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Mothmouthparts, consisting of labial palps and proboscis, not only are the feeding
device but also are chemosensory organs for the detection of chemical signals
from surrounding environment. Up to now, the chemosensory systems in the
mouthpart of moths are largely unknown. Here, we performed systematic
analyses of the mouthpart transcriptome of adult Spodoptera frugiperda
(Lepidoptera: Noctuidae), a notorious pest that spreads worldwide. A total of
48 chemoreceptors, including 29 odorant receptors (ORs), 9 gustatory receptors
(GRs), and 10 ionotropic receptors (IRs), were annotated. Further phylogenetic
analyses with these genes and homologs from other insect species determined
that specific genes, including ORco, carbon dioxide receptors, pheromone
receptor, IR co-receptors, and sugar receptors, were transcribed in the
mouthpart of S. frugiperda adults. Subsequently, expression profiling in
different chemosensory tissues demonstrated that the annotated ORs and IRs
were mainly expressed in S. frugiperda antennae, but one IR was also highly
expressed in the mouthparts. In comparison, SfruGRs were mainly expressed in
the mouthparts, but 3 GRs were also highly expressed in the antennae or the legs.
Further comparison of the mouthpart-biased chemoreceptors using RT-qPCR
revealed that the expression of these genes varied significantly between labial
palps and proboscises. This study provides the first large-scale description of
chemoreceptors in themouthpart of adult S. frugiperda and provides a foundation
for further functional studies of chemoreceptors in the mouthpart of S. frugiperda
as well as of other moth species.
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Introduction

Insect head is the primary center for the communication with surrounding environment.
Most insects possess two cephalic sensory organs, i.e., antenna and mouthpart. These two
organs play vital roles during the life cycle of insects, such as locating host plants, feeding,
and searching mates (Hansson and Stensmyr, 2011; Leal, 2013). Antennae are known to be
themost crucial sensory organ of insects, they can perceive various external stimulation, such
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as odorants, flavors, carbon dioxide, and humidity (Dahanukar et al.,
2005). In comparison, mouthparts mainly act as the device for
feeding, and they were also demonstrated to have the function in
chemosensation (Stocker, 1994; Kaissling, 1996; Krenn, 2010).

In Lepidoptera, most adults have a siphoning mouthpart
including a retractable proboscis and a pair of labial palps.
Proboscises act as the feeding device, and they consist of two
elongated maxillae galeae and a hollow straw, which functions as
a system for sucking liquid substances. A variety of chemosensory
sensilla are distributed on the surface of the mouthpart. For
example, more than 1,200 sensilla were spread on the labial-palp
pit organ in Mythimna separata (Dong et al., 2014). Three major
sensilla types (styloconica, chaetica, and basiconica) were
determined on the proboscis of Helicoverpa armigera (Guo
et al., 2018), and similar findings were reported in Athetis
lepigone (Hu et al., 2021).

Chemosensory sensilla are porous hair-like structures
innervated by the dendrites of chemosensory neurons (CSNs).
Three chemoreceptor families, including gustatory receptors
(GRs), odorant receptors (ORs), and ionotropic receptors (IRs),
are expressed on the dendrite membrane of CSNs (Kaissling, 1996).
These receptors can selectively identify chemical molecules and play
a central role in the determination of the detection spectrum of
chemosensory sensilla (Robertson, 2018; Guo et al., 2022). It is well
known that ORs mediate the perception of odorant cues, whereas
GRs are responsible for the detection of taste cues. According to the
ligand properties, ORs can be classified into pheromone receptor
(PRs) and ordinary receptors (Yang and Wang, 2020), whereas GRs
can be divided into bitter, sugar, and CO2 receptors (Jones et al.,
2007; Sato et al., 2011; Miyamoto et al., 2012; Fujii et al., 2015; Xu
et al., 2016). Insects IRs were extensively researched in Drosophila
melanogaster, and their functions mainly include olfaction,
gustation, thermosensation, and hygrosensation (Chen et al.,
2015; Enjin et al., 2016; Knecht et al., 2016). With the
development of research techniques, IRs in moths have also been
extensively studied in recent years (Zhang J. et al., 2019; Tang et al.,
2020; Hou et al., 2022). Members in IR family are further divided
into antennal IRs that exist in most insect species and divergent IRs
of which numbers and gene types are different among species
(Benton et al., 2009; Liu et al., 2018).

Spodoptera frugiperda, also called fall armyworm, is a notorious
pest with more than 300 host plant species. It preferred to feed on
Poaceae Barnhart species such as rice, maize, and sugarcane (Sparks,
1979). S. frugiperda is native to Americas. As the adults can
undertake seasonal migrations covering long distances, it has
spread to Africa and Asia in last 5 years (Goergen et al., 2016;
Cock et al., 2017; Wu et al., 2019). S. frugiperda invaded Yunnan
province of China in 2019 (Zhang L. et al., 2019), and has become an
important agricultural pest across China in recent years (Sun et al.,
2021). Adults of most Lepidopteran species (including S. frugiperda)
adopt flower-visiting strategies, and floral nectar is crucial for them
to sustain growth and reproduction (Krenn, 2010). Studies using
anatomical, neurophysiological, and molecular approaches showed
that flower evaluation by Manduca sexta is governed by specific
CSNs housed in the sensilla on the moth’s proboscis (Haverkamp
et al., 2016). However, identities of chemosensory receptors in the
mouthpart and their functions in the feeding are still enigmatic for
most Lepidoptera.

To reveal potential chemosensory systems of the mouthpart in S.
frugiperda, we systematically investigated the chemoreceptors using
Illumina sequencing. The candidate GR, OR, and IR genes were
annotated and phylogenetic relationships between these genes and
homologs from other insect species were analyzed. Lastly,
expression levels of candidate genes in different chemosensory
tissues were investigated by RT-qPCR. This work contributes to
further functional researches on chemoreceptors in the mouthpart
of S. frugiperda as well as of other moth species.

Materials and methods

Insect rearing

S. frugiperda larvae were collected from Baoshan, Yunnan
Province, China. The larvae were reared with artificial diet, and
moths were fed with 15% (V: V) honey water (Guo et al., 2022).
Twenty moths were kept in a plastic bucket (25 cm in diameter,
30 cm in length, the opening side is wrapped with a piece of medical
gauze) for mating in a sex ratio of 1: 1. The gauze was collected daily
and kept in valve bags until the larvae hatched out. Successive
generations were maintained in an incubator under 16 h L: 8 h D
cycle at 25°C ± 1°C and 60% relative humidity. For transcriptome
sequencing, mouthparts were separately collected from the 2- to 3-
day old virgin male and female moths and then kept in −80°C freezer
until they were used.

Transcriptome sequencing, assembly, and
gene annotation

Total RNA was isolated from the sample (one biological
replicate) using Trizol reagent (Invitrogen, Carlsbad, CA,
United States). Concentration of the RNA was measured with an
ND-2000 spectrophotometer (Nanodrop, Wilmington, DE,
United States). Genomic DNA mixed in the total RNA was
eliminated by DNase I (RQ1, Promega, Madison, WI,
United States). mRNA was then isolated with Oligo (dT) from
5 µg of the total RNA by Dynabeads mRNA purification kit
(Invitrogen, United States). RNA-seq libraries were constructed
following the protocol of Illumina’s library. The prepared
libraries were then sequenced on the Illumina HiSeq
2000 platform (Illumina, United States) at Sangon Biotech.

De novo assembly was performed as we previously described
(Sun et al., 2022). Raw reads were processed to remove low quality
sequences, adaptors, and reads with microbes (Bolger et al., 2014).
The results were verified with The FastQC package. The clean reads
were then de novo assembled to obtain contigs using Trinity v 2.4.0.
As the genome data of S. frugiperda had been made public (Gouin
et al., 2017), a genome-based mapping assembling strategy was also
combined to improve the quality of data analysis results.

We used BlastX tool (E-value < 1e-5) to search the Nr, Swiss-
Prot, KEGG, and COG databases to retrieve putative GR, OR, and IR
transcripts from the contigs. ORFs (open reading frames) of the
transcripts encoding putative SfruGRs, SfruORs, and SfruIRs were
predicted with ORFfinder (https://www.ncbi.nlm.nih.gov/
orffinder), the obtained ORFs were then manually checked
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through comparing by BlastX. Transcripts Per Kilobase of exon
model per Million mapped reads (TPM) values of candidate
transcripts were calculated with the RSEM package to evaluate
the expression abundance in male or female mouthparts of S.
frugiperda.

Phylogenetic analysis of GRs, ORs, and IRs

Phylogenetic trees of candidate chemoreceptors (SfruGRs, SfruORs,
and SfruIRs) were built using the neighbor-joining method in MEGA
11 and then edited with FigTree (v1.4.2). The evolutionary distance was
calculated with the Jones-Taylor-Thornton matrix-based method (Jones
et al., 1992). Node support was evaluated with a bootstrap method of
1,000 replicates. The amino acid sequences of GR,OR, and IR genes used
in the phylogenetic analysis are listed in (Supplementary Table S1).

Expression analysis

Real-time quantitative PCR (RT-qPCR) was conducted to
compare the expression levels of candidate chemoreceptors in
different tissues of S. frugiperda. Male and female antennae,
mouthparts, legs, proboscises, and labial palps were collected
separately from 50 to 100 individuals. Total RNA of different
samples was extracted following the Trizol reagent (Invitrogen,
Carlsbad, CA, United States) manual. First strand cDNA was
then synthesized using reverse transcriptase (M-MLV, Promega,
WI, United States). The cDNA could be directly used in RT-qPCR
reaction.

RT-qPCRwas performed on Roche LightCycler 480 (F. Hoffmann-
La Roche Ltd., Basel, Switzerland). The solution for each reaction (total
volume 20 µL) includes a 10-µL of SYBR Premix Ex TaqII (TaKaRa,
Dalian, China), 2.5 ng of template cDNA, 0.4 mM of primer (forward
or reverse), and right amount of sterilized deionized H2O. The reaction
condition is: 1 cycle of 95°C for 30 s; 40 cycles of 95°C for 5 s, 60°C for
30 s, and 72°C for 30 s; 1 cycle of 95°C for 45 s, 55°C for 1 min. Reactions
for different samples were performed with three biological replicates,
and each replicate was performed in triplicate. Expression levels of
tested genes in different tissues were calculated using the 2−ΔΔCTmethod
(Schmittgen and Livak, 2008), we use β-actin as the internal control. CT
values for the reactions of the β-actin gene range from 17.2 to 18.2, this
indicates it is consistent across different tissues and suitable for sample
normalization. The primer efficiency was evaluated by standard
amplification curves constructed with 5-fold dilutions of cDNA
samples. The efficiency percentage and R2 values were validated
within the acceptable range. Ten PCR products were randomly
selected and sequenced to ensure that the target genes were
amplified. Primers used in the RT-qPCR were designed with Primer
Premier v 6.0 (Supplementary Table S2).

Data analysis

RT-qPCR data were analyzed with ANOVA followed by Tukey’s
test (p < 0.05). The results are presented as means ± (standard error),
data are averages of three replicates. The figures were constructed
with GraphPad Prism v 6.0.

Results

Transcriptome sequencing, assembly, and
identification of candidate chemoreceptors

In the current study, we sequenced the transcriptome of S.
frugiperda mouthpart using the Illumina HiSeq 2000 platform.
Clean reads from female and male samples were then combined
and generated an assembly of 119,928 unigenes with an N50 length
of 785 bp and a mean length of 568 bp. Based on the sequence length
distribution, 14,295 (11.91%) of the unigenes were ≥1000 bp
(Supplementary Table S3).

According to the sequence analysis, we identified a total of
29 ORs in the transcriptome of S. frugiperda mouthpart. Twenty-
seven of these genes possess putative complete ORFs. To keep
uniformity, candidate genes in this study, if possible, were named
referring to the previously reported sequences of S. frugiperda, or
numbered following the names of the best hit genes in other
lepidopteran species. Among the 29 ORs, 8 (SfruOR2/6/18/23/
49a/67a/67c/85c) had not been annotated in previous genome or
transcriptome studies of this species (Gouin et al., 2017; Sun et al.,
2022).

A total of 9 GRs were identified in the transcriptome of S.
frugiperda mouthpart. Except for SfruGR6, all the other
annotated GRs possess full length ORFs (Supplementary Tables
S4, S5). Among the 9 GRs, SfruGR1/2/3/9 had been previously
reported in the head transcriptome of S. frugiperda larvae (Sun
et al., 2022), while the other 5 GRs (SfruGR4/5/6/7/8) had not been
reported in previous studies of this species. Moreover, we annotated
10 IRs in the mouthpart of S. frugiperda. All of these candidate IRs
have complete ORFs (Supplementary Tables S4, S5). Based on the
Blastx result, SfruIR8a had not been reported in previous studies of
S. frugiperda. Detailed information for the candidate genes in this
study, including names, accession numbers, BlastX best hits, and
sequences are listed in Supplementary Tables S4, S5.

Phylogenetic analysis of candidate
chemoreceptors

To reason the putative functions of candidate chemoreceptors,
phylogenetic relationships were analyzed based on alignments with
homologs from other insect species. According to the neighbor-
joining tree of ORs from S. frugiperda (this study), H. armigera, and
Bombyx mori, SfruORco was clustered in the ORco branch. Notably,
we identified one putative “classic lepidopteran PR” (SfruOR6) in
the transcriptome of S. frugiperdamouthpart. The other 27 SfruORs
were scattered in various “ordinary OR” branches (Figure 1).

A phylogenetic tree built with GRs from S. frugiperda, B. mori,
and H. armigera showed that SfruGR1/2/3 were grouped with the
CO2 receptors BmorGR1/2/3 and HarmGR1/2/3. And
SfruGR9 clustered with the fructose receptors BmorGR9 and
HarmGR9. Other five SfruGRs (SfruGR4/5/6/7/8) clustered in the
“sugar-taste receptors” clade (Figure 2).

Evolutionary relationships between the candidate IRs and IRs
from D. melanogaster and H. armigera showed that four putative IR
co-receptors (SfruIR8a/25a/76b/93a) clustered in the co-receptor
lineages of IR8a, IR25a, IR76b, and IR93a, respectively. The other
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6 IRs (SfruIR21a/60a/64a/75a/75d/75p) belong to the “antennal IR”
clades (Figure 3).

TPM analysis

The expression abundance of candidate chemoreceptors in male
and female mouthpart was then normalized across the
transcriptome using the TPM method. For ORs, despite the
inconsistency of expression levels between males and females,
SfruORco was the highest transcribed gene (3.89/5.08 TPM,
female/male, same below) among all the annotated ORs. Another
candidate OR, SfruOR30, showed the second highest levels as that
indicated by the TPM values (3.02/3.18). The other 27 ORs showed
relative low expression levels in male and female mouthpart (the
mean TPM value ≤ 1) (Figure 4A).

Based on the TPM values, transcript levels of SfruGR6 in the
mouthpart were the highest among all the annotated GRs, with its
TPM values slightly higher in female mouthparts (10.71 TPM) than
in the male ones (9.26 TPM). Other two sugar-taste receptors,
SfruGR5 and SfruGR7, were also highly expressed in the

mouthpart of S. frugiperda, with their TPM values of 8.26/
7.24 and 7.34/6.09, respectively. In comparison, the three putative
CO2 receptors had modest TPM values (2.27/4.87 for GR1, 0.02/
1.52 for GR2, and 1.66/3.46 for GR3) in the mouthpart of S.
frugiperda (Figure 4B).

TPM analysis showed that SfruIR60a had higher transcript levels
(9.31/11.18 TPM) in the mouthpart than the other SfruIRs.
SfruIR76b was also abundantly transcribed in the mouthpart
(7.73/7.11 TPM). In contrast, SfruIR75a and SfruIR93a showed
low TPM values of 0/0.16 (for SfruIR75a) and 0.06/0.59 (for
SfruIR93a) (Figure 4C).

Expression patterns of candidate
chemoreceptors

We performed RT-qPCR to analyze expression patterns of
candidate chemoreceptors in different chemosensory tissues of
adult S. frugiperda. Expression levels of the 48 chemoreceptors in
female and male mouthparts were basically consistent with their
TPM values in these two tissues.

FIGURE 1
Neighbor-joining tree constructed with candidate ORs from Spodoptera frugiperda and homologs from H. armigera and B. mori. The tree was
rooted by the ORco orthologs. Node support was estimated with 1000 bootstrap replicates, and bootstrap values were displayed with circles based on
the scale indicated at the top left. The scale bar at the bottom indicates the branch length in proportion to amino acid substitutions per site.

Frontiers in Physiology frontiersin.org04

Dong et al. 10.3389/fphys.2023.1193085

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1193085


As shown in Figure 5, all of the OR genes were mainly expressed
in antennae. Among which, 10 ORs (SfruOR3/18/34/45/46/53/64/
67a/67c/85c) were more expressed in female antennae than in male
ones, whereas 2 ORs (SfruOR1/6) were more expressed in male
antennae than in female ones, especially the putative pheromone
receptor SfruOR6 which was predominantly detected in the male
antennae of S. frugiperda.

Based on RT-qPCR results, SfruGR1 was mainly expressed in
mouthparts and legs. SfruGR7 and SfruGR8 were mainly expressed
in antennae and mouthparts. In comparison, SfruGR4 was more
expressed in antennae than in mouthparts and legs, and with its
levels higher in female antennae than in male ones. Notably,
although SfruGR9 was highly expressed in all of the tested
tissues, its levels in female legs were significantly higher than that
in the other tissues. The other 4 GRs, SfruGR2/3/5/6, were mainly
expressed in the mouthparts. Among which, SfruGR3 was more
expressed in male mouthparts than in female ones (Figure 6).

According to the expression profiling, all of the candidate IR
genes were mainly expressed in the antennae, especially SfruIR8a,

SfruIR75a, SfruIR75p, and SfruIR93a, which were almost exclusively
expressed in the antennae. Moreover, the expression of SfruIR60a
was also detected in the mouthparts, with comparable levels to that
in the antennae and the legs (Figure 7).

Expression comparison of specific
chemoreceptors between proboscises and
labial palps

Subsequently, we compared the expression levels of mouthpart-
biased chemoreceptors between proboscises and labial palps of S.
frugiperda. In total, 7 GRs (SfruGR1/2/3/5/6/7/8) and 1 IR
(SfruIR60a) were selected and subjected to RT-qPCR. According
to the results, 3 putative CO2 receptors (SfruGR1/2/3) were
predominantly expressed in labial palps, and no significant
differences between sexes were noted. In contrast, the 4 putative
sugar-taste receptors (SfruGR5/6/7/8/9) and SfruIR60a were mainly
expressed in proboscises. Among which, the expression of SfruGR8

FIGURE 2
Neighbor-joining tree constructed with candidate GRs from S. frugiperda and homologs from H. armigera and B.mori. The tree was rooted by the
GR9 orthologs. Node support was estimated with 1000 bootstrap replicates, and bootstrap values were displayed with circles based on the scale
indicated at the top left. The scale bar at the bottom indicates the branch length in proportion to amino acid substitutions per site.
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was significantly higher in female proboscises than in male ones (p <
0.05). The other measured genes exhibited similar expression levels
between the proboscises of both sexes (Figure 8).

Discussion

It has long been reported that many chemosensilla are
distributed on the mouthpart of moths and that the mouthpart
functions in chemosensation in moths (Kent et al., 1986; Liu et al.,
2014; Hu et al., 2021). However, the identity of the chemoreceptor
genes in the mouthpart and their functions in feeding are still
unclear for most moth species. In this study, through analyzation
of the transcriptome data, we identified 29 ORs, 9 GRs, and 10 IRs in
the mouthpart of S. frugiperda adults. This number is bigger than the
reported 4 ORs, 7 GRs, and 6 IRs in the transcriptome of the H.
armigera mouthpart (Guo et al., 2018). The high quality of the
transcriptome data provides us confidence for the next step
researches. Moreover, we found that the number of
chemoreceptors in the adult mouthparts (29 ORs, 9 GRs, and
10 IRs) is larger than that in the larval (6th instar) ones (11 ORs,
4 GRs, and 6 IRs) (Sun et al., 2022). The quantity variation of
chemoreceptors may relate to their living environment. The

habitats of the larvae are relatively simple and concealed. In
contrast, the adults live in open environments and their habitats
are relatively complicated. Correspondingly, the S. frugiperda adults
have a larger number of chemoreceptors than that in the larvae.
Though such inference needs to be validated with more instances.

Insect functional ORs are dimeric complexes of specifically
tuned ORs and a highly conserved OR co-receptor, ORco (Leal,
2013). Although all of the annotated SfruORs are mainly expressed
in the antennae, SfruORco also shows high expression in the
mouthpart of S. frugiperda. This finding indicates olfaction roles
of the S. frugiperda mouthpart. Furthermore, according to the RT-
qPCR results, the expression of SfruORco is significantly higher in
the antennae than in the mouthparts. Such expression profile verifies
the previous inference thatORco is mainly expressed in the antennae
of insects (Jones, et al., 2005). Another interesting finding relates to
the detection of the putative pheromone receptor SfruOR6 in the S.
frugiperdamouthpart (although the expression level is very weak). A
series of functional studies in heterologous system reported the best
ligand of OR6 (ortholog of SfurOR6) inH. armigera andHelicoverpa
assulta is Z9-16: OH (Chang et al., 2016; Yang et al., 2017). The
participation of S. frugiperda mouthpart (whether or not use
SfruOR6 to detect sex pheromones) in sex pheromone detection
remains to be determined.

FIGURE 3
Neighbor-joining tree constructed with candidate IRs from S. frugiperda and homologs from B.mori and D.melanogaster. The tree was rooted by
the IR-co receptor orthologs. Node support was estimated with 1000 bootstrap replicates, and bootstrap values were displayed with circles based on the
scale indicated at the top left. The scale bar at the bottom indicates the branch length in proportion to amino acid substitutions per site.
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The sensing of CO2 has been long documented in insects. The
neuron cells involved in the detection of CO2 are located in
maxillary palps (for mosquitoes) and labial palps (for
Lepidoptera adults) (Kellogg, 1970; Bogner et al., 1986; Grant
et al., 1995). The mechanism underlying the detection of CO2

stimuli at the molecular level was first unraveled in D.
melanogaster (Jones et al., 2007; Kwon et al., 2007). Subsequently,
the molecular mechanism concerning CO2 sensing was uncovered
in several moth species, and 3 GR genes, GR1/GR2/GR3, are
determined to be responsible for the CO2 sensing (Xu and
Anderson, 2015; Ning et al., 2016). In this study, three putative
CO2 receptors (SfruGR1/2/3) have been annotated in the mouthpart
of S. frugiperda. RT-qPCR demonstrated they are predominantly
expressed in the labial palps, which is in accordance with the
findings reported in other moth species (Xu and Anderson, 2015;
Ning et al., 2016). Further work is required to validate the function of
SfruGR1/2/3 so as to elucidate the molecular mechanism of CO2

detection in S. frugiperda.
Sugars are vital in insect life as valuable food resources. The

detection of sugars is always utilized by insects to evaluate the
nutritional values of foods (Slone et al., 2007; Kent and Robertson,
2009). In the silkmoth B.mori, 5 sugar-taste receptors (BmorGR4–8)
were identified (Wanner and Robertson, 2008). BmorGR8 responds
to myo-inositol and epi-inositol (Zhang et al., 2011), and
BmorGR9 selectively responds to D-fructose (Sato et al., 2011).
Nine putative sugar-taste receptors (HarmGR4−12) were identified
in H. armigera (Xu et al., 2017). Heterologous expression in sf9 cells
combined with calcium imaging found that HarmGR9 responds to

D-galactose, D-maltose, and D-fructose (Xu et al., 2012). While
Xenopus oocytes expression and two-electrode voltage clamping
reported that HarmGR9 responds specifically to D-fructose (Jiang
et al., 2015). In our study, a total of 6 putative sugar-taste receptors
(SfruGR4/5/6/7/8/9) were identified in the mouthpart of S.
frugiperda adults. Expression analysis showed that SfruGR5/6/7/8
are predominantly expressed in the proboscis of S. frugiperda,
corroborating the vital roles of adult proboscises in the feeding of
sweet substances. Moreover, the expression of SfruGR8 was
documented to be significantly higher in female proboscises than
in male ones, indicating its roles in female-associated behaviors of S.
frugiperda. According to the RT-qPCR results, SfruGR4 and
SfruGR9 displayed the highest expression in female antennae and
female legs, respectively. We speculate that these GRs are involved in
the gustatory process in the antennae and legs of female S.
frugiperda. Specific ligands of the six putative GRs in the
detection of sugar tastants in S. frugiperda will be one focus of
our research in the future. We did not identify members that
belonged to the “bitter-taste receptors” in the transcriptome of S.
frugiperda mouthpart. This may echo the previous inference that
most bitter-taste receptors have low transcript levels in
chemosensory tissues (Xu et al., 2016).

Although the function of insect IRs was initially limited to
olfaction, recent findings extended their roles to the sensing of
taste, humidity, temperature, and sound (Rytz et al., 2013; Ni et al.,
2016; Pitts et al., 2017; Hou et al., 2022). In this study, we annotated a
total of 10 IRs in the mouthpart of S. frugiperda. Phylogenetic
analysis showed 6 (SfruIR21a/60a/64a/75a/75d/75p) of them were

FIGURE 4
Heat-plot of TPM values for candidate chemoreceptors in female mouthpart (FM) and male mouthparts (MM). (A). SfruORs, (B). SfruGRs, (C).
SfruGRs. The TPM value of each OR gene is indicated in each box.
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FIGURE 5
Expression patterns of candidateORs in different chemosensory tissues of adult S. frugiperda. RT-qPCR analysis was conducted for SfruOR genes in
female antennae (FA), male antennae (MA), female mouthparts (FM), male mouthparts (MM), female legs (FL), andmale legs (ML). Different letters indicate
significant difference based on a one-way ANOVA followed by Tukey’s multiple comparison test. Error bars show the standard errors of the means (+SE),
p < 0.05, n = 3.

FIGURE 6
Expression patterns of candidateGRs in different chemosensory tissues of adult S. frugiperda. RT-qPCR analysis was conducted for SfruGR genes in
female antennae (FA), male antennae (MA), female mouthparts (FM), male mouthparts (MM), female legs (FL), andmale legs (ML). Different letters indicate
significant difference based on a one-way ANOVA followed by Tukey’s multiple comparison test. Error bars show the standard errors of the means (+SE),
p < 0.05, n = 3.
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classified into the “antennal IRs”. Most of the annotated “antennal
IRs” were highly or specifically expressed in the antennae of S.
frugiperda, consistent with that reported in other species (Liu et al.,
2018; Zhu et al., 2018), However, SfruIR60a was also highly
expressed in proboscises and legs. Similar findings had been
reported for HarmIR60a in H. armigera (Liu et al., 2018). Thus,
we suggest that SfruIR60a may be involved in both olfaction and
gustation in the mouthpart of S. frugiperda. Like insect ORs, a

heteromeric complex is needed for functional IRs, with at least one
specific IR and an IR co-receptor within a single CSN (Abuin et al.,
2011; Silbering et al., 2011). In our study, 4 putative IR co-receptors
(SfruIR8a/25a/76b/IR93a) were identified in the mouthpart of S.
frugiperda. According to the TPM values, SfruIR76b is the highest
expressed co-receptor among the four co-receptors in the
mouthpart. In D. melanogaster, DmelIR76b had been
demonstrated to function as the co-receptor of specific IRs that

FIGURE 7
Expression patterns of candidate IRs in different chemosensory tissues of adult S. frugiperda. RT-qPCR analysis was conducted for SfruIR genes in
female antennae (FA), male antennae (MA), female mouthparts (FM), male mouthparts (MM), female legs (FL), andmale legs (ML). Different letters indicate
significant difference based on a one-way ANOVA followed by Tukey’s multiple comparison test. Error bars show the standard errors of the means (+SE),
p < 0.05, n = 3.

FIGURE 8
Comparison of the genes displaying high expression in the mouthpart among female proboscises (FP), male proboscises (MP), female labial palps
(FL), andmale labial palps (ML). Different letters indicate significant difference based on a one-way ANOVA followed by Tukey’s multiple comparison test.
Error bars show the standard errors of the means (+SE), p < 0.05, n = 3.
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tune to amino acids (Ganguly et al., 2017). The role of SfruIR76b
(whether or not sense amino acids) in S. frugiperda mouthpart
remains to be elucidated. Although “divergent IRs” were reported to
be the largest group in D. melanogaster (Croset et al., 2010), we did
not identify putative “divergent IRs” in the current study. This may
be due to the relative small number or/and low expression levels of
“divergent IRs” in the mouthpart of S. frugiperda which need to be
experimentally investigated in the future.

Conclusion

By analyzing the mouthpart transcriptome of adult S. frugiperda,
we annotated 48 chemoreceptors. Expression pattern investigation
revealed several chemoreceptors being highly expressed in the
mouthpart (labial palps or proboscises). We suggest that these
genes could be important in the chemosensation in S. frugiperda
mouthpart. These findings give us useful information for further
investigation of chemosensory mechanism in the mouthpart of S.
frugiperda as well as of other moth species.
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