
within the monoaminergic systems, (2) imbalance between
excitatory and inhibitory synaptic inputs, or (3) changes in the
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function of monoaminergic receptors or voltage-gated channels.
The question that need to be answered is now: how can we
counteract the age-related decline in PICs? Our proposed answer
for a future research question in this context is spinal
neuromodulation, a promising strategy to augment spinal cord
activity. In particular, non-invasive trans-spinal cord direct
current stimulation (tsDCS) may improve spinal motor circuit
function and motor output (Jankowska, 2017; Song and Martin,
2017) in older adults, because of the increase in firing frequencies of
motoneuron (Bączyk et al., 2019) its specific effect of augmenting
PIC-like responses induced by c-tsDCS, L-type Ca2C channel
activation (Song and Martin, 2022).

The tsDCS has been increasingly used over recent years in the
rehabilitation of patients following neurological injuries (Levins and
Moritz, 2017; Gad et al., 2021; Taylor et al., 2021) or as an addition to
physical training in sports (Berry et al., 2017). The effect of tsDCS on
the gait patterns of older adults has not been studied yet. However,
enhancing the PIC-like response of motor units would be well-suited
to mitigate the effect of aging on spinal motor output. We hope that
the ideas presented here help to motivate future efforts in
understanding the quantitative modification of gait with aging
and in evaluating a promising method that could be used as a
supplementary tool in the management of geriatric patients.

5 Concluding remarks

This review outlines great similarities between the ‘first steps’ of
infants and the ‘last steps’ of older adults. While part of the
modifications observed in older adults may emerge from a lack
of propulsive power, other neurodegenerative changes play a key
role. In particular, slower muscle contraction is observed, resulting
from the change in fiber type, the greater reinnervation of slow
motor neurons or the lower motoneuron firing frequency with
ageing, which is also an important peripheral contributor to the
lack of adult-like locomotor patterns in early infancy (Dewolf et al.,

2020b). Gaining insights into the age-related changes in human gaits
may provide important clinical implications. For instance, we
propose a novel intervention to enhance the PIC-like response of
the motor unit, and in turn, mitigate the effect of aging.
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