
Exosomes as a delivery tool of
exercise-induced beneficial
factors for the prevention and
treatment of cardiovascular
disease: a systematic review and
meta-analysis

Zhijie Lai1†, Jiling Liang2†, Jingfeng Zhang3, Yuheng Mao4,
Xinguang Zheng1, Xiang Shen1*, Wentao Lin4,5* and Guoqin Xu4,6*
1Department of School of Physical Education, Guangzhou College of Commerce, Guangzhou, China,
2College of Sports Medicine, Wuhan Sports University, Wuhan, China, 3College of Humanities Education,
Foshan University, Foshan, China, 4Department of Sports and Health, Guangzhou Sport University,
Guangzhou, China, 5Department of School of Physical Education, Zhuhai College of Science and
Techology, Zhuhai, China, 6Guangdong Provincial Key Laboratory of Physical Activity and Health
Promotion, Guangzhou Sport University, Guangzhou, China

Exercise-derived exosomes have been identified as novel players in mediating cell-
to-cell communication in the beneficial effects of improving cardiovascular disease
(CVD). This review aimed to systematically investigate exosomes as delivery tools for
the benefits of exercise in the prevention and treatment of CVD and summarize these
outcomes with an overview of their therapeutic implications. Among the 1417 articles
obtained in nine database searches (PubMed, EBSCO, Embase, Web of Science,
CENTRAL, Ovid, Science Direct, Scopus, and Wiley), 12 articles were included based
on eligibility criteria. The results indicate that exercise increases the release of
exosomes, increasing exosomal markers (TSG101, CD63, and CD81) and
exosome-carried miRNAs (miR-125b-5p, miR-122-5p, miR-342-5p, miR-126, miR-
130a, miR-138-5p, and miR-455). These miRNAs mainly regulate the expression of
MAPK,NF-kB, VEGF, andCaspase to protect the cardiovascular system.Moreover, the
outcome indicators of myocardial apoptosis and myocardial infarction volume are
significantly reduced following exercise-induced exosome release, and angiogenesis,
microvessel density and left ventricular ejection fraction are significantly increased, as
well as alleviating myocardial fibrosis following exercise-induced exosome release.
Collectively, these results further confirm that exercise-derived exosomes have a
beneficial role in potentially preventing and treating CVD and support the use of
exercise-derived exosomes in clinical settings.
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Introduction

Cardiovascular disease (CVD) is an essential reason for the increase in the global
incidence rate and mortality and poses a severe threat to human health. Physical inactivity is
the leading risk factor for CVD. The beneficial role of regular physical exercise in the
prevention and treatment of CVD has long been appreciated (Mann and Rosenzweig, 2012).
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Exercise training is considered safe, simple, and has extensive health
effects (Powers et al., 2014). It can effectively reduce the risk factors
for CVD, improve cardiovascular function, and provide direct
endogenous cardiovascular protection, such as improving body
metabolism and chronic inflammation, reducing blood pressure
and fat, and improving cardiovascular flexibility (Leosco et al.,
2013; Roh et al., 2016; Costa et al., 2018; Short et al., 2019;
Taherkhani et al., 2020). These beneficial effects interact with
each other to promote cardiovascular health. However, the
mechanisms of the cardioprotective effect of exercise are still
unclear. Exercise acts as a “polypill” for cardiovascular disease
prevention and enables the body to have an endogenous
“medkit” with unlimited refills of this marvelous polypill (Fiuza-
Luces et al., 2013). Recent studies have (Akhmerov and Parimon,
2022) shown that exerkines secreted from multiple tissues in
response to exercise orchestrate multiorgan cross-talk in exercise-
induced cardiovascular benefits (Hawley et al., 2014). Clinically,
exercise intervention has become a fundamental strategy in cardiac
rehabilitation in recent years.

Exosomes, which are extracellular vesicles (EVs), are released to
the outside of cells after the fusion of the multivesicular body (MVB)
with the cell membrane and contain proteins, mRNA, miRNA, and
DNA (Kalluri and LeBleu, 2020; Crescitelli et al., 2021). Recently,
studies have provided insights into the exosomes of different cells,
indicating that exosomes have the ability to target their parental cells
(Qiao et al., 2020). It has been shown to play an essential role in
mediating cardiovascular cell-to-cell crosstalk between organs via
the transmission of various cargos, suggesting that suggests that
exosomes may be important biomarkers in CVD (Li et al., 2017). In
particular, the exosome cargos of proteins need a medium to be
delivered from donor cells to recipient cells. However, the molecular
mechanisms of exosome biogenesis, especially those exploited by
stem cells in the cardiovascular system, have been less intensively
investigated (Poe and Knowlton, 2018; Bellin et al., 2019).
Interestingly, exosomes participate in the pathogenesis of CVD
and are derived from the circRNA-0002113/miR-188-3-p/
R-UNX1 signaling pathway, which mediates the alleviation of
apoptosis and suppresses myocardial infarction (Tian et al.,
2021). MiR-19a could suppress apoptosis of myocardial cells and
was detected to be lower in myocardial tissues of acute myocardial
infarction (AMI) compared to normal tissues, while human
umbilical cord mesenchymal stem cell-derived exosomes
(hucMSC-Exos) significantly increased the release of miR-19a
and attenuated ischemic injury with decreased expression of
inflammatory cytokines (Ma et al., 2020). In recent years, an
increasing number of studies have focused on miRNAs carried
by different exercise-induced exosomes, which can promote the
proliferation of cardiomyocytes and protect the cardiovascular
system (Del Campo et al., 2022; Liu et al., 2022). Studies have
found that exercise affects the biological function of circulating
exosomes, and different forms of exercise and exercise intensity can
promote exosome release (Estébanez et al., 2021). D’Souza et al. and
Yin et al. showed that the number of circulating exosomes and the
expression of exosome-carried miR-1, miR-133a, miR-133b, miR-
206, miR-208a, and miR-499 were elevated in response to exercise
protocols and returned to baseline levels at 4–48 h into recovery
(D’Souza et al., 2018; Yin et al., 2019). These findings indicate that
exercise-induced release of exosomes into circulationmay play a role

in exercise-conferred systemic adaptations. In addition, exercise-
derived exosomes have a wide variety of applications in the
prevention and treatment of CVD, such as promoting
angiogenesis and blood circulation through intercellular
communication, inhibiting myocardial apoptosis, regulating the
inflammatory response, repairing myocardial tissue, and
improving cardiac function after myocardial infarction, thus
playing a beneficial role in cardiovascular protection (Akhmerov
and Parimon, 2022; Lee et al., 2022; Martin-Ventura et al., 2022).
However, little is known about the role of exosomes in different
exercise types (e.g., acute and chronicexercise, aerobic, among other
types) and intensities (e.g., low, moderate, and high intensity) that
induce cardioprotection.

When considering the importance of exercise intervention as a
nonpharmacological means to prevent and treat CVD, a systematic
evaluation and meta-analysis of preclinical studies on the
therapeutic efficacy of exercise-induced exosomes in MI/R, I/R,
and IS models have yet to be conducted. Therefore, this review
aimed to systematically evaluate exosomes as a delivery tool of
exercise-induced benefit factors of potential prevention and
treatment for CVD and summarize these outcomes with an
overview of their therapeutic implications.

Materials and methods

Literature search strategy

This study was performed according to the recommendations of
the Cochrane Handbook for Systematic Reviews of Interventions
and reported by following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement
(Higgins et al., 2008; Moher et al., 2009). A systematic literature
search was conducted in nine electronic databases, EBSCOhost,
PubMed, Embase, Cochrane Central Register of Controlled Trials
(CENTRAL), Ovid, Science Direct, Scopus, Wiley and Web of
Science, from inception to 26 June 2022. At the same time, the
references of the included literature were traced back to “snowball”
to supplement the acquisition of relevant literature. For a
comprehensive search strategy, relevant articles written in English
were searched by using the following keywords: (exercise or physical
exercise or training) and (extracellular vesicle or exosomes or
exosomal) and (cardiovascular disease or acute myocardial
infarction or heart failure or cardiomyopathy or blood-brain
barrier or myocardial ischemia/reperfusion (MI/R) or
angiogenesis or coronary vessels or cardiac modeling or
cardioprotection or blood lipid metabolism or cardiomyocytes or
endothelial cells or vascular smoothmuscle cells or cardiovascular or
atherosclerosis or coronary vessels or capillaries or cardiovascular).
The bibliographies of identified articles were also manually checked,
including relevant reviews and meta-analyses, to identify additional
eligible studies.

Study selection and eligibility criteria

Two reviewers (Z.J.L. and J.F.Z.) independently carried out the
initial search, removed duplicate records, screened the titles and
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abstracts for relevance, and identified them as included, excluded, or
uncertain. In case of uncertainty, the full-text article was reviewed to
identify eligibility. Article selection was based on the following
inclusion criteria in this systematic review and meta-analysis: 1)
randomized controlled trials (RCTs) and nonrandomized controlled
trials (non-RCTs); 2) the types of CVD included MI/R, myocardial
infarction, heart failure, atherosclerosis of the coronary artery and
blood brain barrier (BBB); 3) the effect of exercise on exosome
release in tissue, plasma, serum, or other body fluids and the number
or size and exosomal content (proteins or nucleic acids) were
measured; 4) the relationship between exosome secretion level
and the diagnosis and prognosis of CVD was reported in case-
control studies or could be measured from the provided data; 5)
studies that investigated the impact of exercise on exosome
intervention on myocardial apoptosis, myocardial infarction
volume, angiogenesis, microvessel density, and left ventricular
ejection fraction; and 6) studies that presented outcome data of
interest as the standardized mean difference (SMD) and 95%
confidence interval (95% CI) in the treatment and control groups.

The exclusion criteria used for the article output were as follows:
1) no other intervention approach was implemented in addition to
exercise and exosomes; 2) additional systematic disorders; 3)
meeting abstracts, conference or congress communications,
review articles, books or book chapters, project papers, editorials,
letters, corrections, retractions, and comments; and 4) articles in a
language other than English. Fifth, studies published more than
10 years.

Data extraction

Data were extracted by two investigators (Z.J.L. and J.F.Z.) and
confirmed by a third investigator (G.Q.X.) using a standardized
electronic form. The following critical component data were
collected from the included studies. First, first author name, year
of publication, country, model characteristic (human, rat, mouse),
sample size, injury model, physical activity information or exercise
protocol. Second, the source of samples (plasma, serum, or cell
super-natant), exosome number, size, and distribution, and level of
exosome biomarkers and other exosome-contained proteins and
RNAs (miRNAs, piRNAs, tRNAs, and cfDNA) were assessed. Third,
isolation methodology (ExoQuickTM and ultracentrifugation [UC]),
characterization methodology (electron microscopy, flow cytometry
[FCM], immunostaining, and nanoparticle tracking assay [NTA]),
and phenotyping methodology (ELISA and Western blotting [WB])
were used. In addition, for studies with multiple time points, only
the last endpoint was used for the statistical analysis.

Quality assessment

Two reviewers (Z.J.L. and J.F.Z.) used the Cochrane Risk of Bias
Assessment Tool to assess the risk and quality of bias in the selected
RCTs (Higgins et al., 2008). Each study was reviewed and scored as
having a high, low, or unclear risk of bias according to the following
domains: random sequence generation, allocation concealment,
blinding of participants and personnel, blinding of outcome
assessment, incomplete outcome data, selective reporting, and

other bias. The assessment was first performed independently by
two authors, and when discrepancies were encountered, they were
resolved by discussion until consensus was achieved with a third
author.

Statistical analysis

Meta-analysis was performed using STATA 16.0 (StataCorp,
College Station, TX, United States) and RevMan 5.4 (The Cochrane
Collaboration, Copenhagen, Denmark). Outcomes were carried out
using random-effects models, which were used to calculate the effect
size (DerSimonian and Kacker, 2007). The effect sizes of myocardial
apoptosis, myocardial infarction volume, angiogenesis, microvessel
density and left ventricular ejection fraction were estimated using
standardized mean difference (SMD) and 95% CI, and the level of
significance was set at p < 0.05. A forest plot was generated for each
analysis to display the results of syntheses visually. The level of
heterogeneity was set at p < 0.1, and the level of no heterogeneity was
set at p > 0.1. Heterogeneity across studies was tested by using the I2

statistic (Higgins et al., 2003). For the I2 test, 25%, 50%, and 75%
represented low, moderate, and high heterogeneity, respectively
(Higgins et al., 2003).

Publication bias was assessed using funnel plots, Egger’s linear
regression test and Begg’s rank correlation test; the results were
considered publication bias at p < 0.05 (Egger et al., 1997). In
addition, a sensitivity analysis was performed to test the validity of
the meta-analysis, and studies with possible sources of uncertainty
were excluded by screening out each specific study.

Results

Study selection

A total of 1417 articles were obtained in the database search.
After removing duplicates (n = 341), the titles and abstracts of
1076 articles were filtered for eligibility (n = 1007). Moreover, the
full texts of 69 studies remained for a detailed evaluation. Among
them, 6 articles did not match the intervention approach,
25 reviews, and 17 did not match the experiment indicators.
Subsequently, qualitative synthesis of 21 articles remained for a
detailed evaluation; records excluded 7 articles that did not have
relevant indicators, and 2 articles could not extract data
information. Finally, after reviewing the complete text,
12 studies were considered eligible for this systematic review
and meta-analysis (Chaturvedi et al., 2015; Wilhelm et al., 2016;
Bei et al., 2017; Ma et al., 2018; Oliveira et al., 2018; Hou et al., 2019;
Nie et al., 2019; Wang et al., 2020; Huang et al., 2021; Kränkel et al.,
2020; Lou et al., 2021; Zhao et al., 2022). The study flow diagram,
including the reasons for the exclusion of studies, is shown in
Figure 1.

Study characteristics

The characteristics of 10 RCTs, including research articles, are
summarized in Table 1. A total of 104 sample sizes were included in
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the analysis, and only males were enrolled in all articles. Moreover,
only mice were enrolled as subjects in six articles (Chaturvedi et al.,
2015; Ma et al., 2018; Nie et al., 2019; Wang et al., 2020; Lou et al.,
2021; Zhao et al., 2022), only humans were enrolled as participants
in two articles (Wilhelm et al., 2016; Kränkel et al., 2020), and mice
and humans were enrolled as subjects in two articles (Bei et al., 2017;
Hou et al., 2019). The studies were conducted in some injury models,
such as MI/R injury (Hou et al., 2019; Zhao et al., 2022), middle
cerebral artery occlusion (MCAO) (Wang et al., 2020), MCAO-
induced ischemic stroke (IS) (Wang et al., 2020), hypoxia/
reoxygenation (H/R) injury (Hou et al., 2019; Wang et al., 2020),
chronic coronary syndrome (CCS) (Kränkel et al., 2020), ischemia-
reperfusion (I/R) injury (Bei et al., 2017), high glucose/hypoxia (HG/
H) (Ma et al., 2018), and type 2 diabetes (T2DM) (Chaturvedi et al.,
2015). These studies used the primary type of aerobic exercise as the
protocol, especially swimming and running. Additionally, all the
studies were published within the last 10 years, between 2015 and
2022. Moreover, six articles were conducted from China (Bei et al.,
2017; Ma et al., 2018; Hou et al., 2019; Wang et al., 2020; Lou et al.,
2021; Zhao et al., 2022), two articles fromAmerica (Chaturvedi et al.,
2015; Nie et al., 2019), one article from Germany (Kränkel et al.,
2020), and one article from Britain (Wilhelm et al., 2016).

As shown in Table 2, these articles were conducted with five
outcome indicators: myocardial apoptosis (Bei et al., 2017; Ma et al.,
2018; Hou et al., 2019; Nie et al., 2019; Wang et al., 2020; Kränkel
et al., 2020; Zhao et al., 2022), myocardial infarction volume (Bei
et al., 2017; Hou et al., 2019; Wang et al., 2020; Zhao et al., 2022),
angiogenesis (Wilhelm et al., 2016; Ma et al., 2018; Nie et al., 2019;
Lou et al., 2021), microvessel density (Wang et al., 2020; Lou et al.,
2021), and left ventricular ejection fraction (Hou et al., 2019; Zhao
et al., 2022). Moreover, one article did not include these outcome
indicators, but exercise-induced exosomes inhibit fibrosis and
myocyte uncoupling.

Results from quality assessments

The Cochrane Risk of Bias tool to assess the randomized controlled
trials (RCTs), which were found to have a high quality among the
10 RCTs, is shown in Figure 2. Ten studies could have been described
more clearly in random sequence generation and allocation concealment.
For blinding, seven studies were single-blind experiments that blinded the
operators (Chaturvedi et al., 2015; Bei et al., 2017;Ma et al., 2018;Nie et al.,
2019;Wang et al., 2020; Lou et al., 2021; Zhao et al., 2022), one studywas a
double-blind experiment that blinded the operator and outcome indicator
(Hou et al., 2019), and one study clearly described that the participants
knew the content of the experiment (Wilhelm et al., 2016). In contrast,
another study could have been described more clearly (Kränkel et al.,
2020). For incomplete outcome data, six studies had complete outcome
data (Bei et al., 2017; Hou et al., 2019; Nie et al., 2019; Wang et al., 2020;
Lou et al., 2021; Zhao et al., 2022), and four studies were described
unclearly (Chaturvedi et al., 2015; Ma et al., 2018; Nie et al., 2019; Kränkel
et al., 2020). Eight studies were selective reporting (Chaturvedi et al., 2015;
Wilhelm et al., 2016; Bei et al., 2017;Ma et al., 2018;Hou et al., 2019;Wang
et al., 2020; Kränkel et al., 2020; Zhao et al., 2022), and two studies were
described unclearly (Nie et al., 2019; Lou et al., 2021). For other biases, six
studies had no other bias (Wilhelm et al., 2016; Ma et al., 2018; Hou et al.,
2019; Nie et al., 2019; Wang et al., 2020; Zhao et al., 2022), and other
studies were described unclearly (Chaturvedi et al., 2015; Bei et al., 2017;
Kränkel et al., 2020; Lou et al., 2021).

Primary outcome measures

The random effects model was used for the overall analysis to
assess differences in the pooled effect. As shown in Figure 3, there
was no significant asymmetry, and Egger’s and Begg’s tests showed
that p > 0.05, demonstrating that no publication bias was produced

FIGURE 1
Flowchart of the study selection process in the systematic review according to PRISMA guidelines.
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for all outcomes. As shown in Table 3; Figure 4, exercise-induced
exosome release significantly reduced myocardial apoptosis (N = 7,
SMD = −3.80, 95% CI = [−4.42, −3.17], p = 0.46, I2 = 4.63%), and the
I2 value indicated low statistical heterogeneity (Bei et al., 2017; Ma
et al., 2018; Hou et al., 2019; Nie et al., 2019; Wang et al., 2020;
Kränkel et al., 2020; Zhao et al., 2022). Moreover, it significantly
reduced myocardial infarction volume (N = 4, SMD = −5.16, 95%
CI = [−6.36, −3.96], p = 0.31, I2 = 20.99%), and the I2 value indicated
low statistical heterogeneity (Bei et al., 2017; Hou et al., 2019; Wang
et al., 2020; Zhao et al., 2022). However, it significantly increased
angiogenesis (N = 4, SMD = 2.63, 95% CI = [1.76, 3.51], p = 0.44, I2 =
0.48%), and the I2 value indicated low statistical heterogeneity
(Wilhelm et al., 2016; Ma et al., 2018; Nie et al., 2019; Lou et al.,
2021). It can significantly increase microvessel density (N = 2,
SMD = 3.84, 95% CI = [2.60, 5.08], p = 0.97, I2 = 0.00%), and

the I2 value indicates low statistical heterogeneity (Wang et al., 2020;
Lou et al., 2021). In addition, it significantly increased the left
ventricular ejection fraction (N = 2, SMD = 8.13, 95% CI =
[4.98, 11.28], p = 0.22, I2 = 34.04%), and the I2 value indicated
low statistical heterogeneity (Hou et al., 2019; Zhao et al., 2022). In
addition, any individual effect size had no significant effect on all the
parameters’ overall effect size.

Basic characteristics of exercise-derived
exosomes and proposed mechanism of
exosome-carried cargos

The characteristics of exosomes and the impact of exercise-
derived exosomes in human, animal, and cell culture subjects are

TABLE 1 Characteristics of the articles included in the meta-analysis.

Research article Subject characteristic Gender
(F/M)

Injury
model

Exercise protocol Results

Zhao et al. (2022, China) Mouse (C57BL/6, 8–10 wk old,
n = 12)

M MI/R 4-wks swimming (90 min*2/day) Left ventricular
ejection fraction

Myocardial infarction
volume

Myocardial apoptosis

Lou et al. (2021, China) Mouse (C57BL/6, n = 12) M / 9-days incremental cycling treadmill
training (18 m/min, 1 h/day)

Microvessel density

Angiogenesis

Wang et al. (2020, China) Mouse (C57BL/6, 10 wk old,
n = 11)

M MCAO, IS,
H/R

4-wks treadmill exercise (10 m/min, 1 h/
day, 5days/wk)

Myocardial infarction
volume

Myocardial apoptosis

Microvessel density

Kränkel et al. (2020, Germany) Human (n = 12) M CCS 4-wks HIIT Myocardial apoptosis

Nie et al. (2019, United States) Mouse (C57BL/6J, 8–10 wk old) M C2C12 / Myocardial apoptosis

Angiogenesis

Hou et al. (2019, China) 1. Rats (Sprague‒Dawley, 6 wk
old, n = 8)

M MI/R, H/R 1. 4-wks swimming (90 min*2/day, 7-
days/wk)

Myocardial apoptosis

2. Human (n = 32) 2. 1-year rowing Left ventricular
ejection fraction

Myocardial infarction
volume

Bei et al. (2017, China) 1. Human (n = 16) M I/R 1. Bruce stress test (running) Myocardial infarction
volume

2. Mouse (C57BL/6, 8 wk old,
n = 4)

2. 3-wks swimming (90 min*2/day) Myocardial apoptosis

MA et al. (2018, China) Mouse (C57BL/6, 8–10 wk old,
n = 12–18)

M HG/H 4-wks treadmill running (5–10 m/min,
60 min/day, 5-days/wk)

Myocardial apoptosis

Angiogenesis

Wilhelm et al. (2016,
United Kingdom)

Human (n = 9) M / incremental running Angiogenesis

Chaturvedi et al. (2015,
United States)

Mouse (db/db) M T2DM 8-wks treadmill running (7–10 m/min,
300 m/day, 5-days/wk)

Fibrosis

Myocyte uncoupling

wk, week; F/M, Female/male; MI/R,Myocardial ischemia/reperfusion injury; MCAO,middle cerebral artery occlusion; IS, MCAO-induced ischemic stroke; H/R, Hypoxia/reoxygenation injury;

CCS, chronic coronary syndrome; I/R, Ischemia–reperfusion injury; HG/H, High glucose/hypoxia; T2DM, Type 2 diabetes; HIIT, High-intensity interval exercise training.
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summarized in Table 4 and shown Figure 5. Specifically, the source,
size, distribution, marker cargos, and mechanism of exosomes
following different exercise protocols were evaluated in ten
research articles. Six studies examined exosome sources of plasma
(Bei et al., 2017; Hou et al., 2019; Wang et al., 2020; Kränkel et al.,
2020; Lou et al., 2021; Zhao et al., 2022), two studies examined
exosome sources of serum (Bei et al., 2017; Nie et al., 2019), and
other studies examined sources of endothelial progenitor cells

(EPCs) (Ma et al., 2018), endothelial-derived microvesicles
(EMVs) (Wilhelm et al., 2016), and exosomes from
cardiomyocytes (cardiosomes) (Chaturvedi et al., 2015).
Moreover, the results of this study showed concordance with
preceding studies that ultracentrifugation (UC) was the most
widely adopted method to isolate exosomes. Six studies used UC
for isolation (Chaturvedi et al., 2015; Bei et al., 2017; Nie et al., 2019;
Wang et al., 2020; Lou et al., 2021; Zhao et al., 2022), and filtration

TABLE 2 Outcomes of studies included in the meta-analysis.

Research article Myocardial
apoptosis

Myocardial infarction
volume

Angiogenesis Microvessel
density

Left ventricular ejection
fraction

Zhao et al. (2022, China) √ √ √

Lou et al. (2021, China) √ √

Wang et al. (2020, China) √ √ √

Kränkel et al. (2020, Germany) √

Nie et al. (2019, United States) √ √

Hou et al. (2019, China) √ √ √

Bei et al. (2017,China) √ √

MA et al. (2018, China) √ √

Wilhelm et al. (2016,
United Kingdom)

√

Chaturvedi et al. (2015,
United States)

Fibrosis and myocyte uncoupling

FIGURE 2
Risk of bias results. Review authors’ judgments about each risk of bias item for each included study. +, low risk of bias; -, high risk of bias; ?, unclear
risk of bias.
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was combined with UC to remove high-abundance proteins in two
studies (Nie et al., 2019; Kränkel et al., 2020). In addition,
ExoQuickTM commercial reagent was chosen in two studies

(Bei et al., 2017; Hou et al., 2019), and magnetically activated cell
sorting was chosen in one study (Ma et al., 2018). However,
regardless of the isolation methods utilized, the consensus
reached among researchers was that a combination of at least
one visualization method and one physical technique should be
utilized to quantify and characterize exosomemarkers. Additionally,
all studies identified that the diameter range of exosomes was
30–200 nm in eight studies using the nanoparticle tracking assay
(NTA) technique to characterize the size of exosomes (Bei et al.,
2017; Ma et al., 2018; Hou et al., 2019; Nie et al., 2019; Wang et al.,
2020; Kränkel et al., 2020; Lou et al., 2021; Zhao et al., 2022), and
other studies used the flow cytometry (FCM) technique (Chaturvedi
et al., 2015; Bei et al., 2017).

Finally, 9 articles were included to use Western blotting (WB)
to investigate exosomal markers in response to exercise and
assess the effects of exercise on 13 exosome-carried proteins
(TSG101, APOA1, GM130, CD34, CD41, CD43, CD45, CD81,
CD63, CD164, Flot1, Alix, RAB35). Cell surface protein
characterization is a vital step in identifying exosomes.
Moreover, exercise regulates the expression of 13 exosomal
miRNAs (miR-125b-5p, miR-128-3p, miR-30d-5p, miR-122-
5p, miR-126, miR-15a, miR-20a, miR-21, miR-197, miR-130a,
miR-342-5p, miR-29b, and miR-455); these exosomal miRNAs
were significantly upregulated, and the majority of studies
reported no overlapping miRNAs. Interestingly, two
independent studies reported the same exosome cargo:

FIGURE 3
Contour-enhanced funnel plot of outcome indicators. Yellow
dot, A total of seven articles provided relevant data on the myocardial
apoptosis (n = 7); red dot, A total of four articles provided relevant data
on the myocardial infarction volume (n = 4); green dot, A total of
four articles provided relevant data on the angiogenesis (n = 4); purple
dot, A total of two articles provided relevant data on the microvessel
density (n = 2); blue dot, A total of two articles provided relevant data
on the left ventricular ejection fraction (n = 2). , 1% < p < 5%; ,
5% < p < 10%; , p > 10%; , Estimated θⅣ.

TABLE 3 Effects of exercise on exosome intervention on primary outcome measures.

Outocmes Research article Treatment Control SMD 95%CI I2 (%) p

Myocardial apoptosis Zhao et al. (2022) 15.40 ± 2.20 23.10 ± 1.90 −3.46 −5.49, 1.42

Wang et al. (2020) 95.80 ± 8.30 134.20 ± 12.30 −3.52 −4.94, −2.10

Kränkel et al. (2020) 23.50 ± 1.90 32.20 ± 2.10 −4.28 −5.31, −3.24

Nie et al. (2019) 100.00 ± 3.00 122.00 ± 6.00 −3.70 −7.62, 0.21

Hou et al. (2019) 24.00 ± 3.00 37.00 ± 5.00 −3.06 −4.20, −1.92

MA et al. (2018) 16.50 ± 2.60 35.00 ± 2.40 −6.82 −10.34, −3.31

Bei et al. (2017) 21.50 ± 1.00 26.40 ± 1.10 −4.30 −6.69, −1.92

overall −3.80 −4.42, −3.17 4.63 0.46

Myocardial infarction volume Zhao et al. (2022) 22.80 ± 3.00 36.50 ± 4.00 −3.58 −5.66, −1.50

Wang et al. (2020) 16.00 ± 1.00 24.00 ± 1.50 −6.04 −8.18, −3.90

Hou et al. (2019) 35.00 ± 3.80 57.00 ± 3.40 −5.92 −7.75, −4.09

Bei et al. (2017) 22.80 ± 1.80 36.20 ± 3.10 −4.88 −7.51, −2.24

overall −5.16 −6.36, −3.96 20.99 0.31

Angiogen -esis Lou et al. (2021) 21.30 ± 3.10 11.20 ± 1.70 3.73 1.58, 5.87

Nie et al. (2019) 14.60 ± 1.90 10.50 ± 1.40 1.96 −0.52, 4.44

MA et al. (2018) 39.30 ± 5.30 29.70 ± 4.00 1.89 0.43, 3.35

Wilhelm et al. (2016) 37.30 ± 4.30 24.00 ± 3.80 3.12 1.64, 4.60

overall 2.63 1.76, 3.51 0.48 0.44

(Continued on following page)

Frontiers in Physiology frontiersin.org07

Lai et al. 10.3389/fphys.2023.1190095

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1190095


miR-126 (Ma et al., 2018; Wang et al., 2020). Notably, these
independent studies proposed variable mechanisms by which
miR-126 influences cardioprotection. One study assessed the
mechanism of action: moderate aerobic exercise induces
endothelial progenitor cell-derived exosomal miR-126 to
modulate the PI3K/Akt signaling pathway, increasing the
expression of proteins brain-derived neurotrophic factor
(BDNF) and tyrosine kinase receptor B (TrkB) to stimulate
angiogenesis and enhance neurogenesis in the chronic phase,
thereby reducing I/R-induced ischemic injury. Another study
assessed the mechanism by which miR-126 promotes vascular
repair and angiogenesis to protect ECs against injury through
sprout-related EVH1 domain containing 1 (SPRED1)
downregulation and vascular endothelial growth factor
(VEGF) upregulation. These factors can enhance the effects
against ischemic injury. In addition, all other studies posited a
regulatory mechanism of action that improved CVD, as shown in
Figure 6.

Basic characteristics of exercise-derived
exosomes and exosome-carried cargo
bioinformatic analysis

Only two studies reported exosome-carried cargos for
bioinformatics analysis in response to exercise protocols, and
the characteristics of these studies are summarized in Table 5.
Exosomes marked with CD63 were derived from cerebrospinal
fluid (CSF) and serum. Interestingly, studies have observed the
expression of various miRNAs in exosome-carried cargos
following exercise. For example, Huang et al. showed that miR-
370-3p, miR-343, miR-92b-5p, miR-138-5p, and miR-34c-5p were
upregulated after exercise, and the levels of miR-665, miR-3573-
5p, miR-1188-5p, miR-31a-5p, and miR-23b-5p were
downregulated after exercise (Huang et al., 2021). These
miRNA target genes are mainly involved in the most enriched
categories, including cellular response to retinoic acid, vagus nerve
morphogenesis, cellular response to hypoxia, dendritic cell

FIGURE 4
Forest plot of outcome indicators (A), Myocardial apoptosis; (B), Myocardial infarction volume; (C), Angiogenesis; (D), Microvessel density; (E), Left
ventricular ejection fraction.

TABLE 3 (Continued) Effects of exercise on exosome intervention on primary outcome measures.

Outocmes Research article Treatment Control SMD 95%CI I2 (%) p

Microvessel density Lou et al. (2021) 1.29 ± 0.10 0.95 ± 0.06 3.80 1.63, 5.98

Wang et al. (2020) 1.33 ± 0.11 0.96 ± 0.07 3.86 2.35, 5.37

overall 3.84 2.60, 5.08 0.00 0.97

Left ventricular ejection fraction Zhao et al. (2022) 60.10 ± 3.00 29.20 ± 2.20 10.84 5.43, 16.25

Hou et al. (2019) 59.80 ± 3.10 39.30 ± 2.40 8.13 5.02, 9.34

overall 8.13 4.98, 11.28 34.04 0.22
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TABLE 4 Characteristics of studies evaluating exosome/EV size and markers and exosome-carried cargos in response to exercise protocols in the meta-analysis.

Research
article

Subject Exercise
protocol

Exosome/
EV source

Isolation
method

Characterization
method

Size Phenotyping
method

Exosome/
EV markers

Exosome-
carried
cargos

Proposed
mechanism

Beneficial effects

Zhao et al.
(2022)

Mouse 4-wks
swimming

Plasma UC NTA 80–120 nm WB / miR-125b-5p MAPK (Map3k5、
Map2k7、 Map2k4)
(−) Caspase-3 (−)

Mediating cardioprotection
against MI/R injury

miR-128-3p

miR-30d-5p

Lou et al. (2021) Mouse 9-days
running

Plasma UC NTA 100 nm WB TSG101 miR-122-5p (↓)AGPAT1 Promoting angiogenesis
and accelerate wound
healingCD81 (↑)CD31

APOA1 (↑)VEGF

GM130

Wang et al.
(2020)

Mouse 4-wks
running

Plasma UC NTA 100–150 nm WB CD34 miR-126 (↓)PI3k (−) Protecting effects on the
brain against MCAO-
induced ischemic injury in
both acute and chronic
stages

(↑) BDNF

(↑) TrkB

(↑) Akt

Kränkel et al.
(2020)

Human 4-wks HIIT Plasma UC +
filtration

NTA 150–200 nm WB CD41 miR-15a VCAM-1 Mediating endothelial
repair and therapy to
improve endothelial
function

CD45 miR-20a

CD164 miR-21

miR-197

Nie et al. (2019) Mouse / serum UC +
filtration

NTA 30–200 nm WB Alix、
CD63 TSG101

miR-130a (↑)NF-kB Providing an effective
therapy for promoting
skeletal muscle
angiogenesis in diseases

Hou et al.
(2019)

1.Rat 1. 4-weeks
swimming

Plasma UC +
ExoQuick

NTA 100–150 nm WB CD81 miR-342-5p 1. Caspase-9 (−)
Jnk2 (−)

Protecting the heart against
MI/R injury and
cardioprotection.

2.Human 2. 1-year
rowing

TSG101 2. Ppmlf (−)
p-Akt (+)

Bei et al. (2017) 1.Human 1. running Plasma serum Whole plasma Nano-FCM 100 nm WB CD63 ALIX 1. ERK1/2 (+) Protecting against
myocardial injury

2.Mouse 2. 3-wks
swimming

ExoQuick™ NTA RAB35 2. HSP27(+)

UC

MA et al. (2018) Mouse EPCs MACS NTA 100–120 nm WB CD63 miR-126

(Continued on following page)
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chemotaxis, cell differentiation, and regulation of neuron death,
which is related to axon guidance, nuclear factor-kB (NF-kB),
thiamine metabolism, and mitogen-associated protein kinase
(MAPK). In addition, this study independently proposed the
mechanisms by which miR-138-5p influences cardioprotection.
It not only suppressed inflammatory response states in astrocytes
following ischemic stroke by targeting lipocalin 2 (LCN2) but also
inhibited the target of caspase-9 and apoptosis-related cysteine
peptidase (Casp9) against ischemic stroke (IS) injury.

Another study showed that the concentration of tRNA-8336
in circulating EVs was elevated in response to incremental
running (Oliveira et al., 2018), the levels of miR-330-5p, miR-
10b-5p, miR-142-3p, and miR-410-3p were upregulated after
exercise, and the levels of miR-128-3p, miR-103-3p, miR-
148a-3p, miR-191a-5p, miR-93-5p, miR-25-3p, miR-142-5p,
and miR-3068-3p were downregulated after exercise. These
miRNA target genes were mainly related to MAPK, PDGFRA,
MKNK2, NFATE3, TGFBR1, and NLK. In addition, these
miRNAs inhibited the target of MAPK and the chemokine
CCL3 to decrease the risk of CVD, and the mechanisms by
which miR-10b-5p targets mib1 and Notch signaling to
promote angiogenesis were proposed.

Discussion

The primary purpose of the systematic review and meta-analysis
of preclinical studies is to evaluate the role of exercise-induced
exosomes in the prevention and treatment of CVD, while the
secondary purpose is to provide guidance for the selection of
different types of exercise-induced exosomes for further
preclinical research. We extracted and compiled data from the
research articles and provided a reference for the research design
of preclinical cardioprotection and prevention of ischemic injury
using exercise-induced exosome therapy. The main findings of this
study show that myocardial apoptosis and myocardial infarction
volume are significantly reduced, and angiogenesis microvessel
density and left ventricular ejection fraction were significantly
increased following the release of exercise-induced exosomes.
These results provide a theoretical basis for the prevention and
treatment of CVD. Moreover, funnel plot analysis showed that the
studies were evenly distributed for the regulation of exercise
exosomes in cardiovascular protection, suggesting no inherent
bias in this study. Our meta-analysis and results further
confirmed that exercise-derived exosomes had a higher target
efficiency in cardiovascular tissue repair than other types of cells
and supported the use of exercise-derived exosomes in clinical
settings.

In recent years, studies have shown that exercise significantly
impacts the biological function of body fluids and blood circulation
exosomes (Pluchino and Smith, 2019). Moreover, different modes of
exercise can also stimulate the release of exosomes and affect the
quantity of these miRNAs and proteins, but exosome cargos vary
among miRNAs, lncRNAs, and proteins (Emanueli, C., et al., 2015;
Chang and Wang, 2019; Vicencio, et al., 2015; Estébanez et al.,
2021). The systematic review and meta-analysis showed that
moderate exercise promotes the release of exosomes and
regulates the expression of miRNAs and proteins, which playTA
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critical roles in inhibiting myocardial apoptosis, decreasing
myocardial infarction volume, promoting angiogenesis, increasing
microvessel density, inhibiting myocardial fibrosis and protecting
endothelial cells, providing a theoretical basis for the prevention and
treatment of CVD, as shown Figure 5. Further study found that
exercise-derived exosomes can enhance endogenous protection of

cardiomyocytes against I/R injury and represent a promising
alternative therapy against ischemic diseases (Beltrán-Camacho
et al., 2021). First, exosomal miRNAs (BAT miRNAs) miR-125b-
5p, miR-128-3p, andmiR-30d-5p derived from brown adipose tissue
target the proapoptotic MAPK (Map3k5, Map2k7, and Map2k4)
and Caspase-3 pathways to suppress MI/R (Zhao et al., 2022).
Exosomal miR-125a-5p targets endothelin converting enzyme 1
(ECE1) and activates the downstream AKT/eNOS signaling
pathway to promote revascularization (Qiu et al., 2022). Second,
long-term exercise-derived exosomal miR-342-5p not only targets
the Caspase-9 and JNK2 pathways but also enhances survival
signaling (p-Akt) by targeting the phosphatase gene Ppm1f to
protect the heart from MI/R injury (Hou et al., 2019). From the
same gene family, miR-342-3p has also been proven to participate in
the regulatory processes related to acute myocardial infarction
(AMI) by increasing the expression of NFAT activating molecule
1 (NFAM1) to combat myocardial injury (Zhu et al., 2022). Third,
the expression of exercise-derived EV proteins ALIX and
RAB35 activates ERK1/2 and HSP27 signals to protect against
cardiac I/R injury (Bei et al., 2017). Recent research has
highlighted the significant potential of endothelial cell (EC)-
derived exosomal Profilin 2 (PFN2) as a valuable target in the
repair of MI injury via angiogenesis, which promotes EC
proliferation, migration, and tube formation through the PI3K-
PFN2-ERK axis (Li, Z., et al., 2022). PFN2-enriched exosomes
derived from ECs are intracellular proteins that promote
angiogenesis in vivo and in vitro, repair EC injury under
inflammatory stimuli, and significantly attenuate MI injury.
However, in contrast to exosomal PFN2, PFN2 protein could not

FIGURE 5
Exercise-induced release of exosome source, isolation method,
characterization, exosome markers (proteins) and exosome-carried
cargos.

FIGURE 6
Exercise inducesmultiple tissues to release exosomes, whichmediate cardiovascular protection. Themain effects of exercise on exosome source of
release, which can derive from different organs (liver, brain, muscle, heart, and adipose tissue), cargo, and exercise-released exosome-carried miRNAs
predicted actions. Exercise promotes cardiovascular health by mediating cell-to-cell communication and cross-talk between organs and
tissues—exosomes are significant vehicles for miRNAs and proteins.
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directly increase the viability and migration of ECs, implying that
exosomes are critical mediators of PFN2-mediated angiogenic
ability.

In addition, exercise-derived exosomes can promote
revascularization, thus protecting the cardiovascular system. As a
potential marker of transient ischemic attack (TIA), miR-122-5p
targets OCLN to regulate the apoptosis and permeability of brain
microvascular endothelial cells (BMECs) (Li et al., 2021; Lou et al.,
2021). Lou et al. showed that exercise-derived EV miR-122-5p
upregulated endothelial cell fatty acid utilization by targeting 1-
acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT1) and
improving the impression of VEGF to promote angiogenesis
(Zhao et al., 2022). Nie et al. also found that skeletal muscle-
derived exosome (SkM-Exo) miR-130a regulates endothelial cell
functions via the reactive oxygen species-activated NF-kB signaling
pathway to promote skeletal muscle angiogenesis in diseases
characterized by capillary rarefaction or inadequate angiogenesis
(Lou et al., 2021). Moreover, Wang et al. and Ma et al. focused on
how moderate exercise-induced exosomal miR-126 promotes
angiogenesis and vascular repair by activating cardiovascular-
related signaling pathways to inhibit endothelial cell apoptosis
(Ma et al., 2018; Wang et al., 2020).

Beides, exercise-induced exosomes improve cardiovascular
function by inhibiting myocardial fibrosis. Chaturvedi et al.
showed that exercise-induced exosomes from cardiomyocytes
(cardiosomes) miR-29b and miR-455-1 downregulate the
expression of matrix metalloprotein (MMP9) to inhibit
myocardial fibrosis and myocyte uncoupling (Chaturvedi et al.,

2015). Moreover, suppressing exosomal iNOS derived from
brown adipose tissue (BAT) can alleviate the expression of
fibrotic genes in cardiac fibroblasts and reduce cardiac fibroblast
dysfunction to reverse exosome-aggravated cardiac remodeling (Lin
et al., 2022). A large number of experiments have shown that
cardiomyocyte-derived exosomes may be superior to other cells
and can play a protective role in cells, and the enhancement of
protective factors can improve their ability (Kang et al., 2018). In
addition, exercise-derived exosomal microRNAs are potent
regulators of cardiomyocyte survival and functional properties,
cardiomyocyte progenitor cells, and endothelial cells (Wu et al.,
2021). Exosome miR-455-3p derived from bone marrow
mesenchymal stem cells (BMMSCs) also has cardioprotective
effects, targeting the MEKK1-MKK4-JNK signaling pathway to
prevent myocardial I/R injury (Wang and Shen, 2022).
Furthermore, using miRNA deep sequencing and RT-qPCR
verification, we found that some known miRNAs were
differentially expressed in circulating exosomes derived from the
treadmill running model. In this bioinformatic study, we found that
exosomal-miR-138-5p and EV-miR-10b-5p suppress inflammation
and target MAPK and Caspase 9 to promote angiogenesis against
MI/R (Oliveira et al., 2018; Huang et al., 2021).

Finally, It is an important advantage of exercise-derived exosomes
as CVD biomarkers is that they can travel in blood and other fluids to
reach endothelial cells, vascular smooth muscle cell, myocardial cell,
and heart, skeletal muscle and other tissue/organs, and which are
implicated in several pathophysiological processes throughout CVD
development. In particular exosome-containing miRNAs have been

TABLE 5 Methodology of exosome/EV isolation and characterization and exosome/EV cargo bioinformation in response to exercise protocols in studies.

Research
article

Models Exercise
protocol

Source and
solation and

characterization

Exosome/EV-
carried cargos

Bioinformation Proposed
mechanism

Huang et al.
(2021, China)

MCAO and
IS injury rats
(SD, n = 6)

4-wks incremental
running

(2,3.25,6.59 m/min,
6days/wk)

CSF, ExoRNeasy Midi Kit,
WB (CD63, CD81), NTA
(30–100 nm)

↑: miR-370-3p, miR-
343, miR-92b-5p,
miR-138-5p, miR-
34c-5p

GO: cellular response to
retinoic acid, vagus nerve
morphogenesis, cellular

response to hypoxia, dendritic
cell chemotaxis, cell

differentiation, and regulation
of neuron death

1. miR-138-5p →
LCN2(−)→
inflammation→ against
I/S injury.

↓: miR-665, miR-
3573-5p, miR-1188-
5p, miR-31a-5p, miR-
23b-5p

KEGG: axon guidance, NF-kB
thiamine metabolism, MAPK

2. miR-138-5p →
Caspase 9→ apoptosis-
related cysteine
peptidase → against I/S
injury.

Oliveira et al.
(2018, Brazil)

Wistar rats
(n = 4–5)

Low, moderate and
high intensity acute
exercise (14–16 m/
min, 20–22 m/min,
24–26 m/min)

Serum, UC + ExoquickTM

Kit, WB (CD63), TEM
(40–200 nm)

tRNA-8336 MAPK, PDGFRA, MKNK2,
NFATE3, TGFBR1, NLK

1. 12miRNAs →
MAPK(−) →
cardioprotection.

↑: miR-330-5p, miR-
10b-5p, miR-142-3p,
miR-410-3p

2. miR-103-3p →
CCL3(−)→ decrease
the risk of cardiac
diseases.

↓: miR-128-3p, miR-
103-3p, miR-148a-3p,
miR-191a-5p, miR-93-
5p, miR-25-3p, miR-
142-5p, miR-3068-3p

3. miR-10b-5p → mib
1 and Noth(−)→
angiogenesis.

EV, extracellular vesicle; SD, Sprague‒Dawley; MCAO, middle cerebral artery occlusion; IS, MCAO-induced ischemic stroke; CSF, cerebrospinal fluid; NF-kB, Nuclear factor-kB; MAPK,

Mitogen-associated protein kinase; Casp9, Caspase 9, Apoptosis-related cysteine peptidase; PDGFRA, platelet derived growth factor receptor beta; MKNK2, MAP, Kinase-interacting serine/

threonine kinase 2; NFATE3, Nuclear factor of activated T cells 3; TGFBR1, Transforming growth factor beta receptor 1; NLK, nemo like kinase.
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suggested as biomarkers for the diagnosis and prognosis of MI/R and
endothelial dysfunction, such as this rise in miR-138-5p, miR-10b-5p
and miR-103-3p wascorrelated to angiogenesis and myocardial
apoptosiss (Oliveira et al., 2018; Huang et al., 2021). Exosomal-
miR-29b and miR-455-1 expression were positively associated with
the myocardial fibrosis and myocyte uncoupling (Chaturvedi et al.,
2015). In linewith this, exosomes seem to play a role in cardiac fibrosis
following myocardial in farction, and accordingly may be biomarkers
in early diagnosis of CVD (Zara et al., 2020).

In summary, research shows that the miRNAs and proteins of
exercise-induced exosomes released from various cells regulate the
expression of target genes and play essential roles in inhibiting
myocardial apoptosis, alleviating myocardial fibrosis, promoting
angiogenesis and postinfarction myocardial repair, and increasing
microvessel density to protect endothelial cells via intercellular
communication. However, this review is especially noteworthy in
exploring the evidence of the potential therapeutic effect of exercise-
derived exosomes in the mechanisms of CVD. This indicates that
exercise-derived exosomes and miRNAs can be used as biomarkers for
the diagnosis and prognosis of CVD. In addition, these findings provide
newmechanistic insights into the effects of exercise on cardioprotection
and revascularization. miR-125b-5p, miR-122-5p, miR-342-5p, miR-
126, miR-130a, miR-138-5p, and miR-455 were identified as novel
miRNAs that mainly regulate the MAPK, NF-kB, VEGF, and Caspase
signaling pathways, highlighting their potential therapeutic role in the
prevention and treatment of CVD. Therefore, exosomal miRNAs, as
specific target molecules involved in various signaling pathways,
provide new therapeutic options for MI/R, myocardial infarction,
heart failure, and cardiomyopathy. The gold standard for evaluating
CVD must be efficient, but further clinical trials are needed to confirm
the effects of exosomes for targeted interventional therapy.

Limitation

The limitations of this systematic review and meta-analysis should
also be noted. First, some data could not be converted to the SMD,which
limited the inclusion of all available data in ourmeta-analysis. Second, all
studies only enrolled male participants. The different populations may
lead to biases and further affect the experimental results. Third, including
experimental subjects is not uniform for human, animal, or cellular
experiments, thus producing a significant bias. Fourth, we focused on the
changes between the treatment (pre) and control (post) interventions;
thus, the bias may have been reduced. Fifth, there was a lack of
unanimous isolation, characterization, and application techniques,
and we were not stringent in our inclusion and exclusion criteria.

Conclusion

The present review summarizes different types of physical
exercise that release exosomes into circulation and modify both
protein and nucleic acid content, especially miRNAs, which play
essential roles in protecting against CVD. However, further
investigation is warranted to examine the effects of exercise-
induced exosome release and its cargo in various conditions and
CVD for potential therapeutic applications.
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