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Objective: The temporal complexity of photoplethysmography (PPG) provides
valuable information about blood pressure (BP). In this study, we aim to interpret
the stochastic PPG patterns with a model-based simulation, which may help
optimize the BP estimation algorithms.

Methods: The classic four-element Windkessel model is adapted in this study to
incorporate BP-dependent compliance profiles. Simulations are performed to
generate PPG responses to pulse and continuous stimuli at various timescales,
aiming to mimic sudden or gradual hemodynamic changes observed in real-life
scenarios. To quantify the temporal complexity of PPG, we utilize the Higuchi
fractal dimension (HFD) and autocorrelation function (ACF). These measures
provide insights into the intricate temporal patterns exhibited by PPG. To
validate the simulation results, continuous recordings of BP, PPG, and stroke
volume from 40 healthy subjects were used.

Results: Pulse simulations showed that central vascular compliance variation
during a cardiac cycle, peripheral resistance, and cardiac output (CO)
collectively contributed to the time delay, amplitude overshoot, and phase shift
of PPG responses. Continuous simulations showed that the PPG complexity could
be generated by random stimuli, which were subsequently influenced by the
autocorrelation patterns of the stimuli. Importantly, the relationship between
complexity and hemodynamics as predicted by our model aligned well with
the experimental analysis. HFD and ACF had significant contributions to BP,
displaying stability even in the presence of high CO fluctuations. In contrast,
morphological features exhibited reduced contribution in unstable hemodynamic
conditions.

Conclusion: Temporal complexity patterns are essential to single-site PPG-based
BP estimation. Understanding the physiological implications of these patterns can
aid in the development of algorithms with clear interpretability and optimal
structures.
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1 Introduction

Blood pressure (BP) is one of the most important vital signs and
is closely related to the prognosis of cardiovascular disease, which
ranks first in all-cause mortality (Chobanian et al., 2003). Although
the office blood pressure measurement (OBPM) is still the
recommended diagnostic tool, ambulatory blood pressure
monitoring (ABPM) can offer more details about BP fluctuation
and help improve the diagnosis (Force et al., 2021). A lightweight
and easy-to-use ambulatory BP monitor could help promote the
long-term management of hypertension (Agarwal et al., 2011).

The use of photoplethysmography (PPG) for estimating BP has
gained popularity in recent years due to its affordability and
convenience (Martínez et al., 2018; Elgendi et al., 2019; Josep
Solà and Josep Solà, 2019; Cosoli et al., 2020). However, several
drawbacks prevented its widespread usage. The first problem is that
current theoretical models may lead to unstable BP prediction in
practice. The most well-known pulse transition time (PTT) methods
assumed correlations between PTT and arterial compliance (C)
(Mukkamala et al., 2015; Ding et al., 2016; Mukkamala and
Hahn, 2018). But cardiac output (CO) and peripheral resistance
(R) to blood flow also had considerable contributions to BP changes.
Calibrations must be done frequently, and sudden failures may
occur (Butlin et al., 2018; Finnegan et al., 2021; Avolio et al., 2022).
Another theoretical proposal used the four-element Windkessel
(WK4) model to estimate major lump hemodynamic properties
(Wang et al., 2017; Xing et al., 2021), which could be used to stabilize
the measurement. However, this model only used PPG
morphological features, making it susceptible to environmental
disturbances such as contact pressure, sensor placement, and
temperature fluctuations (Hsiu et al., 2011; Hsiu et al., 2012;
Grabovskis et al., 2013). Therefore, obtaining reliable BP
estimations from PPG morphology alone, even after calibration,
remains challenging (Xing et al., 2019; Hosanee et al., 2020).
Another problem with single-site PPG-derived BP is associated
with instability in ambulatory measurement. Most of the studies
required the subjects to stay motionless in a supine or sitting
position. The performance of BP estimation may deteriorate
quickly in motion because PTT and PPG morphology are
sensitive to noise and posture changes (Allen and Murray, 1999;
Pour Ebrahim et al., 2019).

Although the “black-box” encoding in machine learning
algorithms lacks clear interpretability, they have achieved
remarkable performance in practice. Some were deployed in
continuous BP measurement and showed improvement in both
accuracy and stability (Radha et al., 2019; El-Hajj and Kyriacou,
2021; Yen et al., 2021). Most of them used time-dependent
information, such as the long- and short-term memory (LSTM)
network (Monte-Moreno, 2011; Radha et al., 2019; Harfiya et al.,
2021; Li et al., 2021; Pu et al., 2021; Wang et al., 2021; Ali and Atef,
2022; Meng et al., 2022), system identification (Allen and Murray,
1999), auto-regression (Acciaroli, 2018), multi-stage feature
extraction (Ali and Atef, 2022; Jiang et al., 2022), dynamic
compliance (Gupta et al., 2022), or simple heart rate
variability(HRV) (Mejía-Mejía et al., 2022). These algorithms
performed better than those without dynamic features (Radha
et al., 2019; Harfiya et al., 2021). In this study, we aim to give a
plausible explanation of the system’s temporal complexity. With this

knowledge, optimizing the structure of the machine learning
algorithms would be easier.

Physiological model-based PPG simulations may help decode
this “black box”. However, current PPG synthesis methods have
limitations, with some being overly complicated (Charlton et al.,
2019; Mazumder et al., 2022) and others overly simplistic (Tang
et al., 2020a; Tang et al., 2020b). The complex physiological
models often require human anatomical data and intricate
coupling between vascular segments. While they serve as
excellent approximations of real PPG signals and are valuable
for disease diagnosis, studying rapid hemodynamic changes
becomes challenging due to their high computational cost. On
the other hand, simple PPG synthesis models combine forward
and reflected waves, aiding in PPG event detection. However,
these models lack essential hemodynamic details, such as
compliance dependent on BP (Tang et al., 2020a). In this
study, our aim is to develop a user-friendly simulation tool by
modifying the classic four-element Windkessel model. By
updating the simulation per heartbeat, we can generate stimuli
with varying timescales and observe subsequent PPG responses.
This approach enables the simulation of fast-changing CO, R,
and compliance, allowing us to investigate unstable
hemodynamic conditions. Through this simulation tool, we
can gain insights into the stochastic behavior of PPG and
evaluate their potential contribution to BP estimation.

This study introduces several key novelties and findings,
including.

(1) A novel in silico simulation method is proposed to generate
dynamic PPG signals with time- and BP-dependent compliance
profiles.

(2) The variation of central vascular compliance (C1) throughout a
cardiac cycle, along with CO and R, collectively determine the
time delay, amplitude overshoot, and phase lag of the PPG
response to a pulse stimulus.

(3) Continuous simulations showed that complicated temporal
PPG patterns could be generated by random stimuli, which
means that the “passive” buildup of phase lags and amplitude
fluctuations are related to hemodynamic fluctuations.

(4) The complexity of stimuli directly influences the complexity of
the resulting signal.

(5) The addition of temporal complexity features increased the
stability and accuracy of BP estimation, especially at high CO
fluctuations.

The rest of this paper is organized as follows. Section 2
provides a detailed description of the modified four-element
Windkessel model, pulse and continuous simulation
procedures, experimental dataset, validation procedure, and
complexity measures. Section 3 presented the simulation
results and the complexity feature distribution, which were
validated using multi-modal experimental data. The
contribution of complexity and morphological features to BP
estimation under stable and unstable cardiac conditions were
calculated and compared. Section 4 discussed the physiological
implication of these findings and the potential advantages of
using complexity features in BP estimation. Section 5 concludes
the paper.
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2 Materials and methods

This section mainly describes the in silico simulation and
experimental verification procedures, as illustrated in Figure 1.
For simulation, a modified WK4 model with BP-dependent
compliance was introduced. PPG responses to both pulse and
continuous stimuli at various timescales were simulated and
quantified. Temporal complexity and correlation measures such
as HFD and ACF are proposed to describe the PPG responses.
Their contribution to BP was calculated and compared to

morphological features. Multi-modal continuous experimental
recordings were used to verify the simulation results.

2.1 The modified WK4 model with time- and
BP-dependent compliance

To get a rough idea of the PPG response to stimuli, we did a
series of simulations using a modified WK4 model with time- and
BP-dependent compliance, as shown in Figure 2A. In this model, the

FIGURE 1
Schematics of the proposed simulationmethod, hypothesis, and experimental verifications. ThemodifiedWindkesselmodel is introduced in detail in
Section 2.1, with a simplified assumption of the left ventricular ejection (qin). Pulse and continuous simulations with different timescales were carried out
to locate the origin of complexity patterns.

FIGURE 2
(A) The equivalent circuit of the modified WK4 model. q(t) represents blood flow. C1 is time-dependent and varies with central BP. (B) The elastic
property of the aorta under different pressures (Langewouters et al., 1984). Aorta1: Am = 3.5 cm2, P0 = 50.4 mmHg, P1 = 42.3 mmHg; Aorta2: Am =
6.18 cm2, P0 = −2.3 mmHg, P1 = 21.6 mmHg.
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heart is represented as a current source qin. The arterial tree system is
modeled by four major parameters. Unlike traditional WK4 models
(Wang et al., 2017), C1 is designed to vary within a cardiac cycle,
which depends on central BP (pc), as shown in Figure 2B. R reflects
the peripheral resistance, which mainly comes from small arteries,
arterioles, and capillaries. BP changes induce corresponding
arteriolar resistance changes to keep capillary pressure constant
and maintain tissue fluid equilibrium (Nicolaas Westerhof and
Noble, 2010). Although R also varies during a cardiac cycle, the
overall fluctuation is smaller during a heartbeat. Thus, R is treated as
a constant or slowly changing parameter. To reduce the complexity
of the model, compliance of the distal arteries (C2), and inertance (L)
are set to be time-invariant, which are added to increase the PPG
waveform fitting accuracy (Westerhof et al., 2009). The blood
pressure at the peripheral site (pp) could be obtained if the
cardiovascular and hemodynamic parameters are known. Since
the amplitude of PPG depends on the tissue substrate,
microvasculature, and the coupling coefficient of the sensor and
skin, personalized transfer functions were considered to convert BP
to PPG (Millasseau et al., 2000).

In the time-dependent WK4 model, C1(t), pc(t), and pp(t) are
strongly interdependent, as shown in equations (1a)–(1c).

dq t( )
dt

� 1
L

pc t( ) − pp t( )( ) . . . . . . . . . 1a( )
dpc t( )
dt

� 1
C1 t( ) qin t( ) − q t( )( ) . . . . . . . . . 1b( )

dpp t( )
dt

� 1
C2

q t( ) − pp t( )
R

( ) . . . . . . . . . 1c( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

In this study, qin(t) is assumed to have the flow profile described
by Equation (2), where q0 is the maximum qin(t). Ts is the left
ventricle ejection duration and T is the cardiac cycle; α determines
the peak time of qin(t), which is set as 1/3. Note that it is a simplified
approximation used to facilitate the simulation. For a more realistic
simulation, qin(t) could be replaced by a numeric array obtained by
in-vivo experiments. q0 is closely related to stroke volume (SV) and
CO, as the integral of qin(t) within a cardiac cycle gives SV.
Multiplied by heart rate and we can obtain CO.

qin t( ) �

q0 sin
πt

2αTs
( ) 0≤ t≤ αTs( )

q0 cos
πt

4αTs
t − αTs( )( ) αT< t≤Ts( )

0 Ts < t≤T( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

C1(t) oscillates in a wide range for subjects with elastic blood
vessels (Hallock and Benson, 1937). Langewouters et al. proposed a
model to describe the cross-sectional compliance of the aorta, which
used three independent parameters (Langewouters et al., 1984). In
this study, we used volume compliance. C1(t) is modified by adding a
unit length l, as shown in Equation 3.

C1 t( ) � Aml

πP1 1 + pc t( ) − P0( )/P1( )2[ ] (3)

Am is the maximum cross-sectional area of the aorta, and P0 is
the transmural pressure when compliance reached its maximum. P1
represents the steepness of the compliance rise. We chose two

representative sets of values from the published dataset and
illustrated the compliance-pressure relationship in Figure 2B.

Our ultimate goal is to estimate pp(t) and generate
corresponding PPG signals. By analyzing Eqs. 1–3, we found that
they could be combined to yield a differential equation with only one
unknown variable. The procedure is as follows:

(1) Combine Eqs 1a–1c and eliminate pc(t) and q(t). The
resulting equation has only two unknown variables C1(t) and
pp(t), as shown in Equation (4). All the other parameters were
assumed to be known.

d3pp t( )
dt3

+ 1
RC2

d2pp t( )
dt2

+ 1
LC1 t( ) +

1
LC2

( ) dpp t( )
dt

+ 1
LRC1 t( )C2

pp t( ) � 1
LC1 t( )C2

qin t( ) (4)

(2) Combining Equations (1a), (1c), we could obtain Equation
(5) by eliminating q(t). Then C1(t) in Equation (3) becomes an
expression that depends solely on variable pp(t), as shown in
Equation (6).

pc t( ) � d2pp t( )
dt2

+ 1
C2R

×
dpp t( )
dt

( )C2L + pp t( ) (5)

C1 t( ) � Aml

πP1 1 +
d2pp t( )
dt2 + 1

C2R
× dpp t( )

dt( )C2L + pp t( ) − P0[ ]
P1

⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
(6)

(3) By replacing C1(t) in Equation (4) with the expression in
Equation (6), the resulting differential equation has only one
unknown variable pp(t), which could be solved with the Runge-
Kutta (4,5) formula (ODE45) in Matlab 2021b.

(4) When pp(t) is obtained, PPG could be subsequently calculated
by using the P-V relationship (Millasseau et al., 2000). For this
study, we conducted simulations with a time resolution of 0.01 s.
Although a higher resolution could potentially handle more
complex qin(t) profiles, a step size of 0.01 s is sufficient given that
we primarily employed an analytical description of qin(t).

Although the modified WK4 model provided realistic PPG
waveforms, caution should be taken to interpret the simulation
results. Firstly, the original WK4 model was proposed to explain the
formation of peripheral BP waveforms at different frequencies
(Nicolaas Westerhof and Noble, 2010). The hemodynamic
parameters must be constant to yield a reasonable impedance
explanation. In this study, we let the compliance be time-
dependent, which is physiologically sound, but the simulation
results should not be used to modify the characteristic
impedance. Secondly, the simulated PPG waveforms may deviate
from in-vivo measurements due to the oversimplified qin(t) and
cardiovascular system. This modified time-dependent WK4 model
is used to qualitatively explore the stochastic patterns of PPG, which
must be verified using experimental data. Thirdly, WK4 is an open-
loopmodel, which assumes that qin(t) is known and does not depend
on cardiovascular feedback. For a more realistic model, the influence
on qin(t) should be considered to form a more complex closed-loop
model. As a result, the change in blood flow can have much longer
impact than an open-loop model.
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Considering the complexity of the topic, we have chosen to
commence our study with simpler models before gradually
advancing to more intricate and realistic ones. By initially
employing an open-loop model, we were able to establish a
preliminary dynamic relationship between PPG and BP. This
approach not only facilitates easier comprehension but also
enhances safety during the research process.

To sum up, the in silico simulation provided guidance, while
experimental data must be used to refine the details.

2.2 Experimental data

To generate realistic simulation data, we used some of the
experimentally measured data as the model input. For example,
we used 45 different C1 profiles from Langewouters et al
(Langewouters et al., 1984). Multi-modal continuous vital
recordings are from a publicly available database by Charles
Carlson et al. (Carlson et al., 2020), which consists of short PPG-
BP measurements from 40 healthy subjects. The original study
involving human participants was reviewed and approved by the
Kansas State University Institutional Review Board (protocol
number 9386, approved 5 July 2019). Informed consent was
obtained from all subjects involved in the study. The more
popular Medical Information Mart for Intensive Care (MIMIC)
database is not used due to its lack of PPG amplitude information
(Johnson et al., 2016).

The subjects took a supine position and each measurement
lasted for around 5 min. Finger PPGwas acquired using a GE patient
monitor (Datex CardioCap 5). Continuous brachial BP waveforms
and stroke volume (SV) were derived from Finometer PRO
(Finapres Medical Systems). The raw data were resampled to
100 Hz and lowpass filtered with a cut-off frequency of 10 Hz.
For temporal pattern calculation, data with sufficient length is
required. We used a window of 20 s and moved one cardiac
cycle each time to increase the sample size. A total of
17,476 measurements were obtained from 40 subjects. The
subjects’ demographics are listed in Table 1.

The hemodynamic status of each measurement is estimated to
help understand the underlying physiological mechanism. N
Stergiopulos et al. found that C1 and R could be accurately
estimated by the Windkessel model (Stergiopulos et al., 1994;
Nicolaas Westerhof and Noble, 2010). In this study, we used a
similar approach to estimate C1 and R (Xing et al., 2021), except that
C1 had to be chosen from the 45 published profiles, as in Equation
(3) (Langewouters et al., 1984). We performed individual test on
each subject and each C1 profile using the time-dependent
Windkessel models, taking into account the variability of BP
within the cardiac cycle. For each pair, we adjusted R, L, and C2

to minimize the discrepancy between the simulated and measured
BP waveforms. On a per-subject basis, the C1 profile that exhibited

the best match (as indicated by the lowest root mean square error,
RMSE) to the measured BP waveform was selected. Alternative
approaches were used to ensure the validity of hemodynamic
estimation. For example, R is also estimated by calculating the
ratio of the mean arterial pressure (MAP) and CO (Nicolaas
Westerhof and Noble, 2010). C1 is also estimated by calculating
the ratio of the peak-to-peak PPG amplitude and the pulse pressure
(PP) of BP (Allen andMurray, 1999). We found that theWindkessel
model derived C1 and R linearly correlated with the alternative
methods in this dataset. If different models yielded considerably
different estimations, we discard the corresponding samples.

2.3 Pulse stimuli and the corresponding PPG
responses

Real hemodynamic stimuli are complicated, as shown in Figures
3A,E. However, they could be decomposed into continuous pulse
simulations with different timescales, which may help to understand
the physiological mechanism. We designed pulse in silico
simulations with long and short durations to investigate the
corresponding PPG responses, as shown in Figures 3B,F. Firstly,
a simulation with a 20% q0 increase that lasted a single cardiac cycle
was built, hereby referred to as SV stimuli. It is the easiest to model,
understand and quantify. Then very short stimuli with a 10%
increase of qin(t) that lasted for 0.01s was simulated, hereby
referred to as “mini” stimuli.

For the in silico SV stimuli simulation, cardiovascular systems
with different C1 and R were used. Two indices were proposed to
describe the recovery time from a single stimulus, as shown in
Figure 3C. Half width (HW) is defined as the width at 50% of the
peak response, which measures the recovery time for a single
stimulus. Longer HW may lead to overlaps of responses and
complex signal fractal structures. The height of the overshoot
(OS) is associated with the maximum magnitude of BP or PPG
fluctuations. The PPG distortions are defined as the difference
between PPG signals with and without stimuli, as illustrated in
Figures 3D,H. “Mini” stimuli caused similar but much smaller
amplitude responses (~10−3 of the response from SV stimuli),
which were more pronounced in the derivatives of the PPG signal.

To gain a thorough understanding of the time-dependent PPG
responses to stimuli, we used all the 45 C1 profiles from the
published dataset (Langewouters et al., 1984) and varied the
peripheral resistance from 0.7 to 1.3 mmHg s/ml, with a step size
of 0.2 mmHg s/ml. Three CO levels were tested at 4.25L/min, 5.1 L/
min, and 5.95 L/min. Simulations with SBP higher than 220 mmHg
or lower than 80 mmHg were discarded, since these out-of-range
SBPs did not match our experimental data and may potentially
deviate from the simplified model.

The result from SV stimuli simulations could be extrapolated to
more complicated situations. For example, qin contour irregularity

TABLE 1 Subjects’ demographics.

Number of subjects Age (years) Height (cm) Weight (kg) BMI (kg/m2) Sex (M/F) SBP (mmHg) DBP (mmHg)

40 34 ± 15 171 ± 11 76 ± 18 26 ± 5.7 17/23 120 ± 14 69 ± 13

*SBP: systolic BP; DBP: diastolic BP.
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could also be decomposed into an infinite number of “mini” stimuli
(Nicolaas Westerhof and Noble, 2010), similar to Figures 3E,F.
These “mini” stimuli mainly influence the C1 trajectory during a
cardiac cycle and lead to small phase shifts, as in Figures 3G,H. We
assumed PPG responses to “mini” stimuli were similar to SV stimuli,
but at a smaller scale.

2.4 Continuous stimulation and
experimental validation

2.4.1 Continuous stimulation: Random stimuli
In a real-life application, the cardiovascular system constantly

adjusts CO, heart rate (HR), C1, R, and qin contour depending on the
metabolic need and hemodynamic feedback from the entire body. In
addition, autocorrelation patterns can also be observed in the
fluctuations of SV and R, as depicted in Supplementary Figures
S1, S2, which may lead to longer cardiovascular responses. The
accumulated PPG responses may form long- and short-term
temporal patterns. For simplicity, we chose CO and R
perturbation to study longer-term complexities, and assumed qin-
caused short-term complexities have similar behavior. To isolate the
origin of complexity, random stimuli were used. Peripheral BP
signals (pp(t)) were generated by the modified WK4 model, and
PPG is translated from BP by personalized pressure-volume
translations. Each simulation contained 20 cardiac cycles.

To build a more realistic simulation, the hemodynamic status of
the 40 healthy subjects was estimated and used as simulation inputs.
The mean CO and R of each subject were used as baselines, and
random perturbations were added. We used a white noise randomly
chosen from −5% to 5% of the baseline, with a mean of 0 and

standard deviation of 2.83%. To increase sample sizes, CO and R
baselines were also shifted by ±10%. An example simulation is
shown in Figure 4. This test is to investigate the possibility of
forming complexity patterns just from “passive” hemodynamic
responses.

In real-life scenarios, stimuli like SV and R may exhibit
autocorrelation owing to cardiovascular auto-regulation, as
demonstrated in Supplementary Figures S1, S2. The experimental
BP and PPG complexity measures exhibit combined impact of the
stimuli and vascular response.

2.4.2 Experimental validation: Distributionmap and
contribution evaluation

For experimental validation, complexity measures such as
HFD and ACF were calculated for each 20s sampling window,
and their correlation with hemodynamic status is used to
investigate the agreement between model prediction and
experimental data. For practical usage, three-dimensional
maps of complexity measures and their gradients were
generated for experimental data.

Furthermore, to assess the influence of temporal patterns to BP
under stable and unstable cardiac conditions, we calculated the
Pearson correlation coefficient (PCC) of each temporal feature and
BP. Additionally, we employed Bayesian neural network to evaluate
their collective nonlinear contributions, as explained in Section 2.7.
Comparisons were made with commonly-used single-site
morphological features, as defined in Table 2 and documented in
Supplementary Figure S3 (Elgendi, 2012). Biometric input was not
permitted to prevent information leakage. In order to maintain
consistency with temporal features, we performed a median
averaging of the morphological features, resulting in one reading

FIGURE 3
(A)Continuous qin fluctuationwith SV variation. (B)Definition of an SV pulse stimulus that lasted a cardiac cycle. (C) The simulated PPG response and
definition of half width (HW) and overshoot (OS). Simulation parameters were set as follows: Am = 3.5 cm2, P0 = 50.4 mmHg, P1 = 42.3 mmHg, T = 0.8 s,
α = 1/3, Ts = 0.35 s, CO = 5.95 L/min, C2 = 0.1 mL/mmHg, R = 1.4 mmHg s/ml, L = 0.03 mmHg s2/ml. (D) The SV pulse-induced PPG changes. (E) qin
fluctuation within a cardiac cycle. (F) Definition of a “mini” pulse stimulus that lasted for 0.01 s. (G) The simulated PPG response to a “mini” pulse. (H)
The “mini” pulse induced PPG changes.
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per 20-s epoch. This approach enables us to simultaneously evaluate
the contributions from both morphological and temporal features.
By considering these aspects together, we gain a comprehensive
understanding of the characteristics under analysis.

2.5 Complexity measures

We also introduced two main categories of parameters to
describe the dynamic patterns: autocorrelation and fractal
dimension. Autocorrelation Function (ACF) measures the
correlation between data points in a time series and their
preceding data points (Box et al., 2015; Tunnicliffe Wilson
et al., 2015). It provides insights into the translation
invariance of the signal across different delay times (τ). A
commonly used measure derived from the ACF is known as
ACFHW, representing the time when the ACF reaches 0.5, as
depicted in Figure 5A.

Fractal dimension analysis is highly sensitive in uncovering
hidden information within physiological time series (Higuchi,
1988; Kesić and Spasić, 2016a; Rubega et al., 2020). Most fractal
measures require a long recording time of the signals (~hours),

which may not be suitable for BP estimation (Baumert et al.,
2005). Since BP fluctuations occur on a shorter timescale
(minutes), HFD proves to be a favorable choice for capturing
the complexity and dynamic patterns in the data.

In this study, we used the HFD of PPG waveforms (HFDwave),
baseline (HFDDC), and pulsatile amplitude (HFDAC) to measure
complexity at different timescales. PPG signals could be simplified as
time sequences x(1), x(2),. . ., x(N). x is sampled at 100 Hz for
HFDwave, as a short-timescale fractal measure proposed by
Cymberknop et al. (Cymberknop et al., 2011). HFDDC and
HFDAC are calculated when x is sampled per cardiac cycle,
representing longer timescale complexity (Colovini et al., 2019).
From the starting time, a new self-similar time series is used to
calculate curve length Lm(k), as in Equation 7. N is the length of the
original time series x, m is the initial time and k is the time interval.
int[N−m

k ] is the integer part of the real number N−m
k . In this study,

kmax is set to 5.

Lm k( ) � 1
k
[( ∑int N−m

k[ ]
i�1

x m + ik( ) − x m + i − 1( )k( )| |) N − 1

int N−m
k[ ]k ; k

� 1, 2, . . . , kmax

(7)
Lm(k) is averaged for all m. The mean value of the curve length

L(k) is defined as

L k( ) � 1
k
∑k

m�1Lm k( ) (8)

The ln(L(k)) and ln(1/k) relationship for DC and AC is
sometimes nonlinear, as shown in Figures 5B,C. The fitting
parameters contain rich information about hemodynamics. To
describe the relationship between ln(L) and ln(1/k), a cubic fitting
is employed, resulting in the following expression: ln(L) =
a0+a1ln(1/k) +a2ln(1/k)

2 + a3ln(1/k)
3. Notably, the higher-

order fitting coefficients (a1-3) demonstrated fractal property
of the “active” stimuli at longer timescales, as demonstrated in
Supplementary Figure S4. In this study, our focus is on examining
the accumulation of “passive” responses, resulting in the usage of
the intercept(a0) as HFDAC or HFDDC. It is important to note that
a0 is more closely related to stochastic signal fluctuation, while a1

FIGURE 4
(A, B) RandomCO and R stimuli using baseline hemodynamic status from subject X1047. (C) Simulated peripheral BP. (D) PPG signals were obtained
from personalized P-V translations.

TABLE 2 Definition of selected morphological features.

Features Definition

AC The pulsating amplitude of PPG

DC Mean of PPG baseline

Area The area under the normalized PPG waveform

Notch
index (NI)

Notch index. The waveform value at the dicrotic notch over the
systolic peak

SPMEAN Mean upstroke slope during the systolic period

SPVAR Variation of upstroke slope (standard deviation) during the
systolic period

DPMEAN Mean downstroke slope during the diastolic period

DPVAR Variation of downstroke slope (standard deviation) during the
diastolic period
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represents the traditional definition of fractal dimensions.
Conversely, we found that the linear slope of HFDwave had
enhanced robustness and correlated with the individual’s
hemodynamic status. Therefore, the linear slope (a1) is used as
the HFDwave in our study.

2.6 Robustness of temporal patterns and
their sensitivity to BP

Typically, fractal dimensions are calculated using longer
signals (Baumert et al., 2005; Kesić and Spasić, 2016b). In our
study, we chose 20 s to be the window size. It is necessary to
evaluate the uncertainty of complexity measure calculation in
this specific application. To address this, we undertook two
approaches.

Firstly, we simulated a change in the coupling between the
sensor and skin by multiplying the experimental PPG amplitudes by
factors of 120% and 80%, respectively. We then recorded and
analyzed the resulting variations in complexity measures. This
evaluation allowed us to assess the sensitivity of the chosen
measures to changes in the skin-sensor coupling coefficient.

Secondly, we estimated the error in slope(a1) and intercept(a0)
estimation caused by cubic fitting of ln(L) versus ln(1/k) using
experimental data. The errors were calculated by using variance-
covariance matrix for the fitted coefficients (Seber, 1989). This
analysis provided us with insights into the potential estimation
errors caused by the fitting process.

As the goal of our study is to estimate the contribution of
temporal patterns to blood pressure (BP) estimation, we evaluated
their sensitivity to BP using the partial derivative ∂f/∂h. Here, f
represents the chosen complexity measure, and h can be underlying
hemodynamic parameters such as SV, R and C1. Measurements were
divided into low and high CO variations according to their beat-to-
beat CO fluctuations (|∂CO/∂t|). The threshold is set to be the
median of the CO variations.

2.7 Enhancing BP estimation performance
with temporal features

To evaluate the impact of temporal complexities on BP, we
constructed a straightforward Bayesian neural network(BNN)
(Kesić and Spasić, 2016b). Morphological and temporal features,
including HRV, were tested as standalone features and feature
combinations. The resulting BNN performance may help
understand the non-linear side of the relative contribution.

The BNN consisted of a single layer with 15 neurons. To address
any imbalances in the input data and improve overall BP estimation
performance, we utilized the EasyEnsemble technique (Liu, 2009).
This technique effectively balances the data, leading to improved
estimation accuracy. To ensure robust testing and training, we
implemented a leave-one-subject-out procedure, allowing us to
separate the training and testing data. In terms of the testing
data, they were fitted and then calibrated using the first 10 data
points. We assessed the MAP and PP under high and low CO
fluctuation situations. Median absolute errors (MAE) and Pearson’s
correlation coefficient (r) are used as indicators of accuracy and
correlation. These evaluation measures provide valuable insights
into the effectiveness of the BP estimation algorithm and its ability to
accurately predict BP values.

Please be noted that this neural network structure or feature
combination may not be the optimal for real-life deployment.
The purpose is to showcase the added value of temporal
features.

3 Results

This section presents the analysis of the in silico simulation
results, which were further examined and verified using
experimental data. The distributions of HFD and ACF are
visualized, allowing for a thorough estimation of their respective
contributions to BP. Additionally, comparisons with morphological

FIGURE 5
(A) ACF of three experimental measurements as examples. M1-3 refers to measurements 1–3. ACFHW refers to the time lag taken to reach 0.5. (B, C)
ln(L) versus ln(1/k). The intercept of the cubic fitting is used for HFDDC and HFDAC calculation. (D) ln(L) versus ln(1/k) for HFDwave calculation.
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features under both stable and unstable cardiac conditions were
conducted to provide further insights.

3.1 Pulse simulation

Since C1(t) changes rapidly during a cardiac cycle, to simplify the
illustration, C1(t) is averaged and binned to suppress C1-profile-
related fluctuations. To ensure a consistent comparison of
amplitudes, a generalized transfer function was used to convert
BP to PPG (Millasseau et al., 2000). We found that at a given
peripheral resistance, PPG with higher C1 had a longer HW or
slower recovery time after perturbation, as shown in Figures 6A–C.
Lower peripheral resistance reduces the recovery time and narrows
the HW differences for different C1. Smaller CO leads to longer
recovery time and lower overshoot, which is probably due to lower
BP and hysteresis. Generally speaking, subjects with stiffer blood
vessels, lower peripheral resistance, and high CO had a more
instantaneous response to stimuli. Subjects with very elastic
blood vessels, high peripheral resistance, or low CO have
prolonged responses, which may lead to complex overlap patterns.

The overshoot of PPG caused by the pulse stimulus is higher for
subjects with lowerC1 and highCO, as shown in Figures 6D–F. SinceC1

becomes smaller with age (Brandfonbrener et al., 1955; Van Bortel and
Spek, 1998), older subjects with hypertension are more likely to have
high fluctuation of BP during the day, which is consistent with previous

publications (Chobanian et al., 2003; Force et al., 2021; Guirguis-Blake
et al., 2021).

Similar patterns exist for “mini” pulse simulations, except that
PPG responses are much smaller. Pulse simulation with other
hemodynamic conditions might be extrapolated from existing
results. Another notable point is that all the possible hemodynamic
combinations were used as long as the resulting BP is in the desired
range. Experimental data showed overall higher C1 since the
participants were young and healthy.

3.2 Continuous simulation

Continuous simulation showed that temporal patterns could be
generated by random stimuli, as in Figures 7A–D. Experimental results
are similar but not the same as the simulation prediction, due to the
autocorrelation patterns of stimuli, perturbation strength, and noise.

We used HFDDC and ACFHW to demonstrate the PPG temporal
responses to continuous stimuli. HFDDC showed a significantly positive
correlation with R. Steiger’s z-test showed no statistical difference
between the HFDDC-R slopes of the simulation and experiments.
Experimental data had overall more negative ∂HFDDC/∂CO slope
compared to the simulation, but the slope is not smooth with locally
positive gradients in the 6–8L/min subregion. The correlation between
HFDDC and C1 is non-significant in both simulation and
experimental data.

FIGURE 6
PPG recovery parameters versus hemodynamic status at different CO. (A–C) Half width (HW) of PPG response (D–F)Overshoot of PPG amplitude.
The unit for R is “mmHg.s/ml”. The simulation data is presented as “mean ± SD” to accommodate the variations attributed to different C2 and L. Here, SD
refers to the standard deviation of the data in each bin.
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For random stimuli, ACFHW significantly and positively
correlated with R and SV. Experimental data had significantly
more positive ∂ACFHW/∂R and ∂ACFHW/∂SV slopes. We used
SV instead of CO, because the correlation between ACFHW and CO
is positive but much weaker. Since the timescale of ACFHW is small
(~0.1s), the inherent ACF dynamics likely correlate more with SV
than CO. The correlation between ACFHW and C1 changed with R in
simulation, while experimental data showed a consistent negative
correlation with C1. The difference is probably caused by qin-
irregularity-induced phase lags. The minimum experimental
ACFHW (~0.08s) is lower than the simulated ACFHW (~0.1s),
probably due to the deviation from WK4 models caused by
structural heterogeneity. The comparative analysis of the average
slopes between temporal features and hemodynamics can be found
in Supplementary Table S1. To enhance the quality of regression, a
robust fitting approach was employed.

The relationship between HFDAC, HFDwave, and
hemodynamics is shown in Supplementary Figure S5. For both
simulation and experimental data, HFDAC negatively correlated
with R and positively correlated with CO. Experimental analysis
showed similar trends with weaker C1 reliance. Experimental
HFDwave showed stratified but mixed correlations with C1. The
correlation between HFDwave and CO or R is also nonlinear,
while simulations with random stimuli per heartbeat showed no
corresponding trends. This result agreed with our hypothesis that
HFD at a much shorter timescale (~0.01s) may be caused by qin
irregularity and buildup of “mini” stimuli. Due to the high
computational cost of adding random qin irregularity and the
difficulty of obtaining clinical qin measurements, we think this
explanation is plausible, but could not confirm this hypothesis at
this stage.

3.3 Robustness of temporal patterns and
their multi-dimensional mapping

To investigate the practical usage of temporal patterns in BP
estimation, we tested their robustness to scaling factors. Three-
dimensional distribution and sensitivity maps were generated,
so that machine learning algorithms could use them as
references.

3.3.1 Sensitivity to PPG amplitude
The experimental PPG amplitudes were multiplied by 120% and

80% respectively to mimic the changed coupling between the sensor
and skin. All the complexity measures are robust to PPG scaling
factors, as shown in Figure 8. HFDwave is the most influenced by the
scaling factors. But the magnitude (5%) is still much smaller than the
disturbances (±20%).

3.3.2 Influence of data segment length
The intercept(a0) of HFD calculation reveals a small relative

uncertainty even with a signal length of 20 s. However, the
uncertainty of the slope(a1) is more influenced by the signal
length, showing stabilization around 100 s. It is worth noting that
the intercept and slope of the ln(L) versus ln(1/k) values can fluctuate
by 50% and 200% respectively, during a 5-min measurement. Thus,
the uncertainty of the HFD calculation remains relatively small.

In this study, our primary focus is on the accumulation of
delayed cardiovascular response to stimuli, which is more related to
the intercept of the HFD calculation. Supplementary Figure S4
demonstrates that the higher-order fitting coefficients of ln(L)
versus ln(1/k) exhibit a strong correlation with the corresponding
fractal dimensions of stroke volume (SV) only when signal lengths

FIGURE 7
Comparison of continuous PPG simulation and experimental results. (A–D) Random stimuli caused complexities and their dependence on
hemodynamic status. (E–H)Measured complexities and their dependence on hemodynamic status. The simulation and experimental data are binned and
presented as “mean ± SD”.
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reach 100 s or longer. Hence, it is crucial that future studies, which
incorporate a closed-loop model and consider CO or SV
complexities, utilize longer signal lengths to ensure accurate and
reliable calculations. This would enable a more comprehensive
understanding of the relationship between the higher-order
coefficients, fractal dimensions, and physiological parameters.

3.3.3 Distribution of complexity measures and their
sensitivity to hemodynamics

Experimental data were used to generate a three-dimensional map
of complexity measures based on CO, R, and C1, as shown in Figure 9.
To ascertain the sensitivity of complexity measures to hemodynamic
changes, the partial differentiation technique was employed while
controlling the effects of the remaining variables. Although the
presence of autocorrelation in stimuli, perturbation strength, and
noise may cause non-smooth sensitivities, their distribution and
differentiability still provide valuable information for analysis.

Knowing the underlying hemodynamic properties of the subject
would help build more robust and accurate BP estimation
algorithms. Self-similarity and stochastic patterns could encode
the hemodynamics-related information in PPG temporal series,
which may help stabilize BP estimation and improve the overall
performance.

3.4 Contribution to BP: Linear correlation

As shown in Figure 10, temporal complexity features are less
influenced by CO fluctuation, and some even had increased
correlation at high CO variation. Most morphological features
had a significantly decreased or small correlation with MAP at
high CO variation. A simple multiple linear regression algorithm
was built with these features. The PCC of estimated MAP and PP
with reference is shown in Figures 10C,D. BP estimation
performance is not affected if morphological features and
temporal features are combined, while the morphology-only
algorithm has a significantly worse MAP estimation performance
at higher CO fluctuations.

3.5 Evaluation of nonlinear correlations
with BP

Nonlinearity exists in the PPG-BP relationship. To further
investigate the impact of different features on BP estimation
performance, a BNN algorithm was employed, as described in
Section 2.6. Notably, the combination of morphological features,
HRV, and complexity measures such as HFD and ACF exhibited
the highest correlation with the reference for BP prediction,
although it did not yield the lowest MAE. Upon closer

FIGURE 8
Scaling factor-induced HFD and ACF changes (mean ± SD).

FIGURE 9
Experimental temporal complexity measure distributions and their sensitivity to CO, R, and C1. The size of the bubble represented the relative
number ofmeasurements. The color represented the complexity measure or gradient value. (A–D)HFDDC distribution and its sensitivity to hemodynamic
parameters. ∂HFDDC/∂CO is locally positive in the 6–8 L/min subregion. (E–H) ACFHW distribution and its sensitivity to hemodynamic parameters.
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examination, it was found that the inclusion of complexity
measures introduced more outliers compared to the
morphology only method, as shown in Supplementary Figure
S6, S7. This finding can be attributed to the inherent uncertainties
associated with HFD calculations, which should be carefully
considered. To address this issue, implementing a thorough
outlier removal or quality check procedure would prove
beneficial.

The addition of HRV played a significant role in scenarios with
high CO fluctuations. However, it was observed that the
incorporation of HRV negatively impacts BP estimation
performance when CO fluctuations are low. These findings
underscore the importance of considering the specific context
and characteristics of the dataset when selecting and combining
features for BP estimation. Table 3 Table 4.

4 Discussion

4.1 Novelty of the study

Single-site PPG-based BP estimation has raised a lot of interest
in both academia and the industrial world. Previous studies showed
that PPGmorphological information may not be enough to estimate
BP, but the dynamic process is too complex to build a precise model.
Machine learning algorithms such as LSTM produced better results.
But it is difficult to know the exact mechanism.

In this study, we designed a novel in silico simulation to provide
insight into the hemodynamic process. Pulse simulations showed
that CO, R, and C1 are the main determinants of prolonged PPG
fluctuations. Continuous simulation with random stimuli confirmed
that the buildup of prolonged vascular responses could generate
certain stochastic patterns, which had a strong dependence on
hemodynamics. Experimental data agreed well with the
prediction. Real-life stimuli could have different levels of
autocorrelation and perturbation strengths. The multi-scales and

nonlinearity of complexity should be utilized to capture the
hemodynamics-related information.

In addition to providing more information about
hemodynamics, HFD, and ACF features are more robust. For
repetitive measurement, the coupling coefficient of skin and
sensor, and the sensor location difference may cause large
errors in PPG amplitude measurement. Complexity patterns
are less sensitive to PPG amplitude, which may help stabilize
BP estimation. At unstable conditions when CO variation is
higher, more and more information go into temporal
complexity features. The contribution of morphological
features to BP significantly decreased. BP estimation
algorithms could only have the same performance when
temporal features were added, showing the inherent
information flow when cardiac stability changes.

4.2 Comparison with previous studies

Very few studies have used explicit stochastic temporal features
to estimate BP (Hosanee et al., 2020). Colovini, T. et al. reported that
HFD of the continuous DBP recordings had a significantly positive
correlation with average DBP in hypertensive patients (Colovini
et al., 2019). Cymberknop et al. found that HFD of arterial pressure
morphology decreased with increasing blood flow, which correlated

FIGURE 10
(A, B) The correlation of PPG features and BP (MAP and PP). “*” indicated a significant difference between groups. Temporal features are in the
shaded area. (C, D) Correlation of BP (MAP and PP) estimation and reference with complexity features only, morphology features only, and combined
features. “*” indicated a significant difference between low and high CO variation.

TABLE 3 Uncertainty of HFD calculation caused by length selection.

HFD of DC HFD of AC

Intercept(a0) Slope (a1) Intercept(a0) Slope (a1)

20 0.60% 20.0% 0.42% 27.0%

60 0.31% 9.6% 0.23% 13.5%

100 0.27% 8.0% 0.19% 10.8%
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with arterial stiffness (Cymberknop et al., 2011). Gomes, R. et al.
reported acutely decreased HFD of heart rate after exercise (Gomes
et al., 2017). The fractal dimension of signals as short as
50 heartbeats is useful (Peña et al., 2009). To our knowledge,
ACF has not been studied as a contributing factor to BP
estimation. Although HRV is a well-studied dynamic feature, its
impact on BP improvement primarily relates to the assessment of
neurological activity (Mejía-Mejía et al., 2020a; Mejía-Mejía et al.,
2020b; Mejía-Mejía et al., 2022), representing the "active” stimuli
and not encompassing all aspects of the dynamic process.

In our study, we gave explicit disclosure about the temporal PPG
patterns and their potential physiological meanings. Their relative
contribution to BP depended on hemodynamic properties. By
mapping the distribution of temporal complexity features, the
application scope could be defined.

4.3 Limitations of the study

The database we used contained 40 healthy subjects. Most of
them were young and healthy. The same procedure should be tested
in datasets with wider coverage of subjects. Human beings are not
perfect stochastic systems, and the approximation of HFD and ACF
calculations may not be accurate enough. Although sex is unlikely to
influence PPG-BP correlation, its role in cardiovascular health
deserves to be explored further with PPG technology. Finally, we
used estimated blood vessel compliance and peripheral resistance to
generate the complexity feature distribution map. Validation from
medical ultrasound and total peripheral resistance (TPR)
measurements should be necessary.

We proposed a plausible explanation of the stochastic patterns
in the PPG signal. The simulation results agreed with experimental
observations and previous publications. However, the exact origin
should be explored further, and the cardiovascular modeling should
be more detailed to account for the closed-loop interaction, vascular
tree structure, flow distribution, cardiac activity variation, etc.

4.4 Suggestions for future work

Temporal complexities contain rich information about
hemodynamics. Our study only showed a fraction of its potential
due to limited space. Previous studies mostly used HFD of BP
instead of PPG signals. The impact of P-V translation and

measurement location on the HFD of PPG should be fully
investigated. For example, simulating PPG signals in peripheral areas
versus within the arterial network may yield distinct results due to
variations in the volume of arterial blood within the tissues. It would be
intriguing to extend the application of the time-dependent model to
incorporate multi-site PPG measurements, allowing for a more
comprehensive investigation. We have shown that the nonlinearity
of ln(L) and ln(1/k) relationship contained stimuli information. The
role of other fitting coefficients should be thoroughly investigated. The
incorporation of these coefficients will further improve the BP
estimation accuracy. We found a significant contribution of
HFDwave to BP. However, its correlation with hemodynamic
parameters is nonlinear. Collection of clinical qin and corresponding
simulations should be done to elucidate its influence on HFDwave.

It is possible that we only found one source of temporal PPG
complexity. A more detailed simulation including cardiovascular
tree structure should be carried out to confirm the origin of the
fractal pattern. In addition to SV or CO variations, the influence of
breathing should be taken into account, considering its impact on
the parasympathetic and sympathetic nervous systems.
Furthermore, conducting simulations with different patterns of
HRV may provide valuable insights. By using a larger dataset
and employing finer grids, more accurate and comprehensive
heatmaps of temporal features in relation to BP can be
generated. Incorporating these adjustments and considerations
will contribute to a more holistic understanding of the intricate
relationship between PPG and BP.

We employed a simple BNN to estimate BP, which, although
explicit, may not yield optimal performance. Moving forward, it is
crucial for future studies to consider the temporal properties of the
algorithm and fine-tune parameters in alignment with the specific
context, such as stimuli strength, hemodynamic status, and
physiological constrains related to temporal interactions. These
refinements will contribute to enhancing the performance and
accuracy of BP estimation algorithms.

Although we obtained decent BP estimation performance from
single-site PPG alone, it is important to note that relying solely on
single-site PPG or a simple combination of PPG and ECG may not
provide sufficient information for reliable BP estimations (Mieloszyk
et al., 2022;Mukkamala et al., 2023). Therefore, adopting amulti-modal
approach that integrates multiple sensing modalities is crucial to
enhance the reliability of the algorithm. This entails extracting
valuable information from each modality and evaluating their
respective contributions. By improving data integration and analysis

TABLE 4 Calibrated BP estimation by BNN.

High CO fluctuation Low CO fluctuation

MAP PP MAP PP

Correlation coefficient (r) M 0.50 0.61 0.58 0.66

M + HRV 0.62 0.66 0.42 0.57

M + HRV + complexity 0.65 0.71 0.61 0.74

MAE (mmHg) M 4.47 6.78 4.23 6.82

M + HRV 5.12 8.08 5.18 8.38

M + HRV + complexity 4.97 7.45 4.61 7.51
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across various physiological measurements, we can achieve more
accurate and robust BP estimation outcomes.

5 Conclusion

Signal fluctuation is not merely a nuisance but also valuable
information. In this study, we have demonstrated that the
temporal complexity patterns of PPG are correlated with
hemodynamic status and make a substantial contribution to
BP estimation, particularly in the presence of high CO
variations. The integration of these temporal complexity
features has the potential to enhance the accuracy and
interpretability of single-site PPG-based BP estimation
methods, thereby facilitating the development of more
advanced algorithms in the future.
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