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Introduction: Identifying theHER2 status of breast cancer patients is important for
treatment options. Previous studies have shown that ultrasound features are
closely related to the subtype of breast cancer.

Methods: In this study, we used features of conventional ultrasound and
ultrasound elastography to predict HER2 status.

Results and Discussion: The performance of model (AUROC) with features of
conventional ultrasound and ultrasound elastography is higher than that of the
model with features of conventional ultrasound (0.82 vs. 0.53). The SHAP method
was used to explore the interpretability of the models. Compared with HER2–
tumors, HER2+ tumors usually have greater elastic modulus parameters and
microcalcifications. Therefore, we concluded that the features of conventional
ultrasound combined with ultrasound elastography could improve the accuracy
for predicting HER2 status.
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1 Introduction

Breast cancer is one of the most common malignancies in women (Harbeck and Gnant,
2017). It is estimated that there were 2.26 million new cases of breast cancer worldwide in
2020 (Sung et al., 2021). Breast cancer is a highly heterogeneous tumor. Common molecular
subtypes of breast cancer include luminal A (LA), luminal B (LB), human epidermal growth
factor receptor 2 over-expression (HER2+) and triple negative breast cancer (TNBC), and
different molecular subtypes show significant differences in biological behavior, clinical
outcome and patient prognosis (Lüönd et al., 2021). Among these molecular subtypes,
HER2+ patients make up about 15%–20% of all breast cancer cases and shows high
malignancy, high rate of recurrence and metastasis, and poor prognosis (Guarneri et al.,
2013). In recent years, trastuzumab (an antibody that targets HER2) (Hudis, 2007) has been
used in clinical practice, and the prognosis of HER2+ patients has improved significantly
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(Kümler et al., 2014). It shows that accurate identification of the
molecular subtype of breast cancer is essential for treatment. The
2018 American Society of Clinical Oncology/American Association
of Pathologists Detection Guide and 2019 Chinese breast cancer
HER-2 Detection Guide regulate the IHC staining requirements and
the interpretation of IHC and ISH result (Wolff et al., 2018). In this
consensus, HER-2 IHC 3+or HER-2 IHC 2+/ISH+ is defined as
HER-2 positive, IHC 1+or IHC 2+/ISH–is defined as HER-2 low
expression, and IHC 0 is defined as HER-2 negative.

So far, identification of HER2+ mainly relies on fluorescence in
situ hybridization (FISH) and immunohistochemistry (IHC) (Baez-
Navarro et al., 2023). However, the two methods are invasive
procedures and may lead to seroma (Ebner et al., 2018) and
infection (Bruening et al., 2010). Therefore, we need non-
invasive, economical and accurate methods to predict
HER2 status in breast cancer.

Ultrasound imaging technologies are non-invasive, convenient and
affordable and have been widely used for breast cancer screening and
diagnosis (Berg et al., 2015). It has been shown that ultrasonographic
features are related to molecular subtypes of breast cancer (Wu et al.,
2019; Gumowska et al., 2021). Many machine learning models for
predicting molecular subtypes of breast cancer have been developed
(Zhou et al., 2021;Ma et al., 2022). However, thesemodels mainly relied
on the characteristics of conventional ultrasound. In recent years, the
development of ultrasound elastography (Barr, 2018) has provided new
opportunities for breast cancer screening and diagnosis (Carlsen et al.,
2015; Yao et al., 2023). As a new imaging technology, ultrasonic elastic
imaging can evaluate the hardness of the lesions and thus identify the
nature of the lesions, which is an important supplement to traditional
ultrasonic imaging. At present, the ultrasonic elastography technology
used for breast diagnosis mainly includes strain elastography and
acoustic palpation elastography. Sound touch elastography (STE) is a
kind of ultrasonic imaging technology developed recently in China,
which can display the tissue hardness information in the region of
interest (ROI) in real time, and provide the elastic value related to the
mass and its periphery through Shell quantitative analysis tool kit. The
hardness change of the lesion tissue wasmeasured accurately. However,
to the best of our knowledge, there are no studies exploring the relations
between characteristics of ultrasound elastography and HER2+. In this
study, we build a machine learning model for HER2 status prediction
based on the characteristics of conventional ultrasound combined with
ultrasound elastography. In addition, Shapley additive explanations
(SHAP) method (Lundberg et al., 2020; Lv et al., 2023) was used to
explore the interpretability of the model. We hope that the model can
providemore valuable information for personalized healthcare of breast
cancer.

2 Materials and methods

2.1 Cohorts

Patients with breast cancer at the Affiliated Hospital of Xuzhou
Medical University between January 2021 and December 2022 were
used in this study. All patients were confirmed by gross needle
aspiration biopsy or surgical pathology.

Exclusion criteria were as follows: 1) pregnant or lactating women;
2) tumor diameter more than 50 mm; 3) patients who have undergone

interventional treatment (e.g., chemotherapy, radiotherapy) before
ultrasound examination; 4) patients with severe organ insufficiency;
5) poor patient compliance. Finally, 51 patients with HER2+ breast
cancer were enrolled in this study. As controls, we also recruited
52 patients with HER2-breast cancer and 50 patients with benign
breast disease. The study follows the “Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis” (Collins et al., 2015). All patients were de-identified.

2.2 Ultrasound

Ultrasound scans were obtained using Mindray Resona 7S
Doppler Color Ultrasound and a liner transducer L14-5WU with
strain elastography and acoustic palpation elastography system. The
operations and assessments were performed by three physicians
skilled in ultrasound elastography and conventional ultrasound.

FIGURE 1
Examples of ultrasound elastography for (A) HER2+ breast
cancer, (B) HER-breast cancer and (C) benign breast disease. Chinese
characters乳腺包块1弹性: in (A–C) stand for “Breast mass 1 elasticity“.
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Specifically, all patients first underwent a conventional
ultrasound examination. The location, size (maximum diameter),
morphology, margins, orientation, echo pattern, microcalcification,
and hyperechoic halo of the lesion were recorded. Next, the section
with the most abundant blood flow was used to assess the blood flow

classification (Adler classification (Adler et al., 1990)) and measured
the resistance index (RI). Finally, all patients underwent an
ultrasound elastography examination, strain ratio, strain elasticity
score, lesion mean elastic modulus (Amean), lesion maximum elastic
modulus (Amax), lesion peripheral (shell 2 mm) mean elastic

TABLE 1 The characteristic stratified by tumor status.

Characteristic Breast cancer (n = 103) Benign tumor (n = 50) p-value

Demographics

Age (year, mean ± SD) 51 ± 10.5 37 ± 11.75 1.02 × 10−16

Conventional ultrasound

Size (cm, mean ± SD) 1.80 ± 1.00 1.40 ± 0.78 0.041

Orientation 0.015

Not parallel 14 (13.59%) 0

Parallel 89 (86.41%) 50 (100%)

Shape 1.1 × 10−15

Irregular 98 (95.15%) 17 (34%)

Oval 5 (4.85%) 33 (66%)

Margin 1.1 × 10−20

Not circumscribed 93 (90.29%) 6 (12%)

Circumscribed 10 (9.71%) 44 (88%)

Echo pattern 5.7 × 10−12

Heterogeneous 82 (79.61%) 10 (20%)

Hypoechoic 21 (20.39%) 40 (80%)

Microcalcification 3.3 × 10−9

Yes 54 (52.43%) 1 (2%)

No 49 (47.57%) 49 (98%)

Hyperechoic halo 0.011

Yes 22 (21.36%) 2 (4%)

No 81 (78.64%) 48 (96%)

Adler classification 7.4 × 10−11

1 3 (2.91%) 21 (42%)

2 54 (52.43%) 25 (50%)

3 46 (44.66%) 4 (8%)

Resistance index 0.78 ± 0.04 0.62 ± 0.08 8.08 × 10−23

Ultrasound elastography

Strain elasticity score 4 ± 0 3 ± 1 3.24 × 10−18

Strain ratio (%) 4.15 ± 0.76 2.61 ± 1.07 1.34 × 10−21

Amean (kPa) 39.56 ± 10.74 28.52 ± 7.88 1.65 × 10−16

Amax (kPa) 90.48 ± 15.25 54.97 ± 14.06 1.92 × 10−22

Smean (kPa) 51.24 ± 15.07 32.78 ± 8.55 3.95 × 10−18

Smax (kPa) 153.27 ± 49.49 65.69 ± 17.93 1.43 × 10−23
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TABLE 2 The characteristic stratified by HER2 status.

Characteristic HER2+ (n = 51) HER2− (n = 52) p-value

Demographics

Age 53 ± 10 51 ± 11.25 0.436

Conventional ultrasound

The size of mass (cm) 2 ± 1.05 1.6 ± 0.9 0.039

Orientation 0.804

Not parallel 7 (13.73%) 7 (13.54%)

Parallel 44 (86.27%) 45 (86.54%)

Shape 0.07

Irregular 51 (100%) 47 (90.38%)

Oval 0 5 (9.62%)

Margin 0.003

Not circumscribed 51 (100%) 42 (80.77%)

Circumscribed 0 10 (19.23%)

Echo pattern 0.056

Heterogeneous 45 (88.24%) 37 (71.15%)

Hypoechoic 6 (11.76%) 15 (28.85%)

Microcalcification 4.8 × 10–7

Yes 40 (78.43%) 14 (26.92%)

No 11 (21.57%) 38 (73.08%)

Hyperechoic halo 0.85

Yes 11 (21.57%) 11 (21.15%)

No 40 (78.43%) 41 (78.85%)

Adler classification 0.002

1 0 3 (5.77%)

2 20 (39.22%) 34 (65.38%)

3 31 (60.78%) 15 (28.85%)

Resistance index 0.79 ± 0.04 0.76 ± 0.04 2.84 × 10–5

Ultrasound elastography

Strain elasticity score 4.0 ± 1.0 4.0 ± 0.0 2.3 × 10–6

Strain ratio (%) 4.39 ± 0.96 4.06 ± 0.59 0.0055

Amean (kPa) 40.33 ± 10.82 38.34 ± 9.40 0.026

Amax (kPa) 94.68 ± 41.43 89.66 ± 11.00 0.008

Smean (kPa) 58.49 ± 15.81 48.49 ± 12.76 3.15 × 10–6

Smax (kPa) 170.99 ± 53.13 135.08 ± 43.40 0.0001

Pathology 0.184

IDC I 3 (5.88%) 9 (17.31%)

IDC II 24 (46.06%) 23 (44.23%)

IDC III 24 (46.06%) 20 (38.46%)

IDC: invasive ductal carcinoma.

Frontiers in Physiology frontiersin.org04

Zhuo et al. 10.3389/fphys.2023.1188502

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1188502


modulus (Smean), lesion peripheral maximum elastic modulus (Smax)
were recorded. In Figure 1, we show examples of ultrasound
elastography for (a) HER2+ breast cancer, (b) HER-breast cancer
and (c) benign breast disease.

2.3 Statistical analysis

Python (Version 3.7) was used for statistical analysis and
visualization. One demographic feature, nine conventional
ultrasound features, and six ultrasound elastography features were
used in this study (Table 1; Table 2). Among these features, age,
size, resistance index, strain elasticity score, strain ratio, Amean, Amax,
Smean, and Smax are continuous variables, while orientation, shape,
margin, echo pattern, microcalcification hyperechoic halo and Adler
classification are discrete variables. For continuous variables, they are
presented as median ± interquartile range (IQR), and Mann-Whitney
test was used for group comparisons (e.g., HER2+ breast cancer vs.
HER2-breast cancer). For discrete variables, they are presented as count
(percentage), and chi-square test was used for group comparisons. 2-
sided p-value <0.05 was considered significantly different.

2.4 Machine learning models

A tree-based machine learning approach was used for feature
selection (Ke et al., 2017). In the tree-based model, zero-importance
features are not used to split any nodes, so the features have no impact
on the performance of tree-based models. Previous study has shown
that we can obtain the best results if 70%–80% of the data is used for
training, and 20%–30% of the data is used for testing (Gholamy et al.,
2018). Therefore, all patients were randomly divided into a training set
(80%) and a test set (20%). The extreme gradient boosting (XGBoost)
model (Chen and Guestrin, 2016) was used to predict the status of
tumor (benign tumor or breast cancer) and the status of HER2 (HER2+
or HER2−). Hyperparameters of models (e.g., n_estimators, max depth,
learning rate) were selected by k-fold cross-validation on the training
set. Usually, k is set to 5 or 10. However, the size of dataset used in this
study is small, and a larger k leads to larger fluctuations in the
performance of the model (Supplementary Figure S1). Therefore, k
is set to 5. The model with the optimal hyperparameters was validated
by the holdout test set, and area under the receiver operating
characteristic curve (AUROC) was used to evaluate the performance
of models. The 95% confidence interval of AUORC on test set was
calculated by 1000 bootstrap replicates. The SHAPmethod was used to
explore interpretability of models (Lundberg et al., 2020).

In addition, we also developed a logistic regression (LR) model
to predict the status of HER2. We then compared performance of
the LR model with that of the XGBoost model.

3 Results

3.1 Cohort characteristics

The cohort included 51 patients with HER2+ breast cancer,
52 patients with HER2-breast cancer and 50 patients with benign
breast disease. For patients with breast cancer and benign breast

disease, all characteristics showed significant differences (Table 1).
Therefore, all features were used to predict the status of tumor
(breast cancer or benign tumor). However, for patients with HER2+
breast cancer and HER2-breast cancer, age, orientation, shape, echo
pattern, hyperechoic halo and pathology did not show significant
differences (Table 2). In addition, we used a tree-based machine
learning model (i.e., LightGBM) to calculate the importance of the
features. As shown in Supplementary Table S1, orientation, shape,
margin, echo pattern, hyperechoic halo and Adler classification are
zero importance features. In tree-based machine learning models,
the features do not have any effect on the performance of models.
Therefore, microcalcification, Amean, resistance index, Smean, Amax,
Smax, size and strain ratio were used to predict the status of HER2
(HER2+ or HER2−). Subsequently, we explored whether the features
of conventional ultrasound combined with ultrasound elastography
could improve the predicted accuracy of tumor status and
HER2 status.

3.2 Prediction of tumor status

There were 82 patients with breast cancer and 40 patients
with benign breast disease in the training set, and there were
21 patients with breast cancer and 10 patients with benign breast
disease in the test set. All features (Table 1) were used to predict
the status of tumor (breast cancer or benign tumor). For the
model with features of conventional ultrasound, the cross-
validation AUROCs ranged from 0.98 to 1 (0.99 ± 0.01,
Supplementary Figure S2A), and the corresponding AUROC
of the test set (95% CI) was 0.99 (0.97–1). For the model with
features of conventional ultrasound and ultrasound
elastography, the cross-validation AUROC ranged from
0.97 to 1 (0.99 ± 0.01, Supplementary Figure S2B), and the
corresponding AUROC of the test set (95% CI) was 1.00
(1.00–1.00). AUROCs of the models with features of
ultrasound elastography and/or conventional ultrasound are
close to 1. One possible reason for this is that the test set

FIGURE 2
AUROCs of tumor status prediction models with ultrasound
elastography features and/or conventional ultrasound features for the
test set. CU: conventional ultrasound. UE: ultrasound elastography.
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held is a “too good” subset. To rule out this reason, the training
set and test set were repeatedly split 10 times, and we report
more evaluation metrics (i.e., sensitivity, specificity, negative
predictive value and positive predictive value). The averaged
AUROC, sensitivity, specificity, negative predictive value and
positive predictive value of the model with features of
conventional ultrasound are 0.996 ± 0.009, 0.967 ± 0.036,
0.935 ± 0.059, 0.972 ± 0.024, 0.934 ± 0.074, respectively. The
averaged AUROC, sensitivity, specificity, negative predictive
value and positive predictive value of the model with features
of conventional ultrasound and ultrasound elastography are
0.997 ± 0.006, 0.975 ± 0.025, 0.960 ± 0.089, 0.988 ± 0.025,
0.956 ± 0.045, respectively. Overall, both models can predict
the status of tumor accurately (Figure 2).

3.3 Prediction of HER2 status

There were 40 patients with breast cancer and 41 patients with
benign breast disease in the training set, and there were 11 patients
with breast cancer and 11 patients with benign breast disease in the
test set. As shown in Table 2, age, orientation, shape, echo pattern,
hyperechoic halo and pathology did not show significant differences.
Therefore, these features were not used to build machine learning
models. For the model with features of conventional ultrasound, the
cross-validation AUROC ranged from 0.53 to 0.93 (0.74 ± 0.13,
Supplementary Figure S3A) and the corresponding AUROC of the
test set (95% CI) was 0.53 (0.27–0.78). For the model with features of
conventional ultrasound and ultrasound elastography, the cross-
validation AUROC ranged from 0.69 to 0.88 (0.81 ± 0.07,
Supplementary Figure S3B), and the corresponding AUROC of

the test set (95% CI) was 0.82 (0.62–0.99). Therefore, we
concluded that the features of conventional ultrasound combined
with ultrasound elastography could improve the prediction accuracy
of HER2 status (Figure 3).

Supplementary Table S1 provides valuable insights into the
stepwise variable selection method. Next, we compared the
performance of models with different features (i.e., top 8 features,
top 10 features and top 16 features). As shown in Supplementary
Figure S4, the model with the top 8 features showed the best
performance. Introducing irrelevant features into the model can
degrade the performance of the model.

To evaluate the performance of the XGBoost model, we also
developed a LR model using the same training set and test set.
Compared with the XGBoost model (Supplementary Table S2), LR
model had a lower test AUROC (XGBoost mode, 0.82 vs. LR model,
0.72), lower precision (XGBoost mode, 0.88 vs. LR model, 0.80),
higher recall (XGBoost mode, 0.58 vs. LR model, 0.67) and higher
F1-value (XGBoost mode, 0.70 vs. LR model, 0.73). For HER2+
prediction, we prefer to screen out more suspected HER2+ patients
than to miss a possible HER2+ patient, so the F1-value should be
preferred as an evaluation metric. Therefore, LR model is a better
choice for our prediction purposes (higher recall). However, for
clinical prediction models, while the performance of the model is
very important, the interpretability of the model should not be
neglected. In recent years, the XGBoost model combined with the
SHAP method have been widely used in cohort studies (Deng et al.,
2022; Lv et al., 2023). These interpretable machine learning models
can give not only the prediction results, but also the reasonable
reasons for the judgments. Therefore, we prefer to use the XGBoost
model. Next, we use SHAP model to explore the interpretability of
the model.

FIGURE 3
AUROC of HER2 status prediction models with ultrasound elastography features and/or conventional ultrasound features for the test set. CU:
conventional ultrasound. UE: ultrasound elastography.
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3.4 Interpretability of the model

The SHAP method can help us identify key factors for
HER2+ at the patient level and at the cohort level. First, we
identified key factors for HER2+ at the patient level. As shown in
Figure 4, We show a patient with the highest SHAP value
(Figure 4A) and a patient with the lowest SHAP value
(Figure 4B). The baseline is the mean SHAP value of −0.1369.
The predicted risk for the patient with the highest SHAP value is
2.43. Microcalcification, larger Smean (67.31) and so on are
potential key factors for HER2+. For the patient with the

lowest SHAP value (−3.64), no microcalcifications, lower
resistance index and Amax and so on contribute to HER2−.

Next, we identified key factors for HER2+ at the cohort level. As
shown in Figure 5, microcalcification, Amean, Smean, size and
resistance index are the top 5 key factors to identify HER2 status.
Compared with Smax and Amax, Amean, and Smean are better key
factors to identify HER2 status.

Finally, we used clustering algorithm to explore relations
between these features. As shown in Figure 6, patients with
similar features and similar subtypes were grouped together.
Overall, microcalcifications have a strong correlation with

FIGURE 4
Breast cancer patients with (A) the highest and (B) the lowest SHAP values.

FIGURE 5
SHAP summary plot of the 8 key factors.
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HER2+ (cluster 2). However, smaller tumor and Amean have a
negative effect on the result of model (cluster 1). For patients
without microcalcification, larger Smean or Smax (cluster 3)
increase the likelihood of HER2+. In addition, we also performed
partial regression analysis. As shown in Supplementary Figures
S5–S12, the effects of microcalcification, resistance index and
Smean on HER2+ were more significant. It shows that
conventional ultrasound combined with ultrasound elastography
can predict HER2 status better.

4 Discussion

Compared with other subtypes of breast cancer, HER2+ breast
cancer is more malignant, more aggressive, and more likely to recur
and metastasize (Guarneri et al., 2013). In recent years, the
development of HER2-targeted drugs have led to significant
benefits for patients with HER2+ breast cancer (Kümler et al.,
2014). Therefore, it is critical to identify the HER2 status of
breast cancer patients accurately and quickly.

Ultrasound is widely used for breast cancer screening and
diagnosis (Berg et al., 2015), and previous studies have shown
that there are some correlations between ultrasound
characteristics and breast cancer subtypes (Wu et al., 2019;
Gumowska et al., 2021). Conventional ultrasound can evaluate
the shape, size, margin, and echo pattern of tumors. In summary,
the shape of breast cancer lesions is irregular, the margin of the
lesions is not circumscribed, the interior of the lesion is rich in blood
flow, and the echo pattern is not homogeneous (Table 1). Both the
machine learning model with conventional ultrasound and the
machine learning model with conventional ultrasound and
ultrasound elastography have shown excellent performance in
predicting tumor status (Figure 2). However, machine learning
models with conventional ultrasound haven shown moderate

performance in predicting HER2 state (Figure 3). Ultrasound
elastography can evaluate the hardness of tumors, providing a
new opportunity for the prediction of HER2 status (Carlsen
et al., 2015; Yao et al., 2023). The introduction of tumor
elasticity information significantly improves the performance of
the machine learning model (Figure 3). The SHAP method can
help us identify key factors for predicting HER2 status (Figures 4–6).

For conventional ultrasound, size, margin, microcalcification,
Adler classification and resistance index were considered as key
factors for predicting HER2 status (Table 2; Figure 5). HER2+
stimulates the wild growth of cancer cells, leading to inadequate
local blood supply, resulting in cell death and microcalcification
(Zhou and Hung, 2003; Loibl and Gianni, 2017). Therefore, HER2+
tumors are usually larger and have microcalcifications (Table 2). In
addition, HER2+ increases cancer cell aggressiveness (Pupa et al.,
2021). Therefore, the margin of HER2+ are usually not
circumscribed (Table 2). However, the prerequisite for rapid
tumor growth and infiltration is the formation of a large number
of microvessels (Furuya et al., 2005). Microvessels provide the
nutrients and oxygen needed for tumor growth (Pluda and
Parkinson, 1996). In this study, we found that HER2+ patients
have a higher Adler classification (Table 2). This finding is consistent
with previous studies (Pluda and Parkinson, 1996; Furuya et al.,
2005).

For ultrasound elastography, we found that elastic modulus
parameters (i.e., Amean, Amax, Smean, and Smax) were significantly
higher in HER2+ tumors than in HER2-tumors (Table 2). It may be
related to higher microvascular density and interstitial water in
HER2+ tumors (Zhang et al., 2022; Kurt et al., 2023). Yoo et al.
found that the hardness of the tumor is associated with tissue
hypoxia (Yoo et al., 2020), and HER2 contributes to increased
hypoxic response in breast cancer by regulating HIF-2α (Jarman
et al., 2019). Therefore, we speculated that elastic modulus
parameters of tumors can reflect the status of HER2 to some

FIGURE 6
Heatmap that identify clusters of breast cancer patients who have similar characteristics and outcomes.

Frontiers in Physiology frontiersin.org08

Zhuo et al. 10.3389/fphys.2023.1188502

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1188502


extent. In Figure 5, we found that microcalcification is the most
important factor for predicting HER2 status, and it is consistent with
the study of Elias et al. (Elias et al., 2014). However, there are some
HER2+ patients without microcalcification. For the patients, elastic
modulus parameters (i.e., Smean and Smax) can help us identify the
HER2 status (Figure 6) and thus improve the performance of
machine learning models (Figure 3).

Although this study is meaningful, our study still has some
limitations: 1) This study is a retrospective single-center study with a
small number of cases, and bias was inevitable; 2) The features used
in this study were human-defined. With the development of deep
learning, it is expected to automatically extract features from images
(Lin et al., 2017; Banan et al., 2020).

5 Conclusion

In conclusion, ultrasound features are closely related to
HER2 status. We developed interpretable machine learning
models combined with conventional ultrasound and ultrasound
elastography features to predict the state of HER2. The model
combined with ultrasound elastography features showed better
performance. Conventional ultrasound combined with ultrasound
elastography can predict HER2 status better. Microcalcification,
Amean, Smean, size and resistance index are the top 5 key factors
to identify HER2 status. It is meaningful for breast cancer screening
and diagnosis and personalized medicine.
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