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Introduction:Wepropose an automatic sleep stage scoringmodel, referred to as
SeriesSleepNet, based on convolutional neural network (CNN) and bidirectional
long short-term memory (bi-LSTM) with partial data augmentation. We used
single-channel raw electroencephalography signals for automatic sleep stage
scoring.

Methods:Our framework was focused on time series information, so we applied
partial data augmentation to learn the connected time information in small
series. In specific, the CNN module learns the time information of one epoch
(intra-epoch) whereas the bi-LSTM trains the sequential information between
the adjacent epochs (inter-epoch). Note that the input of the bi-LSTM is the
augmented CNN output. Moreover, the proposed loss function was used to
fine-tune the model by providing additional weights. To validate the proposed
framework, we conducted two experiments using the Sleep-EDF and SHHS
datasets.

Results and Discussion: The results achieved an overall accuracy of 0.87 and
0.84 and overall F1-score of 0.80 and 0.78 and kappa value of 0.81 and 0.78
for five-class classification, respectively. We showed that the SeriesSleepNet was
superior to the baselines based on each component in the proposed framework.
Our architecture also outperformed the state-of-the-art methods with overall
F1-score, accuracy, and kappa value. Our framework could provide information
on sleep disorders or quality of sleep to automatically classify sleep stages with
high performance.

KEYWORDS

automatic sleep stage scoring, convolutional neural network, bi-directional long-short
term memory, single-channel EEG, deep learning

1 Introduction

Sleep is associated with human health and quality of life (Siclari and Tononi, 2017).
However, millions worldwide suffer from health problems due to sleep disorders (Lee et al.,
2019b). Sleep stage classification is an essential step in diagnosing or treating sleep
disorders (Phan et al., 2019). Polysomnography (PSG) signals are widely used in sleep
measurement examinations. These signals include biosignals from electroencephalography
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(EEG), electrooculography (EOG), electromyography (EMG), and
electrocardiography (ECG) (Fan et al., 2021). Specifically, EEG
signals are extensively used as unimodal biosignals to analyze sleep
quality and classify sleep stages.

Each sleep stage has a distinct characteristic (Fu et al., 2021).
These sleep stages are divided into either the Rechtschaffen and
Kales (R&K) standard (Wolpert, 1969) or the American Academy
of Sleep Medicine (AASM) standard (Grigg-Damberger, 2009). The
R&K standard separates sleep into six stages: wakefulness (Wake),
rapid eye movement (REM), and four sleep stages (S1–S4) as non-
rapid eye movement (NREM). The AASM divides sleep stages into
five stages.TheWake and REM stages remained the same as in R&K;
however, theNREM stage differed. During the S3 stage, delta activity
appears, and in S4, it is present formore than 50%of the time (Sinton
andMcCarley, 2004). In the AASM, S3 and S4 stages are represented
as a single sleep stage, the N3 stage. In the N3 stage, which is called
slow-wave sleep, delta activity appears dominantly (Fu et al., 2021).
During theN1 stage, alpha activity decreases and theta activity tends
to increase. The N2 stage is the beginning of full-fledged sleep, and
unique oscillations called K-complexes and spindles appear in the
central region (Choi et al., 2019). In the REM stage at the end of the
sleep cycle, theta activity is remarkably similar to the that inN1 stage
(Lee et al., 2019a). However, eye movement occurs during the REM
stage (Siclari and Tononi, 2017). In theWake stage, the alpha activity
becomes prominent (Grigg-Damberger, 2009).

Sleep experts manually distinguish sleep stages based on the
characteristics of each sleep stage. However, this can be tedious
and time-consuming (Phan et al., 2018; Ravan and Begnaud, 2019).
Hence, automatic sleep stage classification methods have been
widely developed. Initially, handcrafted features extracted from
biosignals, such as EEG or EOG signals, were used to classify sleep
stages (Redmond andHeneghan, 2006).These features are primarily
related to the spectral or temporal characteristics of the sleep stages.
Nevertheless, these handcrafted features may not be generalized
to a larger population owing to the heterogeneity associated with
the individuals (Supratak et al., 2017). Deep learning has recently
emerged as an alternative method to solve these problems. Its
strength is that the model learns the optimal features to be extracted
from the input data without humans having to put in the effort
of directly designating the features (Kim et al., 2019; Duan et al.,
2021). Many studies have begun to use deep learning for sleep stage
classification.

The class imbalance problem directly affects the classification
performance (Krawczyk, 2016; Thung et al., 2018). In this respect,
sleep stage scoring performance is limited owing to the different
proportions of sleep stages (Supratak et al., 2017). Two approaches
have been used to solve this problem. First, there is a data-level
approach that oversamples the data with a small number of classes.
This is simple and intuitive to balance the number of classes but
has the disadvantage of increasing the likelihood of overfitting and
increasing the computational time. It is also sensitive to noise or
outliers (Kumar et al., 2021). Another approach is to design a cost
function at the algorithm level. The classification of rare classes
is penalized more than the incorrect classification of abundant
classes. By designing a cost function, it naturally generalizes in
favor of a rare class (Kim et al., 2022). Therefore, we approach the
algorithm level to solve the class imbalance problem in sleep stage
scoring.

In this paper, we propose an automatic sleep scoring model,
SeriesSleepNet, based on convolutional neural networks (CNN) and
bidirectional long short-term memory (bi-LSTM) with partial data
augmentation using single-channel EEG signals. In this study, data
augmentation was applied using the sliding window method to
learn the connected time information in a small series and, not
to solve the class balance problem. In addition, it was used in bi-
LSTM after CNN, not at the beginning of the framework. Therefore,
we used the term “partial data augmentation.” The loss function
was modified by adaptively providing additional weights using the
training performance to solve the data balance problem. Specifically,
we used the F1-score, harmonicmean of precision and recall, for the
weighting of the loss function.The proposed framework can provide
sleep information for individuals with sleep stage classification for
healthcare applications.

The novelty of our paper is as follows:

• We proposed a deep learning model that can learn both inter-
epoch and intra-epoch in temporal information suitable for
sleep stage classification.
• We proposed a partial data segmentation using the sliding

window method to learn inter-epoch temporal information.
• We designed an adaptive cross-entropy loss function that

adaptively changes class-wise loss weights based on previous
training results to address the class imbalance in the sleep stage.

2 Related works

Many studies have been actively conducted on automatic sleep
stage scoring, and they either utilize only a single channel for
practical purposes or multiple channels for performance. Table 1
shows related studies for each biosignal using deep learning.

2.1 Using single-channel EEG signals

DeepSleepNet (Supratak et al., 2017) was proposed as an end-
to-end deep learning model and comprised two CNNs for feature
extraction and bi-LSTM as a classifier. The kernel size of each CNN
was set differently to extract both time series and frequency-domain
information. The reported overall accuracy was 86.2% for the F4-
EOG channel of the MASS dataset and 82.0% for the Fpz-Cz EEG
channel of the Sleep-EDF dataset.

Anothermodel (Sors et al., 2018) using CNNwas designed.This
model was composed of 12 convolutional layers, followed by one or
two fully connected layers. A softmax regression layer was then used
to predict the class probabilities. Four epochswere concatenated into
one sample to consider the surrounding epochs.The reported overall
accuracywas 87.0% for theC4-A1EEGchannel in the SHHSdataset.

One model (Yildirim et al., 2019) comprised two CNNs, and
one max-pooling layer was repeated five times. The reported overall
accuracy was 90.83% for the Fpz-Cz EEG channel of the Sleep-EDF
dataset. However, unlike other papers that include 30 m before and
after sleep asWake, the reported classification performance included
all waking hours. The number of Wake epochs is overwhelmingly
higher than in other sleep stages, which affects high performance,
making the results difficult to generalize. It is usually recommended
to classify the sleep stages, including the sleeping periods and
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30 m before and after sleep (Tsinalis et al., 2016). Therefore, it is
challenging to compare the performance of the proposed model to
other models.

U-time (Perslev et al., 2019) was developed using a temporal
fully convolutional network. This model comprises an encoder
block, a decoder block, and a segment classifier. The encoder
block repeats a structure with one max-pooling layer following two
convolutional layers four times. The decoder block comprises four
transposed-convolution blocks, each of which performs nearest-
neighbor upsampling of its input followed by convolution and
batch normalization. Finally, the sleep stages are predicted from the
segment classifier that performs average-pooling and convolutional
computation.The reported global F1-scorewas 79.0% for the Fpz-Cz
EEG channel of the Sleep-EDF dataset.

AttnSleep (Eldele et al., 2021) was designed based on a multi-
resolution CNN and adaptive feature recalibration. Moreover, this
framework adds a temporal context encoder and proposes a class-
aware loss function to solve the class imbalance problem. They
achieved an overall accuracy of 84.4% for the highest performance
using the Sleep-EDF dataset. However, the proposed weighted loss
function is based on the distribution of each class and does not
include the performance per class in the weight.

Others (Goshtasbi et al., 2022) designed an automatic sleep
scoring model with a full CNN named SleepFCN. SleepFCN
consists of two main modules: a multi-scale feature extractor and
a temporal sequential extractor. Each module is based on multiple
convolutional layers. In the multi-scale feature extractor module,
the model uses two different sizes of convolutional kernels (large
and small) to effectively extract the features from various frequency
bands, considering the time-frequency resolution trade-off. In the
temporal sequential extractor module, the authors used dilated
causal convolutional layers to efficiently capture the sequential
features of the sleep transition. They also used the weighted cross-
entropy loss function to alleviate the class imbalance problem in
sleep stage scoring, based on the ratio between the minor and
major classes. Using this approach, the authors achieved a faster
and simpler model architecture with high performance compared
to recurrent neural networks (RNN)-based models.

Sleep stage scoring frameworks using single-channel signals
have become more practical, but classification performance is not
as high as that of multi-channel signals. Therefore, an algorithm is
required to improve performance using only single-channel EEG
signals.

2.2 Using multi-channel signals

EEG can also be used to classify multi-channels for sleep stages.
One study utilized both the Pz-Oz channel and the FPz-Cz channel
of the EEG signal from the PSG signals (Sharma et al., 2021).
Discrete wavelet transform was used to decompose a 30-s EEG
segment to represent each epoch as a simple subband signal related
to a specific frequency, and dispersion entropy was used to quantify
signal uncertainty. As a result, in the Sleep-EDF dataset, 86.73%
accuracy was obtained in the 5-class sleep stage classification using a
random forest classifier. However, most multi-channel studies used
EEG signals and other biosignals together.

CNN model (Chambon et al., 2018) proposed a deep learning
architecture to perform temporal sleep stage classification using

multivariate and multimodal time series. The model is composed of
three convolutional layers and twomax-pooling layers.The reported
overall accuracy was approximately 80.2% for 20 EEG channels and
2 EMG channels in the MASS dataset.

MultitaskSleepNet (Phan et al., 2018) is a joint classification
and prediction CNN framework. This comprises two CNNs and
two max-pooling layers. Subsequently, the multitask softmax layer
classifies and predicts the sleep stages of each epoch. The reported
overall classification accuracy was 82.3% for the Fpz-Cz EEG and
horizontal EOG channels of the Sleep-EDF dataset and 83.6% for
the C4-A1 EEG, average EOG (ROC-LOC), and average EMG
(CHIN1-CHIN2) channels of the MASS dataset. They proposed
a sequence-to-sequence automatic sleep stage classification model
SeqSleepNet (Phan et al., 2019). The second model comprises two
bidirectional RNNs. The first bi-RNN extracts features from each
epoch, and the second bi-RNN predicts a label by considering
sequential information. The authors used gated recurrent unit cells
for the bi-RNN owing to their computational efficiency. In addition,
the short-time Fourier transform was used to convert the raw
input signals into temporal-spectral images. As a result, SeqSleepNet
represented the highest performance in the N1 and REM stages
compared to previous methods. The reported overall accuracy for
the C4-A1 EEG, average EOG (ROC-LOC), and average EMG
(CHIN1-CHIN2) channels of the MASS dataset was 87.1%.

Chriskos et al. (Chriskos et al., 2019) designed a classification
framework based on CNN using cortical connectivity images.
Synchronization features derived from cortical interactions are used
as the input data. They performed an independent component
analysis to remove noise components related to body movements,
and interference from other biological signals such as EOG, EMG,
and ECGmodulation.The extracted functional connectivitymetrics
are then processed asmultidimensional images, that are the input for
CNN. The reported overall accuracy was 99.85% for 19 EEG, two
EOG, one ECG, and one EMG channels of the experimental data
from the German Aerospace Agency.

RobustSleepNet (Guillot and Thorey, 2021) shows robust
performance across various unseen sleep datasets. To ensure the
robustness of the model, the authors mainly focused on handling
the incompatibility of the input data shape and extracting input
invariant features. RobustSleepNet takes raw bio-signals, such as
EEG, EOG, andEMGas input, and transforms them into normalized
spectrograms with signal processing. The normalized signals then
pass through the epoch encoder, which extracts input-invariant
features using bi-gated recurrent unit blocks and the attention
mechanism. With this approach, the authors reported the robust
performance of the model across various unseen sleep datasets in
experiments using multi-channel inputs.

U-sleep (Perslev et al., 2021) improved their previous work,
U-time (Perslev et al., 2019). This was designed to exhibit higher
generalization performance than U-time. Compared with U-time,
U-sleep has deeper layers and uses simpler cross-entropy loss
rather than the dice loss used in U-time. U-sleep takes two input
signals (EEG and EOG) for any arbitrary position and returns the
segmented sleep stages. The authors demonstrated the generalized
performance of U-sleep through experiments using various sleep
cohort datasets.

CoSleepNet (Efe and Ozsen, 2023) utilized only one EEG
channel and one EOG channel to increase practicality by utilizing
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as few channels as possible while utilizing multiple channels.
Specifically, the authors proposed a hybrid neural network
architecture using focal loss and discrete cosine transform methods.
Validation on the Sleep-EDF dataset resulted in the highest score
being 87.1% accuracy, 81.8% kappa value, and 79.8% F1-score in
overall performance.

The use of multi-channel signals, rather than single-channel
signals, demonstrated higher performance for sleep stage scoring.
Nevertheless, improving the classification performance using fewer
channels is crucial for practicality.

3 SeriesSleepNet

We propose SeriesSleepNet, a novel automatic sleep stage
classificationmodel composed of a CNN and bi-LSTMwith residual

fusion (Figure 1). The entire learning process involves two-stage
training. In the first stage, the CNN module is pre-trained. Raw
EEG signals of a single sleep epoch are used as input for training
the CNN module, and the module learns the temporal information
of one sleep epoch (intra-epoch). The next stage is for training the
bi-LSTM module. A pre-trained CNN is used in this stage. The
pre-trained CNN takes input signals that are partially augmented
using the sliding window method and returns the output features.
The resulting output features are used as the input for the bi-LSTM.
After the bi-LSTM returns the output feature, the input and output
features of the bi-LSTM are combined with the inner product, and
the combined features are used to classify the sleep stages for each
epoch (inter-epoch). Consequently, the sequential information of
the adjacent epoch can be considered for sleep stage scoring. We
also proposed an adaptive cross-entropy loss function that provides
additional weights adaptive to the F1-scores of the sleep stages

FIGURE 1
An overview of the SeriesSleepNet architecture. The proposed framework consists of two steps. In step 1, 30-s raw EEG signals are used as inputs of
CNN for extracting time information in a single sleep epoch (inter-epoch). The pre-trained CNN model was trained to be used in the next step while
learning temporal information in the inter-epoch. In step 2, the bi-LSTM uses the serial information (intra-epoch) extracted from the above CNN as
input. Here, the pre-trained CNN used for training bi-LSTM takes sequences of 30-s raw EEG signals, which is augmented by the sliding window
method. Subsequently, the input and output features of the bi-LSTM are combined with the inner product to classify the sleep stages. The red square
represents 30-s EEG epochs in both steps. The fs, xn, on, Wn, yn, Ln and ⊗ denote the sampling rate of the input signal, output features of CNN, output
features of bi-LSTM, the weight of adaptive loss function, predicted label, and a calculated loss of nth epoch, and operation symbol “inner product,”
respectively.
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TABLE 2 Details of layers and hyperparameters of CNN in the SeriesSleepNet.

Number Layers Number of filters Kernel size (H ×W) Stride (H ×W) Activation function

1 2D Convolution layer 1 16 1 × ( fs × 4) 1 × ( fs/16) ReLU

2 2D Convolution layer 2 32 1 × ( fs/12) 1 × 1 ReLU

3 2D Convolution layer 3 64 1 × 3 1 × 1 ReLU

4 Depth-wise 2D Convolution layer 16 1 × 1 1 × 1 —

5 2D Batch normalization 16 — — ReLU

6 Dropout (0.5) — — — —

7 Flatten — — — —

8 Fully-connected layer 1 (1024) — — — ReLU

9 Fully-connected layer 2 (256) — — — ReLU

10 Dropout (0.5) — — — —

11 Classification layer (number of classes) — — — Softmax

from the previous training epoch and used them as both CNN and
bi-LSTM.

3.1 CNN for training intra-epoch

Consecutive EEG signals that comprise 30-s interval PSG
epochs are exploited herein. In the first layer, we applied a kernel
size of fs (sampling rate) × 4 to extract the lowest frequency
band that we want to extract, 0.5 Hz. Subsequently, layers with
a kernel size of fs/12 and 3 were applied to consider both the
frequency and temporal information of EEG signals (Supratak et al.,
2017). To reduce the computational cost of extracting depth-wise
features between learned feature maps, we also applied depth-wise
convolution layers with a kernel size of one. The details of the
CNN architecture are presented in Table 2. After each convolutional
layer, the rectified linear unit is selected as the activation function
(i.e., relu(x) =max(0,x)). The output of the CNN is as follows.

xi = CNN(eeg
raw
i ) (1)

where eegrawi is a 30-s raw EEG signal of the ith sleep epoch and xi
is the output features. We also used the Adam optimizer (Kingma
and Ba, 2014) to boost the learning process for our model, and the
hyperparameters were selected as a batch size of 128, a learning rate
of 1e-3, and a weight decay of 1e-4. The output features were used as
the input for the bi-LSTM.

3.2 Bi-LSTM for training inter-epoch with
partial data augmentation

As shown in Table 3, the size of the input features is 256, which
is equal to the size of the output features of the CNN. LSTM
cells, based on the sequence length, are located in the forward
and backward directions. The sliding window method was used for
partial data augmentation of the input signals in this training stage.
This augmentation is for the input data to contain the intermediate
feature between two sleep epochs. As the sleep stage is scored with

TABLE 3 Details of hyperparameters of bi-LSTM in the SeriesSleepNet.

Hyperparameters Value

Learning rate 1e-4

Batch size 64

Weight decay 1e-5

Length of sequence 10, 20, 30, 40

Size of hidden state 256

Size of input features 256

Number of RNN layers 2

Dropout rate 0.1

30-s intervals, the important features for scoring the sleep stage
could be placed across two sleep epochs (for example, the feature
could start from 28-s segments of a sleep epoch and last until 2-s
segments of the next sleep epoch). For considering this, we utilized
4 s of overlapping segmentation with steps of 1 s using the sliding
window method to learn the connected time information. As a
result, 4 series of augmented data were used as inputs, and themodel
could consider the 4-s intermediate feature between the current and
next sleep epochs. The augmented input signals pass through the
pre-trainedCNN, and the output features of the CNNare used as the
input for the bi-LSTM. The size of all the bidirectional hidden states
is 512 (256 × 2). These cells calculate the weights using the features
received from the previous LSTM cell and the corresponding output
features of the CNN. They learn the sequential information between
adjacent epochs.

The output features containing the sequential characteristics and
input features containing the temporal information of each sleep
stage are combined with the inner product to classify the sleep stage.
This technique aims to connect and combine features from a CNN
into features from an LSTM in a feature-wise manner. Each element
of the resulting feature can contain feature information from the
output of theCNN. In contrast, DeepSleepNet (Supratak et al., 2017)
uses the concept of skip connection using the sum of the input
features and the output features as the input features of the next layer,
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TABLE 4 Details of two public datasets used in our experiments.

Dataset Num. of subjects EEG channel Sampling rate (Hz) Wake N1 N2 N3 REM Total epochs

Sleep-EDF 20 Fpz-Cz 100
8,285 2,804 17,799 5,703 7,717

42,308
19.6% 6.6% 42.1% 13.5% 18.2%

SHHS 329 C4-A1 125
46,319 10,304 142,125 60,153 65,953

324,854
14.2% 3.2% 43.8% 18.5% 20.3%

such as the skip connection of ResNet (He et al., 2016); however,
it may blur the information from the input features (Huang et al.,
2017). Therefore, the flow of information is in this manner. In this
regard, we used a connection method based on feature fusion using
an inner product (Hu et al., 2017; Mai et al., 2020). This has the
effect of estimating the similarity between two features (Mai et al.,
2020); thus, the resulting feature considers both the input and output
features of bi-LSTM according to their importance in classification.

3.3 Adaptive cross-entropy loss

The cross-entropy loss function (Rubinstein and Kroese, 2013)
is widely used and is known to be highly efficient in deep learning.
However, because of the different portions of sleep stages, a class
imbalance problem occurs, and sometimes this loss function can be
limited. Specifically, the N1 stage is often misclassified because the
proportion of the N1 stage is very low during sleep (Chambon et al.,
2018). To address this problem, AttnSleep (Eldele et al., 2021)
and SleepFCN (Goshtasbi et al., 2022) applied a fixed class-wise
loss weight based on the rarity of classes. Rarity-based weighting
methods are a natural and intuitive approach, but it is based on
heuristics.This kind of heuristic approach is influenced by inductive
bias. While inductive bias would be helpful in some cases but may
work as an inhibitor of effective training when the properties of the
dataset are unusual. In this respect, to reduce the inductive bias of
the fixed weighting methods, we propose a data-driven class-wise
weighting method for these cross-entropy functions. This process is
applied to calculating the F1-score of each class using the training
set and to adjust the weight according to the resulting F1-score when
every training epoch is completed. In summary, we used the normal
unweighted cross-entropy loss function for ten training epochs to
warm up the CNN and bi-LSTM.

The proposed loss function is expressed as follows:

loss =
{{{
{{{
{

−∑
i
[pi logp̂i] ife ≤

emax

3
,

−∑
i
[Wipi logp̂i] otherwise.

(2)

Wi = (1− logKCFi)
γ (3)

where pi and p̂i denote the probability of true label i and the
posterior probability of predicted label i, respectively. e and emax
indicate the current training epoch count and the max training
epoch value, respectively. K and γ are hyperparameters to adjust
the degree of weight factor Wi, and CFi denotes the class-wise F1-
score of class i resulting from the last training epoch. We conducted
a grid search to determine the proper values of K and γ for this
study and the values were selected as ten and three respectively
(Supplementary Table S1). To prevent gradient explosion caused by

a small value of CFi, we adjusted the value to 1e-4 when smaller
than 1e-4. With the adaptive loss function, we hypothesized that the
model could update its parameters by considering the difficulties of
each class, avoiding overfitting the parameters to classes that are easy
to learn.

We also applied label smoothing (Müller et al., 2019) to both
the original cross-entropy and adaptive cross-entropy loss. Label
smoothing converts hard labels into soft labels by using the following
equation:

yLSk = yk (1− α) + α/K (4)

where yLSk is the smoothed label of class k, yk is the hard label of class
k, α is a smoothing parameter, and K is the number of classes. In
this work, we set the parameter α as 0.1 for both the original cross-
entropy and adaptive cross-entropy.

4 Model training algorithm

We configured the parameters of the bi-LSTM after learning all
theCNNparameters. First, CNN learns the temporal features of each
sleep stage with one EEG epoch. Subsequently, the bi-LSTM learns
the sequential information of adjacent epochs using the output
features from the CNN. At this time, the output of the CNN already
used as the input of the bi-LSTM is combined with the output of the
bi-LSTM by the inner product. We set the maximum training epoch
emax to 30 for training both the CNN and bi-LSTM.

4.1 Step 1: training the CNN

Raw EEG signals from a single sleep epoch are used for the
CNN. When the training epoch count e is lower than 11, the model
uses the conventional cross-entropy loss function for warm-up; if
e is higher than 11 or equal to 11, the adaptive is used cross-
entropy loss function. As we evaluated the model with a nested
cross-validation method, we separated the training set into 90:10
ratios and used a smaller portion as the validation set. The model
was validated for every training epoch using the validation set, and
the model parameter recorded with the highest evaluation score in
the validation set was saved and used for testing. To use the proposed
adaptive cross-entropy loss function, we obtained the F1-score for
each class of the training set for each training epoch.

4.2 Step 2: training the Bi-LSTM

The pre-trained CNN module is transferred into the bi-LSTM
training stage. The CNN module takes the partially augmented EEG
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signals as input and returns the output features, which are used as
inputs for bi-LSTM. Note that we do not use the output features of
the bi-LSTMdirectly for the final classification, but the features after
combining with the input of the bi-LSTM using the inner product.
In other words, the output of the CNN (1 × 256) is multiplied
by the transposed output of the LSTM (512 × 1), resulting in a
combined feature (512 × 256). The combined feature passes through
the rectified linear unit (ReLU) activation and is pooled with average
pooling. The 512 × 1 feature was mapped back to 1 × 5 through two
fully connected layers, and the probability corresponding to each
sleep stage was then calculated using the softmax activation.

Similar to the process for the pretraining CNN module, The
conventional cross-entropy loss function is used if the training
epoch count e is lower than 11, and the proposed adaptive cross-
entropy loss function is used if e is greater than or equal to 11.
The F1-score of each class in the training set was calculated for
each training epoch and was used to update the weight of the
modified loss function. The LSTM model parameter was also saved
if it recorded the highest evaluation score in the validation set and
was used for testing.

5 Experiments

5.1 Public datasets

Two datasets are used in this study. The Sleep Cassette (SC)
subset from the Sleep-EDF (Goldberger et al., 2000; Kemp et al.,
2000), SHHS datasets (Quan et al., 1997) are shown in Table 4. This
study is mainly focused on the validation of healthy, normal sleep
recordings.

5.1.1 Sleep-EDF
This dataset comprised 20 healthy subjects aged 25–34. The PSG

recordings included two EEG channels (Fpz-Cz and Pz-Oz), one
horizontal EOG channel, and one submental chin EMG channel.
The EEG and EOG signals had a sampling rate of 100 Hz and the
EMG signals were sampled at 1 Hz. These data were labeled by sleep
experts into one of eight classes (“W,” “R,” “1,” “2,” “3,” “4,” “M,”
and “?”) according to R&K standards. Sleep stage “M” indicates
movement time and “?” denotes not scored. We merged “3” and
“4” into “3,” which is the same sleep stage according to the AASM
standard (Sinton and McCarley, 2004). Consequently, we classified
the five sleep stages according to with the AASM standard. Previous
studies have reported that classification performance using the Fpz-
Cz EEG channel was higher than that using the Pz-Oz EEG channel
(Hsu et al., 2013; Supratak et al., 2017). Therefore, we used only the
Fpz-Cz EEG channel in the SC subset. Moreover, we only exploited
the recordings before and after 30 min of sleep periods (i.e., the
in-bed parts from lights off time to lights on time) (Phan et al.,
2018).

5.1.2 SHHS
This consisted of two rounds of PSG recordings. We used only

the first round (SHHS-1) because all the data had the same sampling
data. This study included 5,805 subjects aged 40 years and older
and an apnea hypopnea index (AHI) to score apnea levels. PSG
recordings included two bipolar EEG channels (C4-A1 and C3-A2),

two EOG channels (right and left), one EMG channel, and one
ECG channel. The EEG, EOG, and EMG channels had a sampling
rate of 125 Hz, whereas the EOG channels had a sampling rate of
50 Hz. Each of the 30-s epochs is labeled R&K standard by an expert,
and we reorganized S3 and S4 stages into the N3 stage by AASM,
eventually converting to five sleep stage classifications: Wake, REM,
N1, N2, and N3. In this work, we used the C4-A1 EEG channel
(Sors et al., 2018) and the data quality was outstanding formore than
6 h. We included data with no apnea (AHI < 5) to classify healthy
subjects. We attempted to exclude as many other factors as possible
because sleep apnea itself is a variable that greatly affects EEG
signals, following the experimental setups of AttnSleep (Eldele et al.,
2021). Consequently, 329 subjects were selected to build the SHHS
dataset.

5.2 Experimental setup

For the Sleep-EDF dataset, we evaluated SeriesSleepNet using
leave-one subject-out (LOSO) nested cross-validation. This method
is an inter-target classification approach in which a generalized
network is learned using data from the subject pool (training stage),
and the learned knowledge is transferred to a new subject (test
stage) (Fahimi et al., 2019). In this respect, this method is effective
in evaluating the generalization ability of the model compared to
the existing method of dividing the training and test sets (Lee et al.,
2022). Therefore, we used 20 folds cross-validation in the Sleep-
EDF dataset (Phan et al., 2018). For the SHHS dataset, we conducted
20 folds cross-validation in a nested manner by dividing the data
into 20 groups, as in AttnSleep (Eldele et al., 2021). The process
was repeated five times, as in previous studies (Shu et al., 2019;
Rahman et al., 2020), and the mean and standard deviation were
calculated.

To validate our model, we compared SeriesSleepNet to several
state-of-the-art methods. For a fair comparison, we only used
models that performed under the same experimental setups as ours
(single channel EEG as input, LOSO cross-validation for Sleep-EDF,
and 20 folds cross-validation for SHHS) with the same number
of total sleep epochs in our study (Sleep-EDF = 42,308, SHHS =
324,854).

Note that we utilized and implemented the model of Olesen
et al. (Olesen et al., 2021) with a single-channel EEG input (Fpz-
Cz for Sleep-EDF; C4-A1 for SHHS) without signal preprocessing
for a fair comparison to other models and adjusted the learning
rate from 0.1 to 0.01 because the model couldn’t train its
parameters with the original one in our experimental setups. We
also implemented RobustSleepNet (Guillot and Thorey, 2021) and
U-sleep (Perslev et al., 2021) and tested them in our experimental
setups for a fair comparison because they were originally designed
to use multi-channel input, utilized with different data samples, and
evaluated with different methods.

The overall F1-score, accuracy, and kappa value were used as
performance measurement criteria. These performance metrics
are indicators of commonly used model performance (Suk et al.,
2014; Chambon et al., 2018). In particular, the F1-score is
often used as an indicator when the data label is unbalanced
(Phan et al., 2019). In this regard, we measured the class-wise
F1-score.
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5.3 Implementation

Theproposedmethod and baselinemodels were implemented in
Python 3.7 using Pytorch v1.3.1. For training and testing, a computer
in Intel Core i9-10980 KE, 3.00-GHzCPUand 128-GBRAM, and an
NVIDIA GTX 3090 GPU was used.

6 Results and discussion

6.1 Classification performance of sleep
stage

6.1.1 Sleep-EDF
Experiments were performed to explore whether the sequence

length is an important factor in our proposed model. We applied
by applying sequence lengths of 10, 20, 30, and 40 in bi-LSTM,
and compared the classification performance for sleep stage scoring.
Figure 2 shows the confusion matrix of SeriesSleepNet according
to the sequence length of 30 in bi-LSTM from the Sleep-EDF
dataset. As shown in Supplementary Figure S1, the overall F1-
scores were 78.9%, 79.5%, 79.8%, and 79.6% for the sequence
lengths of 10, 20, 30, and 40, respectively. Moreover, we achieved
overall accuracies of 84.1%, 84.6%, 84.8%, and 84.1% and kappa
values of 0.783, 0.789, 0.792, and 0.790, respectively. In the F1-
score in the N1 stage, the classification performance using a
sequence length of 30 was higher than that using sequence lengths
of 10, 20, and 40. More specifically, when the sequence length
was 30, the F1-score of the N1 stage was 49.4%, which was
higher than the 47.2%, 48.8%, and 49.1% at 10, 20, and 40,
respectively.

Figure 3 shows the statistical results of the performance
according to the sequence length. In the class-wise F1-score, there
was a statistical difference only in the REM stage (chi-square =
0.007), and there was no difference in other stages. In particular,

FIGURE 2
Confusion matrix of 5-class sleep stage classification with the
sequence length in bi-LSTM of 30 using the Sleep-EDF dataset. A total
of 42,308 epochs were used, and the values in the parenthesis
indicate the normalized values.

in the REM stage, when the sequence length was 30, the F1-score
was significantly higher than when it was 10 and 20, which was
applied to Fisher’s least significant difference procedure for multiple
comparisons. As shown in Figure 4, the overall metrics also had
a higher performance at 30 than when the sequence length was
10 or 20 (F1-score: Chi-square = 0.017, Accuracy: Chi-square =
0.013, Kappa value: Chi-square = 0.016). There was no statistical
difference in performance when sequence lengths of 30 and 40
were used, but a longer sequence length increased the calculation
time, so we applied a sequence length of 30 to proceed with future
analysis.

Although most recent sleep stage scoring models have been
developed and tested using datasets labeled with the AASM
criterion, the R&K criterion is still widely used for sleep stage
scoring (Malekzadeh et al., 2022). To verify the general performance
of the model when it was used for practical applications, we
conducted an additional experiment on the proposed model with
the Sleep-EDF dataset labeled with the R&K criterion. Table 5 lists
the overall performance for each criterion. The overall performance
of the proposed model decreased when we experimented with the
R&K criterion compared with the AASM criterion. Specifically,
the overall F1-score decreased from 79.8% to 74.2%, and the
accuracy and kappa decreased from 84.8% to 82.2% and 0.792 to
0.760, respectively. Nevertheless, there was no statistical difference
between the F1-score (p = 0.081) and accuracy (p = 0.078).
On the other hand, there was a statistical difference in the
kappa value (p < 0.001), which was higher when AASM was
applied than when R&K was applied, but this is considered a
natural phenomenon because the chance level decreases as the
number of classes increases. Supplementary Figure S2 is shown
in the confusion matrix applied to R&K using the Sleep-EDF
dataset.

6.1.2 SHHS
Figure 5 shows the confusion matrix of SeriesSleepNet

according to a sequence length 30 of in bi-LSTM from the SHHS
dataset. The classification performance resulted in an overall F1-
score of 77.7%, overall accuracy of 84.1%, and a kappa value of

FIGURE 3
Comparison of class-wise F1-score in REM stage according to
sequence length in bi-LSTM using the Sleep-EDF dataset. * indicated a
significant difference with Fisher’s least significant difference
procedure for multiple comparisons (p < 0.05).
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FIGURE 4
Comparison of overall metrics according to sequence length in
bi-LSTM using the Sleep-EDF dataset. * indicated a significant
difference with Fisher’s least significant difference procedure for
multiple comparisons (p < 0.05).

TABLE 5 Comparison of the classification performance by sleep stage scoring
criteria using the Sleep-EDF dataset.

Criteria Overall metrics

F1-score (%) Accuracy (%) Kappa

AASM (5-class) 79.8 ± 0.3 84.8 ± 0.3 0.792 ± 0.004

R&K (6-class) 74.2 ± 1.5 82.2 ± 0.1 0.760 ± 0.001

Mean ± standard deviation.

0.777. The class-wise F1-score was 83.8%, 48.6%, 86.0%, 83.6%, and
86.4% for Wake, N1, N2, N3, and REM stages, respectively. The
result with the SHHS dataset showed a slightly lower performance
compared to the result with the Sleep-EDF dataset, except for the
class-wise F1-score of the REM stage.

FIGURE 5
Confusion matrix of 5-class sleep stage classification with the
sequence length in bi-LSTM of 30 using the SHHS dataset. A total of
324,854 epochs were used, and the values in the parenthesis indicate
the normalized values.

6.2 Ablation study

We performed ablation experiments using the Sleep-EDF
dataset to prove the effectiveness of each component. The proposed
framework consists of four components: i) basic architecture based
on CNN with bi-LSTM, ii) residual fusion when the outputs of
CNN and bi-LSTM are combined in the final output, iii) partial
data augmentation in the input of bi-LSTM, and iv) the proposed
adaptive cross-entropy loss function. We calculated the sleep stage
classification performance with and without each component, as
listed in Table 6. As a result of the Kruskal-Wallis test, there were
statistical differences in all overall metrics and class-wise F1-scores
(p < 0.001). Supplementary Table S2 shows the detailed description
of each pairwise comparison between the two rows of Table 6. Here,
the bi-LSTM baseline indicates that the output of the CNN was not
combined with the output of the LSTM; only the bi-LSTM output
was used to predict the sleep stages.

6.2.1 Basic architecture
Using the CNN without bi-LSTM, F1-scores of 71.0% and

72.2% were achieved using the original cross-entropy and proposed
adaptive cross-entropy, respectively. The role of a CNN is to extract
temporal information within one epoch as an intra-epoch time
series. In contrast, the use of bi-LSTM without residual fusion
under the same conditions resulted in an F1-score performance
improvement of between 4% and 6% compared to when only
the CNN was used for the classification. The bi-LSTM module
learns sequential information between adjacent epochs as an inter-
epoch time series. In this regard, the sleep stage contains crucial
connected information within or between EEG samples, which is
thoroughly learned. Furthermore, models using basic CNN without
bi-LSTM have a class-wise F1-score of the N1 stage that is relatively
lower at 26.7% and 32.9% of the original cross-entropy and the
proposed adaptive cross-entropy, respectively. This suggests that the
classification of the N1 stage requires more inter-epoch information
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TABLE 6 Classification performance of ablation study using Sleep-EDF dataset.

CNN
bi-LSTM Loss function Overall metrices Class-wise F1-score(%)

Baseline SC RF PDA CE ACE F1-score (%) Accuracy (%) Kappa Wake N1 N2 N3 REM

◦ × × × × ◦ × 71.0 ± 0.5 79.7 ± 0.3 0.721 ± 0.004 85.1 ± 0.3 26.7 ± 2.1 85.0 ± 0.5 86.4 ± 0.9 72.0 ± 0.4

◦ × × × × × ◦ 72.2 ± 0.5 79.4 ± 0.5 0.719 ± 0.006 85.1 ± 0.6 32.9 ± 1.0 85.2 ± 0.4 86.3 ± 0.4 71.7 ± 1.0

◦ ◦ × × × ◦ × 76.9 ± 0.4 83.5 ± 0.3 0.773 ± 0.004 88.2 ± 0.8 40.9 ± 1.7 87.2 ± 0.2 87.7 ± 0.2 80.6 ± 0.4

◦ ◦ × × × × ◦ 78.1 ± 0.3 84.4 ± 0.2 0.786 ± 0.003 89.6 ± 0.9 42.7 ± 1.0 87.8 ± 0.2 88.2 ± 0.1 82.1 ± 0.5

◦ ◦ ◦ × × ◦ × 76.9 ± 0.4 83.4 ± 0.2 0.772 ± 0.003 87.9 ± 0.2 41.0 ± 1.5 87.8 ± 0.2 87.8 ± 0.2 80.5 ± 0.6

◦ ◦ ◦ × × × ◦ 78.2 ± 0.4 84.2 ± 0.3 0.783 ± 0.004 88.9 ± 0.7 44.1 ± 0.8 87.8 ± 0.2 88.4 ± 0.2 81.8 ± 0.7

◦ ◦ × ◦ × ◦ × 77.1 ± 0.4 83.5 ± 0.2 0.773 ± 0.003 88.4 ± 0.9 41.5 ± 1.3 87.2 ± 0.2 87.7 ± 0.2 80.5 ± 0.9

◦ ◦ × ◦ × × ◦ 78.5 ± 0.1 84.5 ± 0.1 0.786 ± 0.002 89.6 ± 0.7 44.4 ± 0.8 87.8 ± 0.2 88.3 ± 0.2 82.1 ± 0.5

◦ ◦ × × ◦ ◦ × 78.4 ± 0.5 84.3 ± 0.3 0.784 ± 0.004 89.7 ± 1.2 44.8 ± 2.0 87.3 ± 0.2 88.0 ± 0.2 82.0 ± 0.7

◦ ◦ × × ◦ × ◦ 79.5 ± 0.4 84.7 ± 0.3 0.791 ± 0.004 90.1 ± 0.9 48.1 ± 0.9 87.9 ± 0.2 88.3 ± 0.1 82.8 ± 0.5

◦ ◦ ◦ × ◦ ◦ × 78.9 ± 0.3 84.5 ± 0.2 0.787 ± 0.003 89.2 ± 0.6 45.4 ± 0.9 87.6 ± 0.3 88.1 ± 0.3 82.7 ± 0.5

◦ ◦ ◦ × ◦ × ◦ 79.2 ± 0.3 84.6 ± 0.3 0.789 ± 0.004 89.4 ± 0.6 47.3 ± 0.6 88.0 ± 0.2 88.5 ± 0.2 82.7 ± 0.8

◦ ◦ × ◦ ◦ ◦ × 78.8 ± 0.2 84.5 ± 0.2 0.788 ± 0.002 89.7 ± 1.1 45.9 ± 0.6 87.7 ± 0.3 88.0 ± 0.2 82.7 ± 0.9

◦ ◦ × ◦ ◦ × ◦ 79.8 ± 0.3 84.8 ± 0.3 0.792 ± 0.004 89.7 ± 0.8 49.4 ± 1.4 87.9 ± 0.2 88.2 ± 0.2 83.6 ± 0.3

◦ = activation; × = inactivation; Mean ± standard deviation; Skip-connection = SC; Residual fusion = RF; partial data augmentation = PDA; adaptive cross-entropy = ACE; original
cross-entropy = CE.
Bold values indicate the highest score.

than intra-epoch information. In other words, the CNN effectively
extracts information on the sleep epoch, but it lacks the capability to
extract inter-epoch information. For DeepSleepNet (Supratak et al.,
2017) with similar models, the authors used a similar CNN-
LSTM architecture to address the weakness of the CNN with
the sequential model. Similarly, in our framework, we used a
sequential model (bi-LSTM) to alleviate the low performance in
class-wise classification when only the basic CNN architecture was
used.

6.2.2 Residual fusion
The use of residual fusion under the same conditions resulted

in a performance improvement of 1%–1.5%. Combining the
input and output of the bi-LSTM with the inner product helped
to learn important sequential information between adjacent
epochs. It has already been reported that an approach that
considers both the input and output features of a model has
the following advantages: it alleviates the vanishing gradient
problem, strengthens feature propagation, encourages feature
reuse, and substantially reduces the number of parameters
(He et al., 2016; Huang et al., 2017).

In addition, we compared the skip connection used in
DeepSleepNet (Supratak et al., 2017) and residual fusion. As
expected, when combining the input and output in the bi-LSTM,
using residual fusionwas slightly higher in performance than using a
skip connection. Skip-connection is also used to solve the vanishing
gradient problem, but residual fusion is considered more efficient
than skip connection because it applies location weight to fuse CNN
information (intra-epoch) with bi-LSTM information (inter-epoch)
(Wang et al., 2020).

6.2.3 Partial data augmentation
We utilized partial data augmentation on the input of a

pre-trained CNN, used for training bi-LSTM, to increase the
amount of data and extract the borderline information between
sleep epochs. When partial data augmentation was not applied,
the overall F1-score dropped by approximately 1.5%. The sliding
window method is a data augmentation strategy used to apply
EEG signals to deep learning (Lashgari et al., 2020). Even in
our proposed framework, the sliding window is considered to
contribute directly to improving the sleep stage classification
performance by increasing the amount of data to be trained in the
bi-LSTM.

6.2.4 Adaptive cross-entropy loss function
Finally, an adaptive loss function based on cross-entropy was

proposed. Under the same conditions, there were performance
improvements in the overall metrics and the class-wise F1-score
of the N1 stage, depending on the use of adaptive cross-entropy.
The overall F1-score and class-wise F1-score of the N1 stage of
the CNN standalone were 71.0% and 26.7%, respectively, not using
the adaptive loss function. Using the proposed loss function in the
experiments with CNN alone, the overall F1-score and class-wise
F1-score of the N1 stage increased to 72.2% and 32.9%, respectively.
When the proposed loss function was used with other components,
it also exhibited increased performance. In the experiments with
CNN and bi-LSTM, the overall F1-score and the performance of
N1 stage increased from 76.9% to 78.1% and from 40.9% to 42.7%,
respectively. Likewise, in other settings, the proposed loss function
improved the overall F1-score and the class-wise F1-score of the N1
stage.These improvements reflect the alleviation of lowperformance
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in the N1 stage without using methods to reduce data imbalance
problems, such as class-balanced re-sampling.

6.3 Effects of the adaptive cross-entropy
loss function

To compare the efficacy of the adaptive cross-entropy loss
function with other class-wise loss weighting methods, we
conducted additional experiments using the loss functions used
in AttnSleep (Eldele et al., 2021) and SleepFCN (Goshtasbi et al.,
2022) with our framework (partial data augmentation and residual
fusion). As shown in Supplementary Table S3, our loss weighting
method showed the highest performance. There were statistical
differences in all overall metrics and class-wise F1-scores through
the Kruskal-Wallis test (p < 0.001). Detailed statistical results are
also presented in Supplementary Table S4.

Even in another study (Tsinalis et al., 2016), using only the
CNN model, the F1-score was 81% when a publicly available sleep
dataset from 20 healthy young adults was used. However, this is
believed to be possible because it solves the data imbalance problem
using class-balanced random sampling within stochastic gradient
descent optimization. In summary, the adaptive loss was able to
resolve the low performance of the N1 stage, which is caused by the
data imbalance problem by helping the model adaptively learn the
imbalance between classes without knowing the entire distribution
of data.

In particular, the class imbalance problem is important for
sleep classification. Epochs in transitioning areas often contain

characteristics of two or three sleep stages (Phan et al., 2019). In
other words, the N1 stage is the transition area between the awake
and sleeping state, in which brain activity changes the most. This
reduces the performance of sleep stage classification. Consequently,
increasing performance in the transitioning area is key to improving
the performance of automatic sleep stage scoring. This is because it
alleviates the error rate by adding weights to the frequently incorrect
cases. In this regard, EEGNet (Lawhern et al., 2018), a deep learning
framework known to be effective in brain-computer interfaces, also
solves the class imbalance problem by assigning weights to the loss
function.

Compared to other models, DeepSleepNet (Supratak et al.,
2017) solves the class imbalance problem by oversampling the data.
This means that a relatively low-class number of the other sleep
stages, except for theN1 stage, is considered. However, our proposed
loss function was effective for classifying the N1 stage, where the
number of data classes was small compared to other sleep stages.We
also used the F1-score for the weight, unlike AttnSleep (Eldele et al.,
2021), which adjusts the weight in the loss function based on the
distribution of each stage. This is believed to be far more effective to
solve data imbalance, as it is designed to be more adaptive at the N1
stage, even when learning is poor.

Figure 6 shows the effect of the adaptive cross-entropy loss
function on training using the CNN model in the SHHS dataset.
When the model was trained with the proposed loss function, the
class-wise F1-score of the N1 stage in the validation set increased
by approximately 15% compared to the model trained with the
original cross-entropy loss function. As a result, the overall F1-score
of the validation set during training also increased by approximately

FIGURE 6
Comparison of the class-wise change in each sleep stage according to the training epoch using the SHHS dataset. Using the validation set, the
class-wise F1-score changes according to the training epoch with (A) adaptive cross-entropy and (B) original cross-entropy. Additionally, using the
training set with the adaptive cross-entropy, we investigated the changes in (C) class-wise F1-scores and (D) class-wise loss weight. Especially on the
loss weight graph, the vertical red-dotted lines indicate the starting point using this loss function. The CNN model was used for training the temporal
information. The value of the graphs are the mean results of 20 folds cross-validation and the shaded area indicates the standard deviation.
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5%. The weight of the proposed loss function adaptively changes
according to changes in the class-wise F1-score of the training set.
When the model was warmed with the original cross-entropy loss
function (i.e., training epoch from one to ten), the loss weights
of each class were one. After the model was trained with the
proposed loss function (i.e., training epoch between 11 and 30), the
loss weights of each class changed with adaption to the previous
class-wise F1-score. Specifically, the loss weight of the N1 stage
increased to approximately 11 when the previous F1-score of the
N1 stage was near 0% and then decreased as the F1-score of the
N1 stage increased. Likewise, when the class-wise F1-scores of the
Wake, N2, and REM stages dropped due to the radical changes
in training loss by using the proposed method, the proposed loss
function adaptively changed the loss weights of the Wake, N2,
and REM stages, increasing their F1-scores on the next training
epoch.

In summary, eachweight for classes is constantly changing, from
one to two, according to their class-wise F1-scores for each training
epoch. It might appear that weights converge certain values and
do not change at all because of the large scale of y (weight) axis.
However, the weights constantly adjust their values for fine-tuning.
The performance of theWake, N2, N3, and REM constantly changed
while themean performance increased after the 11th training epoch.
The performance of the CNN model trained with original cross-
entropy shows lower performance than adaptive cross-entropy,
especially in N1 stage. Note that we adjusted the weight decay value
from 1e-4 to 1e-5 when training the CNN model with original
cross-entropy to get better baseline performance, because the model
parameter wasn’t properly trained with the weight decay of 1e-4 and
returned 0% of classification performance on N1 stage.

6.4 Comparison with state-of-the-art
methods

Table 7 presents a comprehensive performance comparison
between the proposed and other methods using single-channel EEG
as input for 5-class classification (Wake, N1, N2, N3, and REM). We
compared the classification performance using the same evaluation
method for the sleep-EDF and SHHSdatasets. Specifically, the sleep-
EDF dataset was evaluated with 20 folds LOSO cross-validation, and
the SHHS dataset was evaluated with 20 folds cross-validation. As a
result, we presented the best performances of SeriesSleepNet, which
can be achieved with the recommended hyperparameter setups,
followed by (Fiorillo et al., 2021).

Using the Sleep-EDF dataset, our proposed SeriesSleepNet
outperformed most other models in overall metrics. Specifically,
only overall F1-score was lower than XSleepNet2 (Phan et al.,
2021) at 0.1%. It is also 1.1% lower in overall accuracy than
LWSleepNet (Yang et al., 2023). Finally, the overall Kappa values of
the proposed model were 0.02 lower than XSleepNet2 (Phan et al.,
2021) and LWSleepNet (Yang et al., 2023). On the other hand, in
most performance metrics, the performance is similar to other
models, and in particular, our model has the highest performance
in the F1-score of the REM stage. The REM stage is associated with
dreams with low wakefulness but high awareness in consciousness
(Lee et al., 2022). So, it is very meaningful that the REM stage

is highly accurate in that sleep-related diseases appear at this
stage.

Using the SHHS dataset, SeriesSleepNet achieved higher
performance in overall accuracy and F1-score. Moreover,
SeriesSleepNet showed remarkably higher F1-score of N1 stages
rather than baseline methods. AttnSleep (Eldele et al., 2021)
achieved the highest F1-score of the Wake, N2, and N3 stages. The
highest F1-score of the REM stage was achieved by SeriesSleepNet
and themodel of Sors et al. (2018). Higher overall kappa values were
observed using SeriesSleepNet, U-sleep, AttnSleep, and the model
of Sors et al. Above all, it is worth noting that the performance
of the SHHS dataset, which is a large DB, is higher than that of
state-of-the-art models.

In particular, our model performs better in the N1 stage than
the other models but not in the N3 stage. This can be interpreted
in two ways. The first is the adaptive cross-entropy loss function
in the proposed model. The N3 stage account for a larger portion
of the sleep stage than the N1 stage. In fact, the N1 stage is
6.6% in the Sleep-EDF dataset and 3.2% in the SHHS dataset,
while the N3 stage exceeds 13% in both datasets. In addition, the
performance for the N3 stage is relatively higher than that of the
majority class. In this respect, the weight of the N3 stage could
not benefit from the adaptive cross-entropy loss function, because
it already shows sufficiently high performance compared to the
N1 stage. The second is the difference in the model architecture
itself between the proposed methods and other baselines. Other
baseline models might be designed to show the advantage of more
easily classifying the N3 stage than ours. For example, looking at
the results of the ablation study, while the overall performance
was the highest for the proposed model, the F1-score at the
N3 stage was the highest for models without residual fusion in
bi-LSTM.

Some papers present much worse performance than that
mentioned in the original paper. This is because the experimental
setups of the original paper and this study were different in terms
of fair comparisons. In Sors et al. (2018), the overall performance
of the model was not high enough compared to their original
paper, with the F1-score, accuracy, and kappa values being reported
as 78%, 87%, and 0.81, respectively. The original paper used
the hold-out approach with a splitting ratio of 50% for training,
20% for validation, and 30% for testing, whereas we used 20
folds cross-validation. This method is effective in evaluating the
generalizability of the model compared with the existing method
of dividing the training and test sets (Lee et al., 2022). In this
respect, 20 folds cross-validation has lower performance than other
evaluation methods, even for the same model (Fahimi et al., 2019).
In contrast, in Olesen et al. (2021), RobustSleepNet (Guillot and
Thorey, 2021), and U-sleep (Perslev et al., 2021), the performance
was not high enough compared to its original paper. Specifically,
in the original study, PSG, including EEG, EOG, and EMG
signals, was used as the input. However, we experimented only
with single-channel EEG signals on each dataset. The evaluation
methods used were also different. In this study, we evaluated the
model with LOSO and 20 folds cross-validation in the Sleep-
EDF and SHHS datasets, respectively. Under fair conditions, the
performance of our model was better than that of the other
models.
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TABLE 7 Comparison of performance between SeriesSleepNet and state-of-the-art methods.

Dataset Model Year
Overall metrics Class-wise F1-score(%)

F1-score(%) Accuracy(%) Kappa Wake N1 N2 N3 REM

Sleep-EDF

DeepSleepNet Supratak et al. (2017) 2017 76.6 81.9 0.76 86.7 45.5 85.1 83.3 82.6

ResnetLSTM Sun et al. (2018) 2018 73.7 82.5 0.76 86.5 28.4 87.7 89.8 76.2

Sors et al. (2018) 2018 76.0 81.8 0.75 86.0 44.0 86.1 85.5 78.3

MultitaskSleepNet Phan et al. (2018) 2018 75.0 83.1 0.77 87.9 33.5 87.5 85.8 80.3

SleepEEGNet Mousavi et al. (2019) 2019 76.6 81.5 0.75 89.4 44.4 84.7 84.6 79.6

IITNet Seo et al. (2020) 2020 77.6 83.9 0.78 87.7 43.4 87.7 86.7 82.5

SeqSleepNet+ Phan et al. (2020) 2020 78.4 85.2 0.80 90.5 45.4 88.1 86.4 81.8

AttnSleep Eldele et al. (2021) 2021 78.1 84.4 0.79 89.7 42.6 88.8 90.2 79.0

Olesen et al. (2021) 2021 69.3 76.8 0.68 78.3 30.2 84.7 83.6 69.7

RobustSleepNet Guillot and Thorey (2021) 2021 75.3 82.7 0.77 86.7 36.6 86.0 86.4 81.0

U-sleep Perslev et al. (2021) 2021 74.8 79.8 0.72 82.4 44.7 83.0 84.8 79.0

XSleepNet2 Phan et al. (2021) 2021 80.6 86.3 0.81 92.2 51.8 88.0 86.8 83.9

DeepSleepNet-Lite Fiorillo et al. (2021) 2021 78.0 84.0 0.78 87.1 44.4 87.9 88.2 82.4

SleepFCN Goshtasbi et al. (2022) 2022 78.8 84.8 0.79 89.6 44.6 89.1 90.6 80.3

LWSleepNet Yang et al. (2023) 2023 79.2 86.6 0.81 92.4 41.3 90.2 88.4 84.0

SeriesSleepNet (Ours) 80.5 85.4 0.79 90.6 50.6 88.2 88.7 84.4

SHHS

DeepSleepNet Supratak et al. (2017) 2017 73.9 81.0 0.73 85.4 40.5 82.5 79.3 81.9

ResnetLSTM Sun et al. (2018) 2018 69.4 83.3 0.76 85.1 9.4 86.3 87.0 79.1

Sors et al. (2018) 2018 76.8 84.1 0.78 85.6 43.7 85.8 82.5 86.3

MultitaskSleepNet Phan et al. (2018) 2018 71.2 81.4 0.74 82.2 25.7 83.9 83.3 81.1

SleepEEGNet Mousavi et al. (2019) 2019 68.4 73.9 0.65 81.3 34.4 73.4 75.9 77.0

AttnSleep Eldele et al. (2021) 2021 75.3 84.2 0.78 86.7 33.2 87.1 87.1 82.1

Olesen et al. (2021) 2021 68.5 79.0 0.71 82.2 20.6 81.5 79.8 78.3

RobustSleepNet Guillot and Thorey (2021) 2021 73.6 81.4 0.74 79.9 39.6 83.1 82.0 83.6

U-sleep Perslev et al. (2021) 2021 76.9 84.1 0.78 85.5 43.6 85.8 83.3 86.0

SeriesSleepNet (Ours) 77.8 84.2 0.78 84.0 48.7 86.3 83.7 86.3

Bold values indicate the highest score.

6.5 Limitation

The SeriesSleepNet has several limitations. First, as our model
learns sequential information between epochs, it is necessary
to explore all epochs of the sequence length. This can lead
to delayed results when our model is applied in an online
environment, such as sleep monitoring (Mikkelsen et al., 2019).
Second, although SeriesSleepNet showed prominent classification
performance among methods using single-channel signals, whether
it maintains state-of-the-art performance compared with methods
using multi-channel signals cannot be guaranteed. This is especially
fatal when performance has a higher priority than the volume of the
system, as in themedical field. Taking this into account, it is possible
to expand SeriesSleepNet as a multi-channel-based method. Third,
the performance of the proposed model depends on the learning
level of the CNN. In other words, if the CNN does not train the

sequential features of each sleep stage well, the subsequent bi-LSTM
cannot guarantee high performance. Therefore, it is crucial to utilize
appropriate methods that accurately extract the time features of
each sleep stage. Fourth, the proposed adaptive loss function has
hyperparameters such as k and γ; therefore, it is necessary to find
the optimal value through experiments. If this is set incorrectly, a
gradient explosion may occur. In our experiment, if a value less
than 1e-4 was found in the confusion matrix, it was fixed to 1e-4
and used, but it would be beneficial to consider a method such as
gradient clipping to supplement this. Lastly, additional experiments
are required for further research. This study did not address subjects
with insomnia. In this regard, it is necessary to verify whether it can
be applied to the classification of sleep stages in patients with sleep
disorders such as insomnia. Additionally, prospective studies using
health and insomnia records are required. This is because, in terms
of application, these are the main challenges in sleep classification.
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Furthermore, scoring arousals is also an important part of sleep
scoring and classification. Therefore, this should be addressed in
future studies.

7 Conclusion

We propose SeriesSleepNet, a novel automatic sleep stage
classification model combined combines CNN and bi-LSTM, which
is favorable for learning temporal information both intra-epoch and
inter-epoch, that is effective with a time series model. Moreover,
we applied the partial data augmentation based on the sliding
window method to learn the connected time information in a small
series. Finally, it contributed to the improvement of performance
by proposing a loss function to solve the problem caused by sleep
stage imbalance. As a result, the proposed framework performed
better than state-of-the-art models in several evaluation metrics
which were evaluated under the same experimental setups as ours.
This automatic sleep stage scoring model could be used to diagnose
sleep disorders or tomeasure sleep quality by evaluating sleep stages,
which is believed to help reduce the burden on sleep professionals.
In addition, the proposed framework would be applied not only to
sleep but also to other time series fields such as weather forecasting,
providing insight into the development of time series data-based
deep learning models.
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