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Introduction: Climate change not only directly affects the phenotype of
organisms but also indirectly impacts their physiology, for example, by altering
their susceptibility to insecticides. Changed diurnal temperature fluctuations are
an important aspect of climate change; ignoring the impact of these fluctuations
on the biological effects of various chemical insecticides can lead to inaccurate
assessments of insecticide risk under the current and future climate change
scenarios.

Methods: In this study, we studied effects of different temperature amplitudes
(±0, ±6, ± 12°C) at the samemean temperature (22°C) on the life history traits of a
globally distributed pest (Sitobion avenae, wheat aphid), in response to low doses
of two insecticides. The first, imidacloprid shows a positive temperature
coefficient; the second, beta-cypermethrin has a negative temperature
coefficient.

Results: Compared with the results seen with the constant temperature (22°C), a
wide temperature amplitude (± 12°C) amplified the negative effects of
imidacloprid on the survival, longevity, and fecundity of S. avenae, but
significantly increased the early fecundity of the wheat aphid. Beta-
cypermethrin positively impacted the wheat aphid at all temperature
amplitudes studied. Specifically, beta-cypermethrin significantly increased the
survival, longevity, and fecundity of S. avenae under medium temperature
amplitude (±6°C). There were no significant differences in the survival,
longevity, and the early fecundity of S. avenae when it was treated with beta-
cypermethrin at the wide temperature amplitude (± 12°C). However, the negative
effect of beta-cypermethrin on the intrinsic rate of increase of S. avenae
decreased gradually with the increase in temperature amplitude.

Discussion: In conclusion, the response of S. avenae to positive temperature
coefficient insecticides was markedly affected by temperature amplitude, while
negative temperature coefficient insecticides increased the environmental
adaptability of S. avenae to various temperature amplitudes. Our results
highlight the importance of the integrated consideration of diurnal
temperature fluctuations and different temperature coefficient insecticide
interactions in climate-change-linked insecticide risk assessment; these results
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emphasize the need for a more fine-scale approach within the context of climate
change and poison sensitivity.
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temperature characteristics

1 Introduction

Climate change (Körner and Basler, 2010) and the application of
insecticides (Rohr et al., 2011), as two major anthropogenic pressures,
have brought developmental and reproductive challenges to a wide
array of organisms (Landis et al., 2014). These factors have increased
research interest to improve our understanding of the
ecophysiological mechanisms that underly the biological responses
of organisms to climate change and insecticides (Van den Brink et al.,
2018). Currently, there are three different viewpoints with regards to
this issue. The first viewpoint suggests that factors related to climate
change can increase biological sensitivity to insecticide pollutants,
which is referred to as, climate-induced toxicity sensitivity (CITS)
(Noyes et al., 2009; Noyes and Lema, 2015). The second viewpoint
proposes that exposure to insecticide pollutants can increase
biological sensitivity to climate change, known as toxication-
induced climate change sensitivity (TICS) (Moe et al., 2013;
Janssens et al., 2018). The third viewpoint asserts that these
concepts do not exist independently owing to inherent differences
between species (De Beeck et al., 2018). Overall, more experimental
evidence is necessary to fully understand the biological interactions
between climate change and insecticide pollution.

Studies have established that temperature remarkably affects the
insecticide mortality of insects. For example, a rise in temperature has
been shown to increase insect sensitivity to organophosphorus,
nicotine, and benzoylurea (Lydy et al., 1999; Amarasekare and
Edelson, 2004). By contrast, a rise in temperature was shown to
decrease insect sensitivity to pyrethroids (Harwood et al., 2009; Ma
et al., 2011). Moreover, the interaction between temperature and
insecticides can significantly affects the life-history traits of insects.
For example, these interactions have been shown to increase the
mortality of subsequent life stages (Janssens et al., 2018), decrease
anti-predation behavior (Tran et al., 2019), and decrease longevity and
fecundity (Zuo et al., 2015). However, some studies also found that the
interaction between temperature and insecticides may increase adult
reproduction (Cheng et al., 2014), alleviate oxidative damage (Janssens
et al., 2018), and improve the viral diffusion of disease-carrying insects
(Muturi and Alto, 2011). The delayed effect of this interaction effect
can even be transmitted across generations, impacting the survival
(Tran et al., 2018), development, reproduction (Zuo et al., 2015), and
the anti-predation ability of offspring (Tran et al., 2019). Notably, most
thermostatic studies ignore the negative effects of daily high
temperature, resulting in an overestimation of the ecological
adaptation of insects to ambient temperature (Arambourou and
Stoks, 2015; Decourten and Brander, 2017); however, studies that
focus on short-term heat shock, do not reflect the natural 24-h diurnal
temperature fluctuations (Gu et al., 2010; Colinet et al., 2015; Stoks
et al., 2017). Furthermore, these studies are not in line with gradual
temperature changes that usually characterize most insect habitats
(Mitchell and Hoffmann, 2010), and neglects the repair (within the

context of thermal damage) that some insects can experience under
suitable low temperatures at night (Zhao et al., 2014). Some studies
have focused on the effects of temperature fluctuations and insecticide
exposure on insects. Compared with a constant temperature, the
interaction of temperature fluctuations and insecticides in the
context of insect development, growth, insecticide sensitivity, and
stage specificity (Delnat et al., 2019a; Verheyen and Stoks, 2019a;
Delnat et al., 2019b; Verheyen and Stoks, 2019b) has been shown to
have additional (and significant) effects on the ecophysiology of
insects. However, these studies mostly focused on insecticides with
positive temperature coefficient (such as chlorpyrifos and
bioinsecticides), ignored the effect of insecticides with negative
temperature coefficient. Furthermore, the number of comparative
studies investigating the interaction between temperature
fluctuations and the temperature coefficients of insecticides is
currently limited. Therefore, these findings may not be sufficient to
comprehensively explain the complex effects of temperature
fluctuations and insecticide exposure on insects.

Sitobion avenae (Fabricius), one of the most important
agricultural pests, is widely distributed globally (Dean, 1970;
Winderet al., 1999). Owing to its small size, fast heat conduction,
and high metabolic rate, Sitobion avenae is extremely sensitive to
environmental temperature changes, making it an ideal model
organism for studying the impact of environmental changes.
With regards to environmental changes, diurnal temperature
fluctuations have been shown to significantly impact the
development, survival (Xing et al., 2021), longevity, reproduction
(Zhao et al., 2014), temperature tolerance (Zhao et al., 2019), and
population dynamics (Zhu et al., 2019) of various organisms. Studies
examining the interaction between temperature and insecticides
have primarily focused on the lethal effects of insecticides under
constant temperatures (Pei et al., 2015). However, the potential
impacts of interactions between temperature fluctuations and
insecticides on insect populations remain poorly understood. The
neonicotinoid insecticide imidacloprid (positive temperature
coefficient) and the pyrethroid insecticide beta-cypermethrin
(negative temperature coefficient) are commonly used in the field
control of aphids (Yu et al., 2012; Su et al., 2015). Specifically, these
insecticides have been widely used in the wheat-producing regions
of China for a long time (Wu et al., 2011; Dong et al., 2020). A better
understanding of the combined effects of diurnal temperature
fluctuations and insecticides are critical not only for guiding the
safe and effective use of insecticides in the context of global warming
but also for accurately assessing their potential ecological impacts.

Therefore, herein, we studied the effect of the interaction
between temperature amplitudes and different temperature
coefficient insecticides (solvent control, imidacloprid, and beta-
cypermethrin) on the life history traits of S. avenae (i.e., survival,
longevity, fecundity, early fecundity and the intrinsic rate of
increase).
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2 Materials and methods

2.1 Insects

Sitobion avenaewas collected in May 2016 from within the wheat
experimental field of Shanxi Academy of Agricultural Sciences
(116°16′N, 35°55′E). They were then reared on 10–20 cm winter
wheat, which was replaced once a week by winter wheat seedlings.
The pots with winter wheat were placed inside a breathable and
transparent insect-rearing cage (60 cm × 60 cm × 60 cm). The cages
were finally placed in the insect rearing room, under the following
conditions: 22°C ± 1°C, 50%–60% relative humidity, and 16-h light/
8-h dark photoperiod, lights on from 05:00 to 21:00 and lights off
from 21:00 to 05:00. Sitobion avenae was reared indoors for at least
3 years before the experiment commenced.

2.2 Temperature design

In this study, temperature data from the National Meteorological
Information Centre (http://data.cma.cn/en) for May (between 2012 and
2018), which corresponded to the rapid growth period of wheat, in
Linfen, northern China were selected. Preliminary analysis of the data
revealed that the average daily temperature during the rapid growth
period of wheat was approximately 22°C, with a mean diurnal
temperature amplitude of ±6°C and a maximum diurnal temperature
amplitude of ±12°C (Supplementary Figure S1) (Xing et al., 2021).
Therefore, in this study, we used 22°C as the average temperature, while
the diurnal temperature variation was set to ±0, ± 6, and ±12°C,
respectively. The actual temperature and humidity in the artificial
climate chambers (RXZ-380B-LED; Ningbo Jiangnan Instrument
Factory, Ningbo, China) were automatically recorded at 20-min
intervals in each group of variable temperature settings using a
Datalogger (Hobo u23-001; Onset Computer Corporation, Bourne,
MA, United States) During the experiment, target temperature
average and amplitudes are 22 ± 0, 22 ± 6, and 22°C ± 12°C,
recorded average temperatures (mean ± SD) are 22.39°C ± 0.13°C,
21.21°C ± 0.26°C and 21.85°C ± 0.20°C, recorded temperature
amplitudes (mean ± SD) are 0.89°C ± 0.20°C, 6.89°C ± 0.15°C and
11.93°C ± 0.28°C (Supplementary Table S1, Supplementary Figure S2)
(Xing et al., 2021). The photoperiod and relative humidity of the artificial
climate chambers, in each group of variable temperature settings, was set
as 16-h light/8-h dark, and 50%–60%, respectively. The laboratory
temperature was controlled by central air conditioning and kept at a
constant temperature of approximately 22°C.

2.3 Insecticide concentration

In this study, a positive temperature coefficient insecticide (PT,
imidacloprid), a negative temperature coefficient insecticide (NT, beta-
cypermethrin), and a solvent control (SC, distilled water) were selected
for wheat aphid control in wheat fields. Imidacloprid and beta-
cypermethrin, with a purity grade of >99% for both insecticides,
were supplied by Yangzhou Suling Insecticide Chemical Co. Ltd.
(Yangzhou, China). We selected the dose at which 10% of the
individuals will die (LC10) for these two insecticides for their
application. Imidacloprid (6 mg) and cypermethrin (0.5 mg) were

dissolved in Tween 80 (0.5 mL) and acetone (4.5 mL), both
analytically pure, to obtain 1.2 mg/mL imidacloprid and 0.1 mg/mL
cypermethrin stock solutions, respectively, and then dilutedwith distilled
water to obtain their serial dilutions (imidacloprid: 1.2, 3.6, 10.8, 32.4,
and 97.2 μg/mL; cypermethrin: 0.1, 0.5, 2.5, 12.5, and 62.5 μg/mL). Using
SC as the reference, the toxicity of these insecticides to 9-day-old aphids
were measured following a Food and Agriculture Organization of the
United Nations (FAO) recommended spottingmethod, and the number
of surviving aphids was recorded after 24 h. Each treatment was
replicated three times with 30 insects per replicate. The data were
analyzed using probit analysis in the SPSS 21.0 software (SPSS Inc.,
Chicago, IL, United States). The regression equation of toxicity was
obtained as imidacloprid: y = −0.817 + 1.011x, χ2 = 1.401, df = 5, n = 720;
beta-cypermethrin: y = −0.121 + 0.755x, χ2 = 1.128, df = 5, n = 720.
The sublethal concentrations of imidacloprid and beta-cypermethrin
were determined as LC10 = 0.347 μg/mL (95% confidence interval (CI)
0.055–0.895) and LC10 = 0.029 μg/mL (95% CI 0.003–0.096),
respectively.

2.4 Test procedure

A total of 432 nymphs that were born within 4 h were selected
and reared individually in a rearing unit consisting of a plastic tube
(diameter 15 mm, length 70 mm) sealed using a sponge plug, with a
10 mm slit holding a newly excised wheat leaf (Cao et al., 2021). and
maintained at 22°C. On day 9, aphids (most of which had developed
into adults) were subjected to three insecticide treatments (i.e., SC,
PT, and NT) at three temperature amplitude (22 ± 0, 22 ± 6, and
22°C ± 12°C), with 48 adults per treatment (Figure 1). Individual
mortality and reproduction were assessed daily at 08:00, and dead
aphids and newly born nymphs were removed until all test aphids
were dead, and the experiment was completed. To ensure adequate
nutrient supply, wheat leaves in the feeding tubes were replaced
every 2 days.

2.5 Statistical analyses

In this study, the longevity is determined as the time from day
10 until death of an adult after treatment; the fecundity is the total
number of offspring produced by an adult after day 10 until death;
the early fecundity is the proportion of the number of offspring
produced in the first 3 days to the total number of offspring. All data
were tested for normality using the Shapiro-Wilk test. We found that
most of the data were skewed. Therefore, we used the gamma error
distribution in generalized linear models for a two-factor analysis of
the adult longevity, fecundity and early fecundity (i.e., insecticide,
temperature amplitude, and their interactions) and the Fisher’s least
significant difference procedure for multiple comparisons between
treatments. The overall survival of adults was analyzed using a Cox
proportional hazard model with two factors (insecticide and
temperature amplitude) and their interactions. The survival
curves of the adult between treatments under a single factor were
analyzed using the Log-rank approach with the Kaplan-Meier
analysis, and multiple comparisons between the two were made
using the Holm-Sidak method. All data were analyzed using SPSS
21.0 (SPSS Inc., Chicago, IL, United States).
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The intrinsic rate of increase (rm) was calculated as follows: R0 =
∑lx*mx, G = ∑lx*mx*X/∑lx*mx, rm = ln (R0)/G, where “X” is the
age of the adult, lx is the proportional survival of the adult at age “X”,
and “mx” is the number of offspring per the adult at age “X”. We
used the bootstrap procedure in R to analyze the mean and 95% CI
of the intrinsic rate of increase of S. avenae population.
Kruskal–Wallis multiple comparisons were also performed
between treatments using the “Kruskal” function in the
“agricolae” data package of R (Zhu et al., 2019).

3 Results

3.1 Effects of interaction between
temperature amplitudes and insecticides on
survival

Temperature amplitudes (χ2 = 73.73, df = 2, p < 0.001) had a
significant effect on survival, whereas insecticides (χ2 = 5.64, df = 2, p =
0.060) had no significant effect on survival. However, the interaction of
these two factors had a significant effect on survival (χ2 = 25.78, df = 4, p<
0.001) (Table 1; Figure 2). Under temperature amplitude ±0°C,
insecticides had no significant effect on survival (χ2 = 6.54, df = 2, p =
0.083). However, insecticides significantly affected survival at the
temperature amplitude ±6 and ±12°C (χ2 = 9.36, df = 2, p = 0.009;
χ2 = 69.49, df = 2, p < 0.001), and the survival with the NT treatment was
significantly higher than that with the PT treatment. Under SC, NT, and
PT treatments, temperature amplitudes had a significant effect on survival
(χ2= 75.43, df= 42, p< 0.001; χ2= 62.90, df= 42, p< 0.001; χ2= 93.24, df=
42, p < 0.001, respectively), and survival at the temperature amplitude ±
6°C was significantly higher than that at ± 0 and ± 12°C.

3.2 Effects of interaction between
temperature amplitudes and insecticides on
longevity

Temperature amplitudes (χ2 = 333.00, df = 2, p < 0.001) and
insecticides (χ2 = 47.68, df = 2, p < 0.001) had significant effects on

longevity, whereas their interaction had no significant effect on
longevity (χ2 = 6.27, df = 4, p = 0.180) (Table 1; Figure 3). Under the
temperature amplitude ± 0°C, insecticides had a significant effect on
longevity (χ2 = 8.79, df = 2, p = 0.012). Longevity treated with NT and
PT was lower than that treated with SC (0.3 and 2.6 days,
respectively). At the temperature amplitude ± 6 and ± 12°C,
insecticides had significant effects on longevity (χ2 = 11.37, df =
2, p = 0.003; χ2 = 41.13, df = 2, p < 0.001). Longevity with NT
treatment was higher than that with SC treatment (increased by
0.9 and 0.6 days, respectively), and longevity with PT treatment was
lower than that with SC treatment (decreased by 3.7 and 5.7 days,
respectively). With the SC, NT, and PT treatments, the temperature
amplitude had significant effect on longevity (χ2 = 54.13, df = 2, p <
0.001; χ2 = 44.59, df = 2, p < 0.001; χ2 = 56.81, df = 2, p < 0.001,
respectively). Moreover, longevity with the SC, NT and PT
treatments, under the temperature amplitude ± 6°C was higher
than those at the temperature amplitude ± 0°C (9.6, 10.6,
8.5 days, respectively), and longevity at the temperature
amplitude ± 12°C was lower than that at temperature
amplitude ± 0°C (1.5, 0.6, 4.6 days, respectively).

3.3 Effects of interaction between
temperature amplitudes and insecticides on
fecundity

Temperature amplitudes (χ2 = 190.12, df = 2, p < 0.001) and
insecticides (χ2 = 39.34, df = 2, p < 0.001) had significant effects on
fecundity, whereas their interaction had no significant effect on
fecundity (χ2 = 7.18, df = 4, p = 0.127) (Table 1; Figure 4). Under the
temperature amplitude ± 0°C, insecticides significantly affected
fecundity (χ2 = 17.35, df = 2, p < 0.001). Fecundity with NT and
PT treatment was lower than that with SC treatment (1.8 nymphs/
adult and 8.3 nymphs/adult, respectively). At the temperature
amplitude ± 6°C, insecticides significantly affected fecundity (χ2 =
7.31, df = 2, p = 0.026), and fecundity treated with NT and PT was
lower than that treated with SC (1.86 nymphs/adult and
7.5 nymphs/adult, respectively). At the temperature
amplitude ± 12°C, insecticides significantly affected fecundity

FIGURE 1
The experimental design including treatments and endpoints used.
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(χ2 = 29.69, df = 2, p < 0.001). Fecundity observed under NT
treatment was higher than that under SC treatment (increased by
5.4 nymphs/adult), and fecundity observed under PT treatment was
lower than that under SC treatment (decreased by 4.4 nymphs/
adult). Under the SC, NT, and PT treatments, temperature
amplitudes had significant effect on fecundity (χ2 = 61.93, df = 2,
p < 0.001; χ2 = 21.28, df = 2, p < 0.001; χ2 = 51.02, df = 2, p < 0.001;
respectively). The fecundity under the temperature amplitude ± 6°C,
with the SC, NT, and PT treatments, was higher than that under the
temperature amplitude ± 0°C (7.5 nymphs/adult, 7.4 nymphs/adult
and 8.3 nymphs/adult, respectively), and fecundity treated with
temperature amplitude ± 12°C was lower than that of
temperature amplitude ± 0°C (13.7 nymphs/adult, 6.6 nymphs/
adult and 9.9 nymphs/adult, respectively).

3.4 Effects of interaction between
temperature amplitudes and insecticides on
early fecundity

Temperature amplitudes (χ2 = 189.21, df = 2, p < 0.001),
insecticides (χ2 = 37.65, df = 2, p < 0.001), and their interaction
(χ2 = 18.63, df = 4, p < 0.001) had a significant effect on the early
fecundity (Table 1; Figure 5). Under the temperature amplitudes ±
0 and ± 6°C, insecticides had no significant effect on the early
fecundity (χ2 = 5.65, df = 2, p = 0.059; χ2 = 2.99, df = 2, p = 0.225).
At ± 12°C, insecticides significantly affected the early fecundity (χ2 =
23.30, df = 2, p < 0.001), and the effect of NT treatment was lower
than that of SC treatment (1.93% lower), whereas the early fecundity
with PT treatment was higher than with SC treatment (27.26%
higher). Under the SC, NT, and PT treatments, temperature
amplitudes had significant effect on the early fecundity (χ2 =

57.52, df = 2, p < 0.001; χ2 = 36.29, df = 2, p < 0.001; χ2 = 51.55,
df = 2, p < 0.001). The early fecundity at the temperature
amplitude ± 6°C, with the SC, NT, and PT treatments, was lower
than that at the temperature amplitude ± 0°C (decreased by 14.2%,
16.0% and 18.2%, respectively), while the early fecundity at
temperature amplitude ± 12°C was higher than that at
temperature amplitude ± 0°C (increased by 18.6%, 10.9%, and
34.1%, respectively).

3.5 Effects of interaction between
temperature amplitudes and insecticides on
the intrinsic rate of increase

Temperature amplitudes (χ2 = 12820.61, df = 2, p < 0.001) and
insecticides (χ2 = 861.48, df = 2, p < 0.001), including their
interaction (χ2 = 1967.31, df = 2, p < 0.001), significantly affected
the intrinsic rate of increase (Table 1; Figure 6). At the temperature
amplitude ± 0 and ± 6°C, the intrinsic rate of increase was
significantly affected by insecticides (χ2 = 161.702, df = 2, p <
0.001; χ2 = 198.620, df = 2, p < 0.001). The intrinsic rate of
increase with the NT treatment was low than that with SC
treatment (0.05 and 0.04, respectively), and the intrinsic rate of
increase with PT treatment was lower than that with SC treatment
(0.06 and 0.03, respectively). At the temperature amplitude ± 12°C,
the intrinsic rate of increase was significantly affected by insecticides
(χ2 = 234.90, df = 2, p < 0.001). The intrinsic rate of increase was
higher with PT treatment than with SC treatment (increased by
0.10) and lower with PT treatment than with control SC treatment
(decreased by 0.03). Under SC, NT, and PT treatments, the intrinsic
rate of increase was significantly affected by temperature amplitudes
(χ2 = 263.11, df = 2, p < 0.001; χ2 = 253.21, df = 2, p < 0.001; χ2 =

TABLE 1 Results of the temperature amplitude and insecticide effects on Sitobion avenae.

Trait Source χ2 Df p

Survival Temperature amplitudes (TA) 73.73 2 <0.001

Insecticide treatments (IT) 5.64 2 0.060

TA x IT 25.78 4 <0.001

Longevity Temperature amplitudes (TA) 333.00 2 <0.001

Insecticide treatments (IT) 47.68 2 <0.001

TA x IT 6.27 4 0.180

Fecundity Temperature amplitudes (TA) 190.12 2 <0.001

Insecticide treatments (IT) 39.34 2 <0.001

TA x IT 7.18 4 0.127

Early fecundity Temperature amplitudes (TA) 189.20 2 <0.001

Insecticide treatments (IT) 37.65 2 <0.001

TA x IT 18.63 4 <0.001

Intrinsic rate of increase Temperature amplitudes (TA) 12820.61 2 <0.001

Insecticide treatments (IT) 861.48 2 <0.001

TA x IT 1967.31 4 <0.001
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256.80, df = 2, p < 0.001, respectively). The intrinsic rate of increase
at the temperature amplitude ± 6°C with SC, NT, PT treatments was
lower than that at the temperature amplitude ± 0°C (decreased by

0.19, 0.18, and 0.16, respectively). The intrinsic rate of increase at the
temperature amplitude ± 12°C with SC and NT was lower than that
at the temperature amplitude ± 0°C (decreased by 0.09,

FIGURE 2
Effects of insecticides (A) and temperature amplitudes (B) on the survival curve. Different letters above the curve indicate significant differences
between treatments (p = 0.05); 0, 6, and 12 represent the different temperature amplitudes; SC, NT, and PT represent the control, high chlorine, and
imidacloprid treatment, respectively.

FIGURE 3
Box plot of the longevity under various temperature amplitudes (A) and insecticides (B). The upper and lower boundaries of the box indicate the 75th
percentile and 25th percentile of the dataset. The black horizontal line and short dash line within the box represent the median and mean values,
respectively. Error bars above and below the box indicate the minimum and maximum values, respectively. Different letters above each box indicate
significant differences (p < 0.05) among the treatments.
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0.06 respectively), but the intrinsic rate of increase at the
temperature amplitude ± 12°C with PT was higher than that at
the temperature amplitude ± 0°C (increased by 0.07).

4 Discussion

4.1 Effects of insecticides alone

Under constant temperature, insecticides had a delayed effect on
adult longevity, fecundity, and the intrinsic rate of increase. Overall,
these results are consistent with previous studies about the effects of

low-dose insecticides on life history traits of insects (Lu et al., 2016;
Imelda Martiner et al., 2017). We also found that the delay in the
negative effects of imidacloprid on adult longevity and fecundity was
much more profound than that of beta-cypermethrin at the same
low dose. This may be due to the different correlations between
specific insecticides and temperature fluctuations (Nadia et al.,
2018). Previous studies have shown that imidacloprid has a
positive temperature coefficient and virulence increases with
increasing temperature (Gonias et al., 2008; Liu et al., 2016). The
toxicity of beta-cypermethrin decreased gradually with an increase
in temperature, showing a negative correlation (Musser and
Shelton., 2005; Harwood et al., 2009). In this study, the constant

FIGURE 4
Box plot of the fecundity under various temperature amplitudes (A) and insecticides (B). The upper and lower boundaries of the box indicate the 75th
percentile and 25th percentile of the dataset. The black horizontal line and short dashed-line within the box represent the median and mean values,
respectively. Error bars above and below the box indicate the minimum and maximum values, respectively. Different letters above each box indicate
significant differences (p < 0.05) among the treatments.

FIGURE 5
Box plot of early fecundity under various temperature amplitudes (A) and insecticides (B). The upper and lower boundaries of the box indicate the
75th percentile and 25th percentile of the dataset. The black horizontal line and short dashed-line within the box represent the median and mean values,
respectively. Error bars above and below the box indicate the minimum and maximum values, respectively. Different letters above each box indicate
significant differences (p < 0.05) among the treatments.
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temperature of 22°C may have increased adults’ susceptibility to
imidacloprid, and it may be closely related to immune gene
expression, detoxification enzyme and acetylcholine lipase activity
(Fan et al., 2021).

4.2 Effects of temperature amplitudes alone

The temperature amplitude significantly affected the phenotype
and population parameter of the adult. Compared with constant
temperature and medium temperature amplitude (22°C ± 6°C), the
wide temperature amplitude 22°C ± 12°C (maximum daily
temperature up to 34°C) reduced adult longevity and fecundity,
but the adults still survived long enough to reproduce. This result is
discordant with the result of previous studies on the correlation
between insect survival and constant temperature. Sitobion avenae
could not survive at 30°C (Dean, 1974; Jiang et al., 2018). In our
experiments, the adult longevity was reduced to 9.9 days and the
fecundity was reduced to 10.1 nymphs/adult at the wide temperature
amplitude 22°C ± 12°C. These trends show that an adult could still
survive and have relatively highly fecundity even when the
maximum daily temperature reached 34°C. This may be owing to
the repair effect of protective substances such as heat shock proteins,
mannitol, and sorbitol accumulated during the suitable recovery
temperature after the adults experienced a daily high temperature
(Yang and Stamp, 1995). The early fecundity with wide temperature
amplitude 22°C ± 12°C was significantly higher than that under the
constant temperature (22°C ± 0°C) and medium temperature
amplitude (22°C ± 6°C), which may be caused by the response of
the adult to high temperature and pressure. High daily temperatures
(34°C) with the wide temperature amplitude (22°C ± 12°C) as a
temperature-pressure may cause the adult to accelerate
reproduction of offspring to maximize fitness, this change in
reproductive strategies is adaptive (Javoiš and Tammaru, 2004).

Compared with the constant temperature (22°C ± 0°C) and wide
temperature amplitude (22°C ± 12°C), medium temperature

amplitude (22°C ± 6°C) increased adult survival, extended the
adult longevity, and promoted fecundity. Studies have shown that
appropriate temperature amplitudes can accelerate development,
improve survival and temperature tolerance, increase fecundity and
ability to transmit poison and olfactory response, and so on (Colinet
et al., 2015). Our study showed that suitable temperature amplitude
significantly increased the survival, extended the longevity, and
increased the fecundity. This finding may be explained by the
fact that the appropriate temperature amplitude is closely related
to the increase in the activity or concentration of key proteins (heat
shock proteins), protective agents, and so on, in the metabolic
processes of the insects (Colineta et al., 2007; Lalouettea et al., 2011).

4.3 Effects of the interactions between
temperature amplitudes and insecticides

The negative effect of imidacloprid on the adult was further
intensified under temperature fluctuations. Compared with the
results seen with constant temperature, the wide temperature
amplitude of 22°C ± 12°C significantly inhibited the survival,
longevity, and fecundity of the adult; moreover, medium
temperature amplitude (22°C ± 6°C) significantly reduced the
increases in the adult phenotypic parameters. This shows the
toxicity of insecticides increases as temperature amplitudes increased.
Studies have shown that the exposure of organisms to insecticides can
increase their biological sensitivity to climate change; this phenomenon
is known as TICS (Janssens et al., 2018; Verheyen et al., 2019). This may
be due to the conversion of insecticides to more toxic metabolites at
wide temperature amplitudes (Harwood et al., 2009), reducing the adult
longevity and fecundity. It is also possible that under a high daily
temperature, the higher metabolic rate of the adult leads to increased
respiration and eating to compensate for energy expenditure. This high
uptake of poisons, especially by those with a high metabolic conversion
rate, will offset the increased rates of detoxification and excretion at high
temperatures, which may precipitate increased toxicity (Hooper et al.,

FIGURE 6
The Intrinsic rate of increase (mean ± SD) under temperature amplitudes (A) and insecticides (B). Different lowercase letters represent significant
differences between different treatments at the p = 0.05 level.
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2013; Hallman and Brooks, 2015). The intrinsic rate of increase includes
the contributions of initial reproductive age, reproductive peak,
reproductive duration, and population survival. Population dynamics
are one of the main factors that predict the growth potential of insect
populations. Compared to our results seen with constant temperature,
the interaction between temperature amplitudes and imidacloprid
markedly affected the intrinsic rate of increase. Under the wide
temperature amplitude, imidacloprid was associated with a high
intrinsic rate of increase, due to the short adult longevity and
increased early fecundity (Ahn and Choi., 2022). In conclusion, both
the individual fitness of the adult and the response of population growth
to positive temperature coefficient insecticides were considerably
affected by the temperature amplitude.

Unexpectedly, we found that beta-cypermethrin profoundly
affected adults across the different temperature amplitudes.
Specifically, we found that beta-cypermethrin significantly
improved survival, longevity, and fecundity of the adult at the
medium temperature amplitude (22°C ± 6°C). At the wide
temperature amplitude (22°C ± 12°C), the adult treated with
beta-cypermethrin was not significantly affected compared to
those with SC treatment, and the negative effect of beta-
cypermethrin on the intrinsic rate of increase decreased
gradually with the increase in temperature amplitudes. This
finding disagrees with the results of previous studies, which
have shown that wide temperature amplitudes can increase the
toxicity of insecticides (Hooper et al., 2013; Van et al., 2014). For
example, under high temperature fluctuations, chlorpyrifos
increased the mortality of the mosquito (Culex pipiens) larvae
(Delnat et al., 2019a), and it also increased the mortality of
damselfly (Ischnura elegans) (Verheyen et al., 2019). However,
our results showed that the toxicity of beta-cypermethrin to the
adult was very weak at temperature amplitudes (22°C ± 6°C and
22°C ± 12°C). First, there may be a close relationship with the
temperature properties of insecticides. Previous studies have
shown that the effectiveness of beta-cypermethrin is negatively
correlated with increases in the temperature (Harwood et al.,
2009). In this study, the daily high temperature increased (up to
34°C) at the wide temperature amplitude (22°C ± 12°C), which
greatly limited the effectiveness of beta-cypermethrin. Second,
when organisms respond to one stressor by increasing energy
expenditure, it may have a synergistic effect on their response to
another stressor (Liess et al., 2016). Insecticides and
environmental stress can yield coevolution in the target
insects (Delnat et al., 2019b). In this study, the daily high
temperature reached 34°C at the wide temperature amplitude
(22°C ± 12°C), which far exceeded the upper limit of the
development threshold of wheat aphid (30°C). When the adult
resisted the environmental stress pressure, the synergistic effect
of temperature and insecticides might be generated to reduce the
toxic effect of high chlorine levels on the adult. In conclusion, in
the interaction between the temperature amplitude and the
negative temperature coefficient insecticide (beta-
cypermethrin), the individual or population fitness of the
adult improved, indicating that the negative temperature
coefficient insecticide improved the environmental adaptability
of insects to the temperature fluctuations.

4.4 Risk assessment of insecticides under
climate change

By studying the effects of temperature amplitude and insecticide
exposure on insect survival, longevity, fecundity, and population growth,
we demonstrated that diurnal temperature fluctuations encountered by
most organisms in nature are a key environmental factor that shaped
toxicity-linked responses. First, we found that the insecticide toxicity
measured at constant temperature is not only inconsistent with the
actual conditions in the field but also independent of the interaction of
global climate change and ecotoxicology on insects. Second, we
demonstrated that insecticides could alter biological sensitivity to
climate change and that the temperature amplitude is an important
component of TICS. Finally, our study showed that wide temperature
amplitude conditions significantly increased the virulence of insecticides
with positive temperature coefficients and not of those with negative
temperature coefficients. This suggests that the temperature properties of
insecticides are also crucial for assessing the risk of insecticide virulence
under current and future climate scenarios. Overall, our results highlight
the importance of combining the temperature amplitudes with the
temperature characteristics of insecticides to improve the accuracy
and prediction of insecticide risk assessments under global climate
change (Rasmussen et al., 2018; Delnat et al., 2019b; Verheyen et al.,
2019).
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