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Human plasma kallikrein (PKa) is obtained by activating its precursor, prekallikrein
(PK), historically named the Fletcher factor. Human PKa and tissue kallikreins are
serine proteases from the same family, having high- and low-molecular weight
kininogens (HKs and LKs) as substrates, releasing bradykinin (Bk) and Lys-
bradykinin (Lys-Bk), respectively. This review presents a brief history of human
PKa with details and recent observations of its evolution among the vertebrate
coagulation proteins, including the relations with Factor XI. We explored the role
of Factor XII in activating the plasma kallikrein–kinin system (KKS), the mechanism
of activity and control in the KKS, and the function of HK on contact activation
proteins on cell membranes. The role of human PKa in cell biology regarding the
contact system and KSS, particularly the endothelial cells, and neutrophils, in
inflammatory processes and infectious diseases, was also approached. We
examined the natural plasma protein inhibitors, including a detailed survey of
human PKa inhibitors’ development and their potential market.
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1 Brief history

Human plasma kallikrein [E.C.3.4.21.34] (PKa), initially described by Hathaway et al.
(1965), was later further characterized (Hathaway and Alsever, 1970) and then named the
Fletcher factor (after the surname patient-family name). The detailed characterization and
isolation of PKa were the first approaches (Moriya et al., 1965; Colman et al., 1969;
McConnell and Mason, 1970; Sampaio et al., 1974).

Wuepper and Cochrane (1972) reported the effect of PKa on coagulation in vitro, and the
studies with enzymes purified from human plasma established that PKa acts as a proteolytic
activator of factor XII (FXII) (Revak et al., 1977).

Plasma deficiency in PKa presented alterations in coagulation tests, kinin release,
fibrinolytic activity after plasma activation by kaolin, and chemotactic activity, all of
them characterized by correction with plasma prekallikrein (PK), the zymogen form of
PKa, that functions as a kinin releaser (Wuepper, 1973), chemotactic factor, and Hageman
factor (FXII) activator (Weiss et al., 1974; Nakayasu and Nagasawa, 1979).

Detailed studies demonstrated the hepatic synthesis of PK and its secretion into the
blood as a single polypeptide chain glycoprotein with two molecular species of molecular
masses (MW) 88 kDa and 86 kDa (Nagase and Barrett, 1981), respectively, due to the
differences in glycosylation extension. PK is activated to PKa by Factor XIIa (FXIIa), and the
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two species consist of a heavy chain (amino-terminal), with an MW
of 43 kDa, and a light chain (carboxy-terminal), with two variants of
MW 36 kDa or 33 kDa and occurring in equimolar amounts. The
light-chain region contains the enzymatic active site, and hydrolyzes
oligopeptide substrates, protein substrates, and the zymogen form of
FXII. Nevertheless, the heavy chain participates in binding to high-
molecular weight kininogen (HK), providing its optimal cleavage,
and in the surface-dependent activation of coagulation (Mandle
et al., 1976; Fisher et al., 1982; van der Graaf et al., 1982). Figure 1
shows the sequence and structure of PKa after activation by
hydrolysis at the R371–I372 peptide bond, and a schematic
structure from a high-resolution 1.3-Å structure of full-length
PKa in the active conformation, including the apple domains, has
been reported in detail (Li et al., 2019).

Relevant observations about the physiological control of PKa are
its clearance from circulation by hepatocytes (Borges et al., 1981;
Borges and Kouyoumdjian, 1992; Kouyoumdjian et al., 2005),
inhibition by the plasma-circulating protein inhibitors discussed
in section 7.1, and inactivation by proteolysis (Motta et al., 1992). In
addition to the contact system of the intrinsic coagulation pathway,
PKa plays a role in pathophysiological processes as a potent pro-
urokinase (pro-uPA) activator (Ichinose et al., 1986), in the
renin–angiotensin system as a prorenin activator (Hsueh et al.,
1981; Almeida et al., 2000), as an activator of C3 convertase
(DiScipio, 1982; Irmscher et al., 2018), and as factor B of the
complement system (Hiemstra et al., 1985).

2 Genomic structure and evolution

The genomic structure of PK (also KLKB1) (Beaubien et al.,
1991; Yu et al., 2000) comprises a single gene in the human genome
that maps to chromosome 4 (q34-q35), and hepatocytes are the local
center of the PK gene transcription. However, it also occurs at
different levels in non-hepatic tissues, but circulating PK in plasma is

obtained essentially from the liver. It would be reasonable to assume
that PK synthesized in extrahepatic tissues presents special functions
in or close to their synthesis locations (Ciechanowicz et al., 1993;
Hermann et al., 1999; Neth et al., 2001; Neth et al., 2005).

The evolution of the plasma kallikrein–kinin system (KKS) and
Factor XI (FXI) described by Ponczek et al. (2008) and later in more
detail by Ponczek et al. (2020) showed the KKS appeared in lobe-
finned fish, the ancestors of all land vertebrates. Duplication of the
gene for PK occurred during mammalian evolution, resulting in FXI
changing independently of the KKS in placental mammals.

A significant observation related to the evolution of the KKS
was the molecular studies of kalliklectin from channel catfish
(Ictalurus punctatus), a fish-specific lectin containing eight apple
domains, with structures similar to those of mammalian PK/FXI
but without proteolytic activity (Tsutsui et al., 2021). Recently,
the same group reported genomic sequences encoding a protein
with apple and serine protease domains in a few cartilaginous and
bony fish species by bioinformatic analysis and also purified, by
mannose-affinity chromatography. Two ~70 kDa proteins from
the blood plasma of Ictalurus punctatus containing internal
amino acid sequences were mapped onto possible PK/FXI-like
sequences, which contains the typical cleavage site of mammalian
PK and FXI, indicating protease activity (Tsutsui et al., 2023).
Another new finding in this report is that catfish PK/FXI-like
proteins have lectin activity.

Table 1 shows the PK, FXI, FXII, and HK appearances in the
representative classes in the evolution, as reported by Ponczek et al.
(2020), in which we added the recent contribution of Tsutsui et al.
(2023) that can provide alternative evolutionary scenarios.

Relevant evolution occurred in the A4 domain of tetrapod PKs,
including humans, with the additional Cys321–Cys326 disulfide
bond (Figure 1) (McMullen et al., 1991), which is also present in the
lungfish. The cysteine C326 in PK-A4 resulted in an extra disulfide
bridge in PK-A4, and the substitution by G326 in FXI-A4 resulted in a
free -SH group of C321 responsible for FXI dimerization (Cheng

FIGURE 1
The sequence of PKa shows the apple domains A1 through A4 that constitute the heavy chain, linked to the catalytic domain (light chain) by a
disulfide bound. The apple domains A1, A2, and A3 contain six cysteine residues linked by three disulfide bridges (C1-C6, C2-C5, and C3-C4; the numbers
indicate the order of each cysteine in sequence). The apple domain A4 contains a fourth disulfide bridge. The connecting sequences of the apple domains
are in italics.
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et al., 2003). Another relevant acquisition of FXI is proline at
position 368 (P368), close to the cleavage site (R369-I370), for the
activation to FXIa, which turned out to be susceptible to thrombin
that requires proline at the P2 position (Schechter and Berger, 1967;

Gallwitz et al., 2012), that amplifies the coagulation process and
integrates the extrinsic and intrinsic pathways, as reviewed in
Mohammed et al. (2018) and recently revisited in Barroeta et al.
(2023).

TABLE 1 Evolution of vertebrate coagulation proteins. The symbols in the columns indicate if a gene for the respective proteins was identified (+) or not identified
(−) in genomic analyses. Data from Ponczek et al. (2020); Tsutsui et al. (2023). Table 1 was reprinted from BlooEsterl W, Bhoola KDd Adv. 4(24) Dec 22. Ponczek MB,
Shamanaev A, LaPlace A, Dickeson SK, Srivastava P, Sun MF, Gruber A, Kastrup C, Emsley J, Gailani D. The evolution of factor XI and the kallikrein–kinin system.
Pages 6135-6147, 2020. Doi:10.1182/bloodadvances.2020002456, with permission from Elsevier, License 5600360083462, Copyright Clearance Center’s
RightsLink® . RightsLink® .

Class Example organism PK FXI FXII HK

Jawless fish (Agnatha) Sea lamprey - - -- -

Cartilaginous fish (Chondrichthyes) Whale shark - - - -

Actinopterygii Zebrafish (ray-finned fish) - - - -

Channel catfish (Ictalurus punctatus) + + - -

Lobe-finned fish (Sarcoptyrigii) Coelacanth + - - +

West African lung fish + - + +

Amphibians African clawed frog + - + +

Reptiles American alligator + - + +

Birds Chicken + - - +

Egg-laying mammals (Monotremes) Duck-billed platypus + + + +

Pouched mammals (Marsupials) Opossum + + + +

Placental mammals (Eutherians) Human + + + +

Placental diving mammals (Cetaceans) False killer whale - + - +

FIGURE 2
Setting of the contact-phase factors HK, PK, FXI, and FXII on neutrophils, with the reciprocal activation of PK—HK with bradykinin (BK) and Lys-BK
released by tissue kallikrein 1(KLK1), adapted with permission from Henderson et al.,1994. Figure 2 was reprinted from Blood 84(2) Jul 15. Henderson LM,
Figueroa CD, Muller–Esterl W, Bhoola KD. Assembly of contact-phase factors on the surface of the human neutrophil membrane, pages 474-82, 1994.
Doi: 10.1182/blood.V84.2.474.474, with permission from Elsevier, License #5597371352787, Copyright Clearance Center’s RightsLink

®
.
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3 Cell biology of the plasma
kallikrein–kinin system

Two extensive and comprehensive reviews of biochemistry and
interactions of the blood contact activation system (Colman and
Schmaier, 1986) and bioregulation of kinins (Bhoola et al., 1992)
stressed the structural and functional characterization of PKa and its
chains, along with its role related to coagulation, fibrinolysis,
complement, and inflammation. PKa potentiates platelet
aggregation induced by ADP, collagen, and adrenaline (Cassaro
et al., 1987; Ottaiano et al., 2017).

The study of the KKS proteins in cell biology was a landmark
between contact and KKSs despite their participation in both
processes (Colman and Schmaier, 1997). The outer face of the
neutrophil membrane binds the contact-phase proteins (HK, PK,
FXI, and FXII) (Figure 2), as demonstrated by immunolocalization
techniques (Henderson et al., 1994).

The endothelial cells and platelet membranes assemble HKs;
however, on endothelial cells and the extracellular matrix, PK
binds mainly through assembled HK, and this interaction allows
PKa formation independent of the FXII assembly on the cell
membrane (Motta et al., 1998; Schmaier, 1998; Motta et al., 2001;
Motta and Tersariol, 2017). Heat-shock protein 90 (Hsp-90)
(Joseph et al., 2002) and prolylcarboxypeptidase (PRCP)
(Shariat-Madar et al., 2002) are two other activators of PK
besides FXIIa.

PKa plays relevant roles in inflammation, as reviewed with
appropriate citations (Schmaier, 2016). Thrombosis and
inflammation are present in many tissue injuries with multiple
crossed-ways and interfaces between them (Wu, 2015), and with
extensive participation of neutrophils (Mortaz et al., 2018),
including all types (Rosales, 2018).

4 Functions of the structural domains
of kininogens

Muller–Ester’s and Schmaier’s groups identified the portions of
HK that bind to the cell surface using monoclonal antibodies against
different parts of HK (Kaufmann et al., 1993; Hasan et al., 1994) and
the discontinuous binding site for HK on the PK heavy chain (Hock
et al., 1990).

The HK interaction with the cell surface has been well
characterized (Schmaier and McCrae, 2007). The HK presents six
domains from its N-terminal portion (D1-D6); each domain plays a
particular function that characterizes the whole molecule as a
multifunctional protein. The domains D5(His-Gly-Lys rich),
D4(BK), and D3 (cysteine protease inhibitor) allow the molecule
to interact with the cell membrane. Nevertheless, after HK cleavage
and bradykinin (BK) release, the intact molecule turns to BK-free-
HK (HKa) (Lalmanach et al., 2010).

The organization of HK in six domains, as described previously,
with clearly defined functions, has been well-established and
reviewed in many publications. Nonetheless, determining its
tridimensional (3D) structure is still challenging. The size of the
protein, its multi-structural organization, and heavy glycosylation
seem to be barriers to obtaining this goal. The structural changes
that probably follow BK release or the acquired conformation upon

an interaction with PK or ligands in the endothelial surface should
be equally challenging to obtain. As recently explained by Ponczek,
2021), neither crystallography nor NMR methods provided
published structures of HK. As suggested, a probably helpful
approach, given the recent advances in the technique, would be
the utilization of cryo-electron microscopy (cryoEM) not only for
the determination of the 3D structure of HK itself but also for its
many known physiologically relevant complexes with protein or
non-protein molecules. For example, the interaction of HK with
glycosaminoglycans and Zn2+ (Gozzo et al., 2011), which changes
the kinetics of BK release by the PK from HK, would be attractive
structural targets for cryoEM.

PK is an unusual plasma protease as it does not recruit its
principal substrate, HK, upon activation. However, it instead
circulates as a zymogen in a tightly bound but inactive PK–HK
complex (Mandle et al., 1976), whose structure consists of HK
binding to discontinuous sites of PK at its N-terminal apple
domain in the rank order of binding affinity for kininogen of
A2 > A4 = A1 > A3, A2 domain being essential for binding
(Renné et al., 1999). It is important to mention that regions of
the A3 domain have increased surface exposure in PKa compared to
PK, indicating conformational changes upon activation (Li et al.,
2019).

PK and FXI, through their heavy chain, circulate bound to
domain 6 of HK (Vogel et al., 1990; Kunapuli et al., 1993). Either FXI
or PK interacts via the apple domain A2 on the HK sequence
(F582NPISDFPDT591); nevertheless, in this interaction with HK, PK
has the second exosite in the apple domain A1, but FXI interacts
with a unique pocket formed between A2 and A3 domains (Li et al.,
2023).

The membrane-binding proteins of both HK and HKa
(activated kininogen) on endothelial cells include the globular
domains of the complement factor C1q receptor (gC1qR),
urokinase plasminogen activator receptor (uPAR), and
cytokeratin 1 (CK1), and the affinity levels among them are
gC1qR > CK1 > soluble uPAR, indicating that gC1qR is
dominant for binding. uPAR is an essential membrane-binding
protein for differential binding and signaling between HK and
HKa (Pixley et al., 2011).

Proteoglycans (PGs) are molecules expressed by all cells and
found in all extracellular matrices (ECMs), consisting of a protein
core onto which one or more of the negatively charged
polysaccharide compounds, glycosaminoglycan (GAG) chains, are
covalently attached (Karamanos et al., 2018). Heparan sulfate works
as a putative receptor of either HK or PK, alone or in complex with
each other, mediating the endocytosis and activation of HK and PK
(Motta and Tersariol, 2017).

5 Kallikrein–kinin system as a
multifunctional system

The two forms of plasma kininogens, HK and LK (low-
molecular weight kininogen), are the products of a single gene
that maps to 3q26-qter. The single kininogen gene of 11 exons of
27 kb produces a unique mRNA for HK and LK by alternative
splicing. HK and LK share the coding region of the first nine exons, a
part of exon 10 containing the BK sequence, and the first 12 amino
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acids after the carboxy-terminal sequence of BK. Exon 11 codes for a
unique 4-kD light chain of LK, and the complete exon 10 contains
the entire coding sequence for the unique 56-kD light chain of HK.
So, the splice variant LK is 409 amino acids in length, and the
principal difference is the loss of HK domain 6 (Colman and
Schmaier, 1997).

The tissue and PKa, KLK1 and PKa, belong to the same family of
serine proteases and show high sequence similarity in the region
encoding the trypsin-like domain. Interestingly, the comparative
genomics and phylogenetic analysis argue for a previous origin of
PKa than KLK1. Kallikreins exert their major physiological roles by
acting as proteases. Still, the expression of KLK protein isoforms,
without the protease activity, may indicate that KLKs have other
functions, at least in humans (Koumandou and Scorilas, 2013).

5.1 Role of bradykinin

The kinins, initially BK and, by the action of carboxypeptidases,
desArg9BK, are the end active peptides generated after the activation
of PK to PKa. Human KLK1, unlike PKa, cleaves LK to generate Lys-
BK (also kallidin), which is converted to BK by a second
aminopeptidase cleavage (Pathak et al., 2013). The
pathophysiological and beneficial physiological effects of kinins in
various cardiovascular disorders such as hypertension, ischemic
heart disease, left ventricular hypertrophy, ventricular
remodeling, congestive heart failure, and diabetic conditions
occur by the stimulation of BK receptors (B2 and B1) (Heitsch,
2003; Sharma, 2003; Marceau et al., 2020).

Recently, comprehensive reviews have extensively dealt with
many aspects of BK and desArg9BK generation; its metabolism by
endo, carboxy, and amino peptidases; and the multitude of actions
attributed to both peptides in many cell models, tissues, and organs
(Lalmanach et al., 2010; Campbell, 2013; Motta et al., 2018). The role
of BK in angioedema as the B2BK receptor agonist has been
unequivocally established (Hofman et al., 2016; Schmaeir, 2018;
Rex et al., 2022; Gailani, 2023) through the increase in vascular
permeability, but also desArg9BK, the B1BK receptor agonist, seems to
be relevant as these receptors modulate neutrophil trafficking (Araújo
et al., 2001). Neutrophil elastase release, among other effects (Stuardo
et al., 2004), is one of the factors able to inactivate the C1-esterase
inhibitor (C1-INH) or cleave FXII, accelerating FXII activation by
PKa (de Maat et al., 2019; Ferrara et al., 2021).

A recent review highlights multiple mechanisms for the
increased generation of kinins or their slowed inactivation,
resulting in angioedema (Gailani, 2023). Of significant interest is
the recently described mutation on the Glu311-plasminogen that
turns plasmin, which is able to release BK from HK and LK at
considerably higher rates than wild-type plasmin. Considering that
LK concentrations are two to four times higher in plasma than HK,
all this evidence indicates that LK, previously a not-so-relevant
player in BK generation in angioedema, can be an important actor.

5.2 Role of FXII in activation of KKS

FXII, the zymogen of the protease FXIIa, plays a role in BK-dependent
angioedema and thrombosis by activating prekallikrein and factor XI

zymogen (FXI). These activation processes are highly magnified when
FXII binds to a surface through EGF1, gaining an open conformation that
facilitates FXII activation. These processes are recently described and
discussed in detail (Shamanaev et al., 2022; Shamanaev et al., 2023).

More recently, the crystal structure for analyzing factor XII, HK,
or both binding to gC1qR has been solved. FXII-HK-gC1qR forms a
ternary complex assembled in the presence of Zn2+, stimulating
reciprocal FXII-PK activation by gC1qR (Kaira et al., 2020). The
authors also compared the asymmetric binding onto gC1qR to
multiple client proteins that can be colocalized by asymmetric
binding onto the Hsp-90 dimer (Flynn et al., 2015). The
extracellular Hsp-90 has been described as a chaperokine
involved in inflammatory processes (Taha et al., 2019) and as a
PK activator on the cell surface, as mentioned previously (Joseph
et al., 2002).

6 Mechanisms of the KKS in diseases

It is relevant to emphasize that the initial contributions of the
plasma KKS related to coagulation, fibrinolysis, and inflammation
processes remain under investigation over the years (Kolte and
Shariat-Madar, 2016; Schmaier, 2016; Simão and Feener, 2017;
Oehmcke-Hecht et al., 2022). More recently, it has been shown
that PKa could be a significant physiological activator of FIX
(Kearney et al., 2021).

Genetic manipulation of the KKS inmice has allowed recognition
of the physiological role of the KKS in health and disease (Girolami
et al., 2014). Mice deficient in the PK gene (Klkb1−/−) show an
alternative mechanism for thrombosis protection, in addition to
reduced contact activation, mediated by increased receptor Mas,
prostacyclin, Sirt1, and KLF4 (Stavrou et al., 2015).

6.1 Role in non-infectious diseases

In the central nervous system inflammatory processes, PKa acts
as a neuromodulator by engaging PAR-2 and BK-B2 receptors (Jaffa
et al., 2021), and the complex biology of kinins also affects cancer
progression (Deepak et al., 2022). In liver injury, PKa cleaves the
transforming growth factor (TGF)-beta 1 (Li et al., 2018; Ahmed
et al., 2021).

6.1.1 Diabetes mellitus (PKa activation of PAR1/2)
In addition to neutrophils, endothelial cells, and platelets, the

contact system proteins bind to vascular smooth muscle cells
(VSMCs) (Fernando et al., 2005). In the aortic VSMC, PKa
activates the ERK1/2 mitogen-activated protein kinase cascade
with the stimulation of ADAM 17 (a disintegrin-metalloprotease)
via a PAR1/2 receptor-dependent mechanism, without the
involvement of BK receptors. The BK-independent PKa action
may regulate vascular responses in pathophysiologic states, such
as diabetes mellitus (Abdallah et al., 2010).

6.1.2 Ocular and cerebral disorders (BK release
by PKa)

The connection of fibrinolysis and the KKS at several levels
supports understanding hereditary angioedema and other forms of
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vascular permeability mediated by BK (Tomita et al., 2012; Kaplan
and Maas, 2017).

In the eye, the consequences of diabetes are microvascular
abnormalities, the proliferation of retinal vessels, and increased
retinal vascular permeability. The involvement of either
kallikrein–kinin or renin–angiotensin systems has been reported
in diabetic retinopathy, glaucoma, uveitis, diabetic macular edema,
and age-related macular degeneration. In this way, the breakdown of
the blood–retinal barrier function, which leads to increased retinal
vascular permeability, results in significant alterations in the
biochemical components of intraocular fluids and diffusion of
blood-circulating factors into the interstitial retinal space and
vitreous (Abdulaal et al., 2016; Igić, 2018; Othman et al., 2021).

In vitreous patients, carbonic anhydrase-I (CA-I), an intracellular
enzyme, suggests retinal hemorrhage and erythrocyte lysis (Gao et al.,
2007). CA-I induces alkalinization of vitreous, increasing the PKa activity
and generating factor XIIa, revealing a new pathway for contact system
activation. In addition, these authors showed the presence of extracellular
CA-I inside either the blood–retinal or blood–brain barrier that can
induce vasogenic edema. The blood–brain barrier breakdown seems to
exist in patients with temporal lobe epilepsy (TLE) due to KKS activation
(Simões et al., 2019).

6.2 Role in infectious diseases

The fibrin frames generated within the microvessels by contact
systems capture microorganisms, reducing their spread through the
whole organism, and facilitate activated leukocytes’ functions (Stark and
Massberg, 2021). This process results from converging platelet-
generated thrombogenesis with the activated neutrophils and
monocytes. This intrinsic path results from the autoactivation of
factor XII (FXIIa) by negatively charged substances, such as platelet-
derived polyphosphates and DNA, from neutrophil extracellular traps
that are the contact platforms. Once functional, FXIIa cleaves PK,
generating PKa, releasing BK from HK, and initiating inflammation.

BK induces vasodilation and increases microvascular
permeability by activating the endothelial BK-B2 receptors. A
second receptor for BK is BK-B1, which presents high affinity for
des-Arg9-BK produced by GPI-linked carboxypeptidase M by
removing the C-terminal arginine from BK.

Scharfstein and his group extensively reviewed these processes,
focusing mainly on Trypanosome cruzi as the infectious agent and
including extensive studies on the role of parasite cysteine proteases
(Scharfstein et al., 2012; Scharfstein et al., 2017; Scharfstein, 2018). A
similar interplay between parasite cysteine proteases of Leishmania
donovani and Leishmania chagasi also critically modulates
inflammation and innate immunity in visceral leishmaniasis using
the host kinin/B2 receptor activation pathway (Svensjö et al., 2006; 2014).

Plasmodium chabaudi and Plasmodium falciparum internalize
and process plasma kininogen by falcipain-2 and falcipain-3, both
cysteine proteases, releasing Lys-BK, BK, and des-Arg9-BK and
resulting in hemodynamic alterations during acute malaria
(Bagnaresi et al., 2012; Cotrin et al., 2013), as well as increasing
the blood–brain barrier permeability (Silva et al., 2019).

The extensive inflammation process is a characteristic of the
clinical evolution of periodontitis due to gingipain, the cysteine
protease complex from the Gram-negative bacteria Porphyromonas

gingivalis, which efficiently activates the KKS with direct kinin
release and PK activation with subsequent BK release (Imamura
et al., 1994; Monteiro et al., 2009).

Regarding virus infection, it is noteworthy that contact/KKS
activation followed by BK-induced enhancement of DENV
replication in the endothelium seems to underlie microvascular
pathology in dengue (Coelho et al., 2021). The contact/intrinsic
pathway contributes to the pathogenesis of the prothrombotic state
in COVID-19 (Carvalho et al., 2021; Alfaro et al., 2022; Henderson
et al., 2022). In completing this theme, we mentioned an opinion
article about the clinical repercussions of Prof. Dr. Sérgio Ferreira on
COVID-19 (Nicolau et al., 2020).

Zanelatto et al. (2022) recently showed that cathepsin B and PKa
measured in the serum can be used to discriminate different stages of
liver damage in HCV-infected patients as biomarkers to exclude
hepatic fibrosis in the population.

7 Plasma kallikrein inhibitors

7.1 Natural plasma proteins—serpins

C1-esterase inhibitor (C1-INH), α2-macroglobulin,
antithrombin-III (van der Graaf et al., 1983), protein C inhibitor
(PCI) (España et al., 1989), and alpha-2 plasmin inhibitor (Saito
et al., 1979) are reported as PKa inhibitors. All belong to the serine
proteinase inhibitor family (serpins).

Serpins have been extensively studied, and excellent recent reviews
deal with their action mechanism, improvements in specificity, and
potential use as drugs for replacement therapies (Maas and de Maat,
2021; Bouton et al., 2023). Briefly, serpins are proteins acting as
molecular traps to proteases, particularly but not exclusively serine
proteases, whose “beacon” is their carboxy-terminal regions, usually
called the reactive center loop (RCL) that keeps the serpin in a high-
energy state. Once cleaved, the RCL, but before a water molecule
promotes the deacylation of the enzyme, changes to a lower energy
state, where the remaining RCL remains linked to the enzyme in a new,
lower-energy state. This structure is then buried in the five-strand beta-
sheet (ß sheet A) present in serpins. It forms a sixth strand that makes
water access difficult, blocks deacylation, and distorts the enzyme’s
active center, rendering it inactive.

C1-INH plays a fundamental role in PKa inhibition. As estimated
from biochemical experiments, approximately 42% of PKa inhibition is
due to C1-INH activity, and 50% could be linked to α2-macroglobulin
(Schapira et al., 1982) in normal plasma. The remaining 8% of
inactivation could be attributed to other protease inhibitors in the
plasma. The complete framework is much more complex when
considering other enzymes and inhibitors in the in vivo steady-state
physiological or pathological conditions. Proteolytic enzymes from the
immune cells, for example, neutrophil elastase, can be released from the
polymorphonuclear and mast cells and alter C1-INH activity (Ferrara
et al., 2021; Kajdácsi et al., 2021). Anionic glycosaminoglycans, like
heparin, heparan sulfate, chondroitin sulfate, and even polyphosphates,
can interact either with the inhibitors or with the enzymes and
dramatically change the inhibition or interaction constants (Grover
and Mackman, 2022), adding more complexity to these interactions, as
classically demonstrated for the antithrombin, PKa, HK, and heparin
interaction (Olson et al., 1993).
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7.2 Development and market overview

PKa inhibitor (PKi) development followed a parallel
trajectory, which is typical in discovering new drugs. Many
clues indicated the role of PKa in hereditary angioedema
(HAE) at the end of the fifties and beginning of the sixties, in
the last century. The work by Landerman et al. (1962) is not only
an elegant set of experiments and conclusions but also
demonstrates the role of PKa and suggests that a
“permeability factor (PF)" released from the plasma of patients
diagnosed with HAE was probably kallidin. Logical treatment of
these patients would be with replacement therapy of the inhibitor
to the proteinase or by an inhibitor to the proposed polypeptide.

This comprehensive review (Schmaier, 2018) clearly shows
that, in 1963, the puzzle of the etiology of HA was solved
(Donaldson and Evans, 1963). Still, the emergence of the
complement system and the role of C1-inhibitor (C1-INH) in
it postponed the recognition of Landerman’s suggestions to the
early seventies (Gigli et al., 1970).

PKa inhibitors were the first drugs to treat PKa disbalance
present in HA and also in other conditions related to
uncontrolled PKa activity, such as diabetic retinopathy, macular
edema (Bhatwadekar et al., 2020), sepsis, surgical intercurrences
observed in cardiopulmonary bypass (CPB) surgery and other
conditions related to inflammatory diseases, thrombotic events,
and vascular alterations (Bryant and Shariat-Madar, 2009).

Nonetheless, attention should be given to the proper production of
BK, as explained by Regoli andGobeil (2015) and recent reports relating
the reduced PKa activity to diabetic nephropathy (Härma et al., 2020).
As with many other proteinase inhibitors, at first, molecules found in
nature, like Kunitz and Bowman–Birk inhibitors, were purified and
characterized by chromatographic and structural tools that evolved
during the ‘70s, the ‘80s, and later, from plants (Oliva and Sampaio,
2009). As far as 1975, aprotinin (Trasylol®), a serine proteinase inhibitor
of animal origin, was assayed during extracorporeal circulation in an
open-heart surgery (Nagaoka and Katori, 1975).

However, most of these inhibitors have low specificity, potentially
induce immune reactions, and cannot be patented. Nonetheless, the

TABLE 2 3D structures of PKa available and deposited in the Protein Data Bank (PDB).

PDB ID resolution Year Title Reference

8A3Q 1.801 Å 2022 Human Plasma Kallikrein in complex with 14W McEwan, P.A. (2022) J Med Chem 65: 13629–13644

7N7X 2.1 Å 2022 Crystal structure of BCX7353 (ORLADEYO) in complex with
human plasma kallikrein serine protease domain at 2.1 Å
resolution

Krishnan, R., Yarlagadda, B.S., Kotian, P., Polach, K.J., Zhang,
W. (2021) J Med Chem 64: 12453–12468

6O1G Download FileView
File 2.2 Å

2019 Full length human plasma kallikrein with inhibitor BCX4161 Partridge, J.R, Choy, R.M. (2019) J Struct Biol 206: 170–182

6O1S 1.7 Å 2019 Structure of human plasma kallikrein protease domain with
inhibitor BCX4161 download FileView File

Partridge, J.R., Choy, R.M. (2019) J Struct Biol 206: 170–182

5TJX 1.41 Å 2017 Structure of human plasma kallikrein Partridge, J.R., Choy, R.M., Li, Z. (2017) ACSMed Chem Lett 8:
185–190

5F8Z 1.5 Å 2016 The crystal structure of human Plasma Kallikrein in complex with
its peptide inhibitor pkalin-1 CYS-PRO-ALA-ARG-PHE-M70-
ALA-LEU-PHE-CYS (protein)

Xu, M., Jiang, L., Xu, P., Luo, Z., Andreasen, P., Huang, M. To
be published

5F8T 1.55 Å 2016 The crystal structure of human plasma kallikrein in complex with
its peptide inhibitor pkalin-2

Xu, M., Jiang, L., Xu, P., Luo, Z., Andreasen, P., Huang, M.

5F8X 1.55 Å 2016 The crystal structure of human plasma kallikrein in complex with
its peptide inhibitor pkalin-3

Xu, M., Jiang, L., Xu, P., Luo, Z., Andreasen, P., Huang, M.

4ZOT 1.4 Å 2015 Crystal structure of BbKI, a disulfide-free plasma kallikrein
inhibitor at resolution

Shabalin,I.G., Zhou, D., Wlodawer, A., Oliva, M.L.V. (2015)
Acta Crystallogr F Struct Biol Commun 71: 1055–1062

4OGY 2.1 Å 2014 Crystal structure of Fab DX-2930 in complex with human plasma
kallikrein

Edwards,T.E., Clifton, M.C., Abendroth, J., Nixon, A., Ladner,
R. (2014) J Biol Chem 289: 23596–23608

4OGX 2.4 Å 2014 Crystal structure of Fab DX-2930 in complex with human plasma
kallikrein

Edwards,T.E., Clifton, M.C., Abendroth, J., Nixon, A., Ladner,
R. (2014) J Biol Chem 289: 23596–23608

2ANW 1.85 Å 2005 Expression, crystallization, and three-dimensional structure of the
catalytic domain of human plasma kallikrein: Implications for
structure-based design of protease inhibitors

Tang, J., Yu, C.L., Williams, S.R., Springman, E., Jeffery, D.,
Sprengeler, P.A., Estevez, A., Sampang, J., Shrader, W., Spencer,
J.R., Young, W.B., McGrath, M.E., Katz, B.A. (2005) J Biol
Chem 280: 41077–41089

2ANY 1.4 Å 2005 Expression, Crystallization, and the Three-dimensional Structure
of the Catalytic Domain of Human Plasma Kallikrein:
Implications for Structure-Based Design of Protease Inhibitors

Tang, J., Yu, C.L., Williams, S.R., Springman, E., Jeffery, D.,
Sprengeler, P.A., Estevez, A., Sampang, J., Shrader, W., Spencer,
J.R., Young, W.B., McGrath, M.E., Katz, B.A.2005) J Biol Chem
280: 41077–41089

7QOX 2019 Plasma kallikrein structure reveals apple domain disc-rotated
conformation compared to factor XI

Li, C., Voos, K.M., Pathak, M., Hall, G., McCrae, K.R., Dreveny,
I., Li, R., Emsley, J. (2019) J Thromb Haemost 17: 759–770
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scaffolds of those inhibitors were used in the future, in the 90s and
beyond, to select more effective molecules. Other contributions made to
understand the PKa specificities and potentially add to the design of new
inhibitors were obtained from many groups. The development of
sensible substrates, especially with quenched fluorescence properties,
accelerated the usually slow determination of kinetic constants (Chagas
et al., 1991) and could combine this techniquewith known interactions in
natural inhibitors (Nunes et al., 2003).

The group of Yoshio Okada, at Kobe University, during the ‘90s and
early 2003, searched for small peptidomimetic inhibitors based on the
known specificities of PKa. PSI-527 was one of the PKa inhibitors that
reached the clinical trial but was discontinued (Hashimoto et al., 2003).
Meanwhile, high-throughput methods for ligand selection became
available. Phage display of interaction regions with PKa from known
ligands or scFv immunoglobulin regions, peptide libraries, and chemical
libraries was used to search for more effective inhibitors with potential
clinical use.

In 1996, a specific and selective PKa inhibitor was obtained, later
named ecallantide, from a phage display selection/maturation
system, an inhibitor based on a Kunitz-type scaffold, identified
from the first Kunitz domain of human lipoprotein-associated
coagulation inhibitor (LAC1-D1), also known as tissue factor
pathway inhibitor-I or TFPI-I (https://www.creative-biolabs.com/
DX-88-Library-Construction.html) (Ley et al., 1996).

Later, in 2003, a paper entitled “DX-88 and HAE: a developmental
perspective,” where DX-88 was the ecallantide molecule, reported the
positive results of clinical phase I studies. In 2008, a summary of the DX-
88 development was published and indicated the size of the potential uses
of C1-INH activity replacement withmolecules other than C1-INH itself
(Lehmann, 2008). At this point, it became clear that a race between
pharma companies had started. In 2009, ecallantide was approved by the
Food andDrug Administration (FDA). From 2008 to 2010, concentrates
of C1-INH (Berinert licensed in Germany since 1985 and Cynrise) were
FDA-approved. A recombinant C1-INH (Ruconest, Rhucin) was
approved in Europe (2010) and the USA (2014).

Phage display libraries also generated monoclonal antibodies
that specifically inhibit PKa, like lanadelumab (Kenniston et al.,
2014), approved by the FDA in 2018.

As stated previously, C1-INH is a serpin. Historically, phage display
libraries based on the serpin scaffold have successfully found specific
inhibitors for proteases belonging to the KLK family (Cloutier et al.,
2004; Felber et al., 2006). However, we do not find reports of libraries
based on the serpin scaffold that could select specific PKa inhibitors.
Likewise, no other phage display libraries were found based on Kunitz
or Bowman–Birk inhibitors for PKa despite a structure published about
at least one of these inhibitors being effective for PKa inhibition (Zhou
et al., 2015). These libraries have not been tried or have not shown
effective results yet.

At the same time, phage display and other methods have originated
protein structures that are able to inhibit PKa. Synthetic chemists have
performed much work to create successful new inhibitory molecules.
Berotralstat (BCX7353) (Kotian et al., 2021), sebetralstat (Davie et al.,
2022), ATN-249 (Attune Pharmaceuticals), KVD824 (KalVista
Pharmaceuticals), THR-149 (Oxurion NV), RZ402 (Rezolute Bio), and
VE-3539 and VE-4840 (Verseon Corp) (Xie et al., 2020) were included.

Cyclic or bicyclic peptide libraries expressed in phage display
systems have been employed to select new high-affinity and
specificity inhibitors of PKa, whose interactions are extended to

sites far from the active site, opening the possibility to explore new
intermolecular interactions with PKa (Teufel et al., 2018).

Many options are on the way, including orally active inhibitors
and protocols aimed at acute, chronic, and prophylactic treatments
linked to PKa inhibition disbalance. These new developments of
synthetic molecules, their properties, and their uses have been the
subject of recent comprehensive reviews (Busse and Christiansen,
2020; Xie et al., 2020; Caballero, 2021; Busse and Kaplan, 2022).
Meanwhile, although none of the 3D PKa structures were available
on the Protein Data Bank database until 2005, 14 structures have
been deposited (some from the same complex at different
resolutions), as summarized in Table 2, indicating the increased
interest of pharma companies, a race in new developments on this
class of inhibitors and a sure indication of an exciting market.
Ecallantide in the USA had an estimated market of U$ 150 million
in 2010 (Zuraw et al., 2010). A recent report of 2010 estimated the
global plasma protease C1-inhibitor treatment market at US$
3,289.5 million in 2020, projected to be US$ 10,603.4 million in
2027 (https://www.coherentmarketinsights.com/market-insight/
plasma-protease-c1-inhibitor-treatment-market-4262).

A patent application (WO2022197761A1) claims that the
compounds of the invention may be therapeutically beneficial for
treating or preventing various ophthalmic, cardiovascular, or
cerebrovascular thromboembolic conditions in patients suffering from
unstable angina, acute coronary syndrome, refractory angina, myocardial
infarction, transient ischemic attacks, atrial fibrillation, strokes such as
thrombotic stroke or embolic stroke, venous thrombosis, coronary and
cerebral arterial thrombosis, cerebral and pulmonary embolism,
atherosclerosis, deep vein thrombosis, disseminated intravascular
coagulation, reocclusion or restenosis of recanalized vessels, hereditary
angioedema, uveitis, posterior uveitis, wet age-related macular
degeneration, diabetic macular edema, diabetic retinopathy, and
retinal vein occlusion. These perspectives are well beyond the original
purpose of C1_INH studies for treating HAE. Hopefully, in the face of
such a potential range of diseases or pathologies and the consequent
expected market, many innovations will be implemented in the field.
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