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CO2 is a fundamental component of living matter. This chemical signal requires
close monitoring to ensure proper match between metabolic production and
elimination by lung ventilation. Besides ventilatory adjustments, CO2 can also
trigger innate behavioral and physiological responses associated with fear and
escape but the changes in brain CO2/pH required to induce ventilatory
adjustments are generally lower than those evoking fear and escape. However,
for patients suffering from panic disorder (PD), the thresholds for CO2-evoked
hyperventilation, fear and escape are reduced and the magnitude of those
reactions are excessive. To explain these clinical observations, Klein proposed
the false suffocation alarm hypothesiswhich states thatmany spontaneous panics
occur when the brain’s suffocationmonitor erroneously signals a lack of useful air,
thereby maladaptively triggering an evolved suffocation alarm system. After
30 years of basic and clinical research, it is now well established that anomalies
in respiratory control (including the CO2 sensing system) are key to PD. Here, we
explore how a stress-related affective disorder such as PD can disrupt respiratory
control. We discuss rodent models of PD as the concepts emerging from this
research has influenced our comprehension of the CO2 chemosensitivity
network, especially structure that are not located in the medulla, and how
factors such as stress and biological sex modulate its functionality. Thus,
elucidating why hormonal fluctuations can lead to excessive responsiveness to
CO2 offers a unique opportunity to gain insights into the neuroendocrine
mechanisms regulating this key aspect of respiratory control and the
pathophysiology of respiratory manifestations of PD.
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1 Introduction and overview

As a chemist, Antoine Lavoisier was the first to acknowledge
CO2 as a “fundamental component of living matter”. While his
significant contributions to modern physiology did not save him
from the guillotine, CO2 is now acknowledged as a chemical
signal that requires close monitoring to ensure proper match
between metabolic production and elimination by lung
ventilation. Although accurate, this approach neglects the fact
that CO2 accumulation is a sign of an impoverished air quality
such that in many species (including rodents and humans), CO2

can trigger innate behavioral and physiological responses
associated with fear and escape. These responses are highly
adaptive because leaving the room (rather than
hyperventilating) is perhaps the simplest (and most efficient)
way to deal with a hypercarbic environment! Clearly, the changes
in brain CO2/pH required to induce ventilatory adjustments are
far lower than those evoking fear and escape (Guyenet and
Bayliss, 2022), but in a subpopulation of patients suffering
from anxiety disorders, the thresholds for CO2-evoked
hyperventilation, fear and escape are reduced and the
magnitude of those reactions are excessive. This trait can then
initiate a vicious circle: if the increase in breathing is
disproportionate, the perception of respiratory efforts along
with the excessive CO2 loss (hypocapnia) can trigger a variety
of physical sensations ranging from headaches to chest pain/
discomfort (Gardner, 1996). Panic disorder (PD) patients
misinterpret these physiological signals as life-threatening and
experience strong emotional reactions that can lead to full-blown
panic attacks encompassing fear of dying, shortness of breath,
and a choking sensation (Gardner, 1996; Gorman et al., 2000;
Nardi et al., 2009). To explain these clinical observations, Donald
Klein proposed “the false suffocation alarm hypothesis” which
states that “many spontaneous panics occur when the brain’s
suffocation monitor erroneously signals a lack of useful air,
thereby maladaptively triggering an evolved suffocation alarm
system” (Klein, 1993). This model has been refined (Feinstein
et al., 2022; Kinkead et al., 2022), but has generally stood the test
of time. After 30 years of basic and clinical research, it is now well
established that anomalies in respiratory control (including the
CO2 sensing system) are key to PD. Moreover, the intense fear
and anxiety experienced by PD patients highlight the functional
and anatomical overlaps that exists between the neural circuits
that control breathing and those that regulate emotions, fear and
escape responses (Schenberg, 2016; Venkatraman et al., 2017).
Each of these systems has been studied extensively in isolation,
but in recent years, the study of their functional intersection has
offered a novel and broader view of respiratory neurobiology.
Recent work from Feldman and collaborators has deciphered the
pathways by which inspiratory rhythm originating from the pre-
Bötzinger complex affects emotions (Ashhad et al., 2022). Here,
we will look at this relationship from a different angle; namely, we
will explore how a stress-related affective disorder such as PD can
influence respiratory control. We focus on rodent models of PD
as the concepts emerging from this research has influenced our
comprehension of the CO2 chemosensitivity network and how
factors such as stress and biological sex modulate its
functionality.

2 Panic disorder: Definitions and sex-
based differences in respiratory
manifestations of neural control
dysfunction

Panic disorder is an anxiety disorder characterized by recurrent
panic attacks that are acute, unexpected, and that occur without a
clear trigger (World-Health-Organization, 1992; American-
Psychiatric-Association, 1994). A panic attack is defined as an
episode of overwhelming physical distress and cognitive anxiety
during which the patient rapidly develops intense symptoms such as
air hunger, sweating, heart palpitations, shortness of breath,
hyperventilation, and fear of dying (Hoppe et al., 2012). As such,
PD is perhaps one of the most overwhelming experiences that a
person can endure (Moreira et al., 2013). While the DSM-V
definition of PD spans across 13 different symptoms, the
respiratory PD subtype has been identified as the most common,
the most pervasive, and the most disabling form of PD (Roberson-
Nay and Kendler, 2011). This demonstrates the prominence of the
respiratory distress symptoms in PD (Wilhelm et al., 2001;
Roberson-Nay et al., 2010; Hoppe et al., 2012; Rappaport et al.,
2017) and, depending on theoretical standpoints, hyperventilation
can thus be viewed as a cause, a correlate, or a consequence of panic
attacks (Nardi et al., 2009).

DuringWorldWar I, it was observed that CO2 rebreathing while
wearing a gas mask can bring some soldiers to remove the gas mask
and/or induce a panic attack (Ritchie, 1992); it was proposed at the
time that soldiers prone to the “irritable heart” are excessively
sensitive to this stimulus (Drury, 1918). Today, CO2 inhalation is
commonly used as a diagnostic tool for PD (Battaglia and Perna,
1995; Gorman et al., 2001; Hoppe et al., 2012). An increased CO2

response is acknowledged as a distinctive biomarker of this
population and remains a central readout of PD that is easily
and non-inferentially modeled in the laboratory. Furthermore,
PD patients show an abnormally elevated respiratory variability
owing to excessive sighing and an increased rate of apnea both
during sleep and wakefulness (Stein et al., 1995; Bystritsky et al.,
2000; Abelson et al., 2001; Nardi et al., 2009; Garbarino et al., 2020;
Feinstein et al., 2022). The sum of these physiological symptoms
indicate that both the regulation and perception of breathing are
dysfunctional in PD patients (Gorman et al., 2000; Sinha et al., 2000;
Katzman et al., 2002; van Duinen et al., 2007; Abelson et al., 2008;
Nardi et al., 2009; Abelson et al., 2010; Grassi et al., 2013).

In North America and Europe, PD affects ~5% of the general
population (Hoppe et al., 2012; Meng and D’Arcy, 2012; Bandelow
and Michaelis, 2015) and its sexual dimorphism is striking: the
prevalence rate of women who have PD or with excessive
physiological and behavioral responses to CO2 inhalation is
2–3 times that of men (Wilhelm and Roth, 2001; Pigott, 2003;
Donner and Lowry, 2013). The incidence of PD rises at puberty
(Reardon et al., 2009) and in young adolescent girls, pubertal stage
predicts panic attack occurrence (Hayward et al., 1992).
Furthermore, the panicogenic effects of CO2 inhalation are
highest during the pre-menstrual phase (Nillni et al., 2017), thus
indicating that, by comparison with healthy subjects, women
suffering from PD are more sensitive to the sudden drop in
ovarian hormones taking place during the last days of the luteal
phase (Reardon et al., 2009; Nillni et al., 2011; Nillni et al., 2017).
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Cyclic fluctuation in ovarian hormones is a normal physiological
process, but in a subpopulation of women, they contribute to the
onset of PD and its recurrent exacerbations (Reed and Wittchen,
1998; Gorman et al., 2001; Lovick, 2014). Thus, elucidating why
hormonal fluctuations can lead to excessive responsiveness to CO2

offers a unique opportunity to gain insights into the neuroendocrine
mechanisms regulating this key aspect of respiratory control and the
pathophysiology of respiratory manifestations of PD.

3 Early life stress and PD-related
respiratory disturbances in rodents and
humans

In mammals (including humans), exposure to adversities during
early life alters brain development and is a significant risk for disease
(Graham et al., 1999; Buitelaar et al., 2003; Fumagalli et al., 2007;
Shonkoff et al., 2009; Charil et al., 2010). Conditions such as
maternal depression, unstable parental environment, and special
medical care at birth that interfere with mother-infant interactions
are stressful to the infant. The sum of current data from clinical and
basic research indicates that these forms of early life stress
predispose to behavioural and cognitive disorders as well as
excessive CO2 sensitivity and PD that emerge at adolescence,
especially in females (Battaglia et al., 1995; Gunnar, 2003;
Battaglia et al., 2009; Shonkoff et al., 2009; D’Amato et al., 2011).
Thus, the deleterious impacts of early life stress remain latent and
are revealed by the rise in ovarian function that takes place at
puberty; subsequent fluctuations of ovarian hormones exacerbate
PD-related respiratory symptoms in a cyclic fashion. To gain insight
into the basic neuroendocrine mechanisms of PD, repeated cross
fostering (RCF) and neonatal maternal separation (NMS) have been
use in mice and rats (respectively) as clinically relevant models of
early life stress and using the ventilatory response to CO2 as a main
physiological outcome (Battaglia et al., 2014).

The hypercapnic ventilatory response (HcVR) changes
significantly during development (Putnam et al., 2005; Tenorio-
Lopes et al., 2020) and progressive increase in the expression TASK
1 and TASK 2 channels in the hypothalamus likely contribute to this
process (Wang et al., 2021); however, the molecular signal initiating
their expression remains unknown. In sexually mature mammals
(including humans), sex-based differences in the intensity of the
CO2 response are well documented but are highly heterogeneous
(Gargaglioni et al., 2019). In mice, RCF augments the HcVR of pups
(P16-20) and adults mainly by augmenting the tidal volume
response; however, this effect is similar in both sexes (D’Amato
et al., 2011; Luchetti et al., 2015; Cittaro et al., 2016; Battaglia et al.,
2018). In adult C57BL6 mice, NMS elicits a modest increase of the
HcVR only in females (Elliot-Portal et al., 2021). In rats, the
ventilatory response to 5% CO2 of pre-pubertal rat pups (P14 -
P15) is very weak with no evidence of sex- or NMS-related effects
(Tenorio-Lopes et al., 2020). At adulthood, the HcVR of control
(non-stressed) male and female rats is similar, but the effects of NMS
on the CO2 response differ strikingly between sexes in ways that are
very similar to clinical observations of PD. Specifically, the minute
ventilation response to CO2 inhalation (5% CO2; 10 min) of NMS
females is 60%–80% larger than controls and NMS-related increase
of the CO2 response is i) sex-specific (limited to females), ii) peaks

during proestrus, and iii) is not observed prior to puberty (Genest
et al., 2007; Kinkead et al., 2009) (Figure 1). These differences in the
developmental and sex-specific effects of early life stress on the
HcVR of mice and rats likely reflect inter-species differences in stress
responses of rodents (Beery and Kaufer, 2015). Regardless, both
models have advanced our comprehension of the pathophysiology
of PD. What follows is a summary of the main mechanisms that
contribute to stress-related increase in CO2 response.

4 Early life stress alters non-medullary
structures with CO2 sensing properties

4.1 The amygdala

Within the medial temporal lobes, the amygdalar complex is
responsible for perception and processing of stimuli; it also
initiates and terminates emotional reactions (Marek et al.,
2013). Briefly, this complex is composed of three main
structures: the medial amygdala (MeA), the central amygdala
(CeA) and the basolateral amygdala (BLA) (Figure 2). The
basolateral part of the amygdala (BLA) is of great interest to
this mini-review because it has inherent CO2 sensing properties;
much like “classical” CO2-sensing neurons of the medulla, BLA
neurons can detect CO2 (Ziemann et al., 2009). While direct
comparisons are not possible, we can estimate that the CO2/H

+

sensitivity of BLA neurons is ~ 10 times less than that of the
retrotrapezoid nucleus (RTN), the main CO2 sensing structure in
respiratory control (Guyenet et al., 2019). Nonetheless, CO2-
induced stimulation of the BLA elicits emotional and
physiological responses associated with fear and panic-related
states (Ziemann et al., 2009). The BLA interacts with the medial
amygdala (MeA) that regulates innate emotional behaviors; it
relays olfactory information to hypothalamic nuclei involved in
reproduction and defense behaviors. Interestingly, sex-based
differences in anatomy, laterality, function, and sensitivity to
steroid hormones of the MeA are well documented in humans
and rodents (Rodrigues et al., 2009; Cahill, 2010; Goldstein et al.,
2010; Edelmann and Auger, 2011; Buss et al., 2012). Both regions
project to the central amygdala (CeA) (Keshavarzi et al., 2014),
which is the amygdala’s output pathway because it initiates
autonomic and respiratory responses (Veening et al., 1984).
The CeA projects directly onto rhythmogenic neurons of the
pre-Bötzinger complex, the nucleus of the solitary tract (NTS),
and the RTN (Petrov et al., 1995; Rosin et al., 2006; Ulrich-Lai
and Herman, 2009; Yang et al., 2020). Furthermore, stimulation
of the CeA excites the inspiratory cycle (Harper et al., 1984). In
our studies using c-fosmRNA as a marker of neuronal activation,
the CeA has emerged as an important candidate in the initiation
of an excessive ventilatory response to CO2 in NMS, especially in
female rats (Kinkead et al., 2014).

Owing to its role in the regulation of emotional reactions, the
amygdala contributes to the pathogenesis of anxiety (Feinstein et al.,
2022); however, observations made on patients with
Urbach–Wiethe disease, a rare genetic disorder leading to focal
bilateral amygdala lesions, have raised questions concerning its
contribution to PD. Briefly, Urbach–Wiethe patients show no
fear and avoidance behavior to external threats such as snakes,
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tarantulas, and a range of traumatic life events, but exhibit a
significantly higher rate of CO2-evoked fear and panic than a
sample of demographically-matched healthy participants
(Feinstein et al., 2013; Feinstein et al., 2022). In mice, electrolytic
lesions of the amygdala inhibited fear-like behavior (freezing);
however, the ventilatory response was not tested (Taugher et al.,
2020). In pediatric subjects, electrical stimulation of the medial
subregion of the basal nuclei, cortical and medial nuclei induces
apnea (Rhone et al., 2020); similar procedures in the lateral and
basolateral amygdala of adults also results in respiratory inhibition
(Dlouhy et al., 2015). The fact that these patients do not notice
respiratory arrest or report dyspnea indicate that their ability to
perceive the rise in CO2 is blunted; the inverse relationship between
CO2 activation of the MeA and the HcVR of male rats is in line with

this observation (Tenorio-Lopes et al., 2017). Although compelling,
this interpretation requires caution because amygdalar lesions in
humans and mice were heterogeneous and clinical studies generally
involve a limited number of participants. Nonetheless, the sum of
these observations i) highlights an important neural distinction
between “external” threats conveyed via visual and auditory
pathways, versus threats conveyed through “internal” sensory
channels (e.g., chemoreceptive); ii) suggests that rather than
inducing panic, the amygdala inhibits it, especially when it is
evoked by an internal threat such as elevated levels of CO2, and
iii) this inhibition likely originates from a subpopulation of
CeA neurons considering that as discussed previously, the
CeA is generally acknowledged for its stimulatory influence on
breathing.

FIGURE 1
Influence of neonatal stress and reproductive status on the magnitude of ventilatory response to CO2 in rats. (A) Original plethysmography
recordings comparing ventilatory activity at rest and upon exposure to hypercapnia (5% CO2 in air). Recordings were obtained from adult rats during the
proestrus phase; females were either raised under standard conditions (top trace) or subjected to neonatal maternal separation (bottom trace; 3 h/day,
postnatal days 3–12). Blue arrow indicates the onset of the exposition to 5% CO2 for 10 min. Comparison of the minute ventilation responses to
hypercapnia between control rats (white bars) and rats subjected to neonatal maternal separation (NMS; red bars). Data expressed as percent change
from baseline (room air) in (B) pups, adult (C) females and (D)males. Data from males are from (Genest et al., 2007; Tenorio-Lopes et al., 2017); they are
reported for comparison andwere not included in the statistical analyses. Data are reported asmeans ± SEM * indicates a value significantly different from
corresponding proestrus value at p < 0.05; † indicates a value significantly different from corresponding control value at p < 0.05. Adaptedwith permission
from (Tenorio-Lopes et al., 2020).
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4.2 Orexin neurons

Orexins A and B (ORX; also known as hypocretins) are
regulatory peptides produced by neurons located in the dorso-
medial, perifornical, and lateral hypothalamus (DMH, PeF, and
LH, respectively). Orexin neurons have extensive projections
throughout the central nervous system; however, the organisation
of this system is dichotomous: LH neurons stimulate motivated
behaviors such as appetite for food and other rewards such as abused
drugs (Harris and Aston-Jones, 2006), whereas neurons of the PeF
and DMH act in parallel to influence arousal, sleep/wake states, and
cardiorespiratory function (Johnson et al., 2010; Nattie and Li, 2012;
Ciriello et al., 2013; Barnett and Li, 2020). Interestingly, the DMH/
PeF region was initially termed the “panic area” because its
activation induced a “panic-like state” in experimental animals
(DiMicco et al., 2002; Díaz-Casares et al., 2009). Today, a
“hyperactive” ORX system is a leading hypothesis in the
pathophysiology of PD (Johnson et al., 2010; Abreu et al., 2020).
This is based on the fact that ORX levels in the cerebrospinal fluid of
PD patients is elevated by comparison with healthy subjects
(Johnson et al., 2010) (Figure 3) and in adult rats, previous
exposure to early life stress (maternal deprivation/separation)
augments ORXA levels in hypothalamus extracts (Feng et al.,
2007; Tenorio-Lopes et al., 2020). Furthermore, PD patients show
abnormal levels of expression the HCRTR1 gene which encodes for
ORX1 receptors (Johnson et al., 2010; Gottschalk et al., 2019).

Orexin acts on two receptors (ORX1 and ORX2) and their
expression in the pontomedullary areas of the autonomic and
respiratory network overlap partially (Marcus et al., 2001). ORXA

can bind to both receptors whereas ORXB binds primarily to ORX2

(Carrive and Kuwaki, 2017). The fact that the basal respiratory
activity of ORX-knock out mice is similar to that of wild-type
indicates that ORX neurons have limited impacts on breathing at
rest (Nakamura et al., 2007; Berteotti et al., 2020) and while there is
evidence indicating that deletion of ORX neurons increases apneic
events during sleep (Nakamura et al., 2007), this effect is not always
observed (Berteotti et al., 2020). However, activation of ORX
neurons potentiates chemoreflexes and there is growing evidence
indicating that ORX neurons have CO2-sensing properties
(Gestreau et al., 2008; Li and Nattie, 2014; Carrive and Kuwaki,
2017). In mice, exposure to CO2 (10% CO2; 3 h) augments the
number of c-FOS immunolabeling in ORXA expressing neurons of
the PeF and DMH (but not LH) (Sunanaga et al., 2009). Results from
electrophysiological experiments provide more direct support as
they show that acidification of the extracellular milieu increases
intrinsic excitability and firing rate of ORX cells, whereas
alkalinization depresses it. Furthermore, this effect involves acid-
induced closure of K+ channels in the orexin cell membrane
(Williams et al., 2007). These responses resemble those of known
chemosensory neurons; however, the authors did not specify the
specific location of the populations of ORX neurons that were
recorded. Regulation of ORX neurons is greatly influenced by

FIGURE 2
Schematic representation of stress-related neuronal inputs and CO2 chemosenstivity in cardiorespiratory control. While retrotrapezoid nucleus
(RTN) of the medulla is well established as a highly sensitive to CO2/H

+ responsible for fine respiratory adjustments, the Figure 1) highlights other “non-
medullary” sites that respond to CO2/H

+, 2) identifies the pathways by which they initiate significant cardiorespiratory and behavioral responses, and 3)
illustrates how these structures are part of the neural network initiating and regulating the response to stress. Note that the interactions between the
PVH and medullary structures regulating breathing are not shown for simplicity. The review by (Zhang et al., 2021) provided valuable informations on
network and the neurotransmitters contributing to those interactions. PVH: paraventricular nucleus of the hypothalamus; BLA: Basolateral amygdala;
CeA: Central nucleus of the amygdala; MeA: Medial nucleus of the amygdala; ORX; Orexin producing neurons; DMH: Dorsomedial hypothalamic
nucleus; PeF: Perifornical area; LH: Lateral hypothalamus; NTS: Nucleus of the solitary tract; CRF: Corticotropin releasing factor; ACTH:
Adrenocorticotropic hormone; PreBötC: Pre-Bötzinger complex. Created with BioRender.com.
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gonadal hormones and data show that the intensity of expression of
ORX1 receptors in the hypothalamus parallels ovarian hormone
levels. In rats, their expression peaks during the proestrus phase
(Silveyra et al., 2009). As a result, Grafe and Bhatnagar proposed that
the ORX system is fundamental to sex-based differences in stress-
related neurological disorders such as PD (Grafe and Bhatnagar,
2018). Estradiol (E2) is of great interest in this context because E2
levels rise during proestrus and its inhibitory actions on ORX
neurons reduce their responsiveness to stress (Shors et al., 2001).
To evaluate the role of E2 in regulating ORX neurons we first used
immunohistochemistry and data convincingly show that under
resting conditions, OVX augments the ratio of c-FOS/ORXA

immunolabeled cells in control females, especially in the DMH.
Conversely, OVX had no significant effect in NMS females because
the number of labeled cells was already elevated in intact females
(Tenorio-Lopes and Kinkead, 2021). We then used whole cell
recording to evaluate how changes in E2 across the estrus cycle
affects synaptic inputs converging onto ORX neurons and our
results showed that NMS reduces E2-mediated inhibition of ORX
neurons (Figure 4). During proestrus, the excitatory post-synaptic
current (EPSC) frequency of control females was the lowest whereas
in NMS females the frequencies were the highest observed in this

group. These observations provide a plausible explanation for the
higher c-FOS/ORXA immunolabeling, greater ORXA levels
measured in hypothalamic extract, and the high efficacy of
systemic administration of the selective ORX1 receptor antagonist
SB-334867 (15 mg/kg; IP) at reducing the HcVR of NMS female rats.
Of note, this drug-induced attenuation of the HcVR was most
important during the proestrus phase; in controls, this treatment
had no significant effect on the HcVR, regardless of the estrus phase
(Tenorio-Lopes and Kinkead, 2021). The sum of these data indicates
that stress-induced disruption of E2 signalling is an important
mechanism in a rat model of PD and that ORX neurons is an
important site of action (Figures 2, 5).

5 Early life stress and its impacts on
other mechanisms contributing to CO2
sensing

5.1 Acid-sensing ion channels (ASICs)

The ventilatory response to CO2 is determined by multiple
chemosensory structures with specialised capacity for detecting
changes in CO2/H

+ in their vicinity that project to respiratory
neurons to initiate a robust increase in breathing. Acid-sensing
ion channels (ASICs) are widely expressed in the brain, including
the ventrolateral medulla, where they play a pivotal role in driving
CO2/H

+ chemosensing and triggering emotional and physiological
responses (Song et al., 2016). Regardless of their biological sex, PD
patients show variation of the ACCN2 gene, the human ortholog of
the Asic1a (Smoller et al., 2014). Consistent with human data,
mRNA transcript analysis of the brainstems of male and female
mice show heightened ASIC expression in RCF exposed animals
(Cittaro et al., 2016); although ASICs are comprised of multiple
subunits the authors presumably refer to ASIC1A but this was not
specified.

The fact that inactivation of ASIC channels with amiloride
attenuates the HcVR of RCF animals but not controls strongly
suggests that overexpression of these ion channels is an important
mechanism in the abnormal respiratory phenotype associated with
PD (Battaglia et al., 2018). However, the fact that amiloride has non-
specific effects on a number of other receptors and transporters
needs to be considered.

5.2 The carotid bodies

Strategically located at the bifurcation of the carotid arteries, the
carotid bodies are main sensors of O2 levels in the arterial blood;
however, they also respond to changes in arterial CO2/H

+ (Iturriaga
et al., 2021). They project to the medulla where they provide
powerful chemosensory signals to the respiratory network.
Because carotid body stimulation by potassium cyanide injection
stimulates fear and escape responses (Schimitel et al., 2012), we
determined whether these chemosensors contribute to the excessive
HcVR of NMS females. To do so, we compared the responsiveness of
the carotid bodies to changes in O2 and CO2 using an ex vivo
preparation and the results convincingly showed that NMS does not
affect peripheral CO2 sensing in either sex (Soliz et al., 2016). We

FIGURE 3
Orexin concentrations in cerebrospinal fluid (CSF) obtained by
lumbar puncture in subjects with panic anxiety with or without major
depressive disorder (MDD). Subjects who presented with acute
suicidal behavior were systematically assessed for psychiatric
symptoms utilizing the comprehensive psychopathological rating
scale (CPRS), where item 3 (inner tension) assesses panic anxiety. A
threshold cut off at 1.5 on this item was used to define a subject as
having significant panic symptoms. All subjects with substance abuse
and traces of anti-depressive, neuroleptic or anxiolytic medication in
the bloodwere excluded from the analysis. Subjects with panic anxiety
without MDD (n = 12); subjects with both panic and co-morbid MDD
(n = 13); and subjects without panic, without MDD (n = 28). Data are
reported as means ± SD; * indicates significant differences from other
groups, using Kruskall Wallis ANOVA (p = 0.004); and two-tailed
Mann-Whitney U-test (subjects with panic and MDD, p = 0.002;
subjects without panic, p = 0.01). Reproduce with permission from
Johnson et al. (2010).
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therefore concluded that anomalies in the CO2 chemoreflex takes
place within the brain.

We first evaluated the contribution of the central nervous system
(CNS) to this phenotype using anesthetised rats (Dumont and
Kinkead, 2010; Dumont et al., 2011; Dumont and Kinkead,
2011), but this approach eliminated the NMS-induced increase of
the ventilatory response to CO2 reported in awake females (Dumont
et al., 2011). This led us to propose that NMS disrupts anesthesia-
sensitive structures responsible for the cognitive and/or emotional
perception of the CO2 stimulus (Dumont et al., 2011). This inference
was first based on the notion that CO2 is both a systemic and
associative stressor. In other words, CO2 is capable of stimulating
both physiological (i.e., respiratory) reflexes via conventional
pathways and strong emotional and associative reactions, such as
fear and escape responses that, in turn, further stimulate breathing
(Schenberg, 2016). These observations and the current background
knowledge brought our attention to the amygdala.

5.3 Microglia

Microglia are the immune cells of the brain that are mainly
known for scavenging the CNS for infectious agents, damaged or
unnecessary neurons and synapses. However, there is growing
evidence indicating that uncoupling neuron–microglia
interactions alters neuroplasticity and contributes to anxiety- or
depressive-like behaviors (Koo and Wohleb, 2021). Microglia
express cell death–associated gene-8 (TDAG8), an acid-sensing
G-protein coupled receptor which is necessary for full expression
of CO2-evoked fear (Vollmer et al., 2016). Specifically, freezing and

blood pressure responses to CO2 inhalation (5% CO2; 10 min) of
TDAG8 deficient mice are lower than those reported in wildtype
animals; however, the HcVR does not differ between genotypes
(Vollmer et al., 2016). Subsequent experiments demonstrated that
upon CO2 exposure, microglia release the proinflammatory cytokine
IL-1β which then activates neurons. Quantification of microglial
activation and electrophysiological assessment of the CO2 responses
were performed in the subfornical organ, a circumventricular organ
that lacks a blood brain barrier. Based on comparisons of the cell’s
firing rate response of subfornical neurons, the sensitivity to CO2/H

+

is ~10 times less than that reported for the RTN (Guyenet et al.,
2019). It was argued that blood-born compounds can have access to
the CNS via this route such that this structure acts as an integrative
site for the maintenance of homeostasis (Vollmer et al., 2016). This
explanation raises the possibility that the area postrema plays a
similar role in respiratory manifestations of PD. The area postrema
is a medullary circumventricular organ with chemosensing
properties located above the NTS; it expresses inward rectifier K+

channels (Kir) associated with CO2 chemosensitivity (Wu et al.,
2004) and projects to the RTN, a key medullary structure in CO2

chemodetection (Rosin et al., 2006). This idea is certainly worth
exploring.

5.4 Estrogens

Gonadal hormones are “the usual suspects” in mechanistic
studies aiming to explain sex-based differences in physiological
function. The contribution of 17β-estradiol (E2) is intriguing
owing to its multiple and heterogeneous influences on the stress

FIGURE 4
Neonatal maternal separation stress (NMS) reduces the spontaneous excitatory postsynaptic currents (sEPSC) recorded in GFP-labeled orexin
neurons in response to changes in 17β-estradiol (E2) level in intact and ovarectomized rats. (A) Comparison of sEPSC recordings from orexin neurons
between cells during different phase of the estrus cycle and 2 weeks following ovariectomy (OVX); tissue slices originated from females raised under
control conditions (top traces) or subjected to NMS (bottom traces; 3 h/day, postnatal days 3–12). (B) Photomicrograph illustrating GFP-labeled
orexin neurons; the fornix (f) is shown as a landmark. (C) Population data of EPSC frequencies recorded during 3 distinct phases of the estrus cycle and
following OVX. (D) Baseline E2 values are reported for comparison; values fromNMS and controls were pooled since they are not statistically different. (E)
Reports sEPSC amplitudes. Data are reported as means ± SEM; *p < 0.05 compare to corresponding proestrus value; † p < 0.05 compare to
corresponding control. Adapted from Tenorio-Lopes et al (2020).
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response. On the one hand, the onset of PD-related respiratory
disturbances coincides with the rise in circulating E2 at puberty and
reports of panic attacks in some women receiving E2-replacement
therapy (Price and Heil, 1988; Hayward et al., 1992). This is
consistent with the view that E2 is a potent stimulant of the

hypothalamic pathways regulating the stress response; female rats
in proestrus (high estradiol, high progesterone) and estrus (recent
exposure to peak estradiol), have elevated basal and stress induced
corticotropic hormone (ACTH) and corticosterone (Viau and
Meaney, 1991; Heck and Handa, 2019). On the other hand, E2-

FIGURE 5
Comparison of the distribution of estrogen receptors α and β in brain regions that are responsive to CO2/H

+ sensing and/or contribute to the stress
response (A) Schmatics on the left present a series of coronal sectionmodified from the rat brain atlas of Paxinos andWatson (1998) with emphasis on key
structure with CO2 sensing properties or with established roles in respiratory control; the stereotaxic reference (distance from bregma) is indicated. (B)
Schematics on the right present the distribution of ERα (red dots) and ERβ (black dots) mRNA in the rat brain. Small dots represent 1–5 labeled cells;
medium dots 6–10 labeled cells; large dots represent approximately 50 labeled cells. Adapted with permission from Shughrue et al., 1997. PVH:
Paraventricular nucleus of the hypothalamus; BLA: Basolateral amygdala; CeA: Central nucleus of the amygdala; MeA: Medial nucleus of the amygdala;
DMH: Dorsomedial hypothalamic nucleus; PeF: Perifornical area; PB: Parabrachial nucleus; NTS: Nucleus of the solitary tract; RVRG: Rostral ventral
respiratory group.
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replacement therapy may reduce panic symptoms in women and
transdermal E2 treatment in menopausal women has been reported
to blunt the acute stress response (Lindheim et al., 1992; Chung et al.,
1995). In rats, E2-supplementation of ovariectomized females can
reduce the response to chronic recurrent stress by attenuating the
output of the paraventricular nucleus of the hypothalamus (PVN)
(Gerrits et al., 2005). The sum of these observations underlies the
view that E2 has anxiolytic properties (Österlund, 2010; Borrow and
Handa, 2017). Thus, there is no clear consensus and these apparent
discrepancies reflect challenges commonly encountered in stress
studies in which the responses vary depending of the intensity,
nature, and duration of the challenge used. Furthermore, the sex,
species, age/ovarian status of the female along with environmental
factors such as nutrition contribute to the variability of estrogen’s
actions (Borrow and Handa, 2017; Heck and Handa, 2019). As we
discuss below, the two main E2 receptors (ERα and ERβ) have
opposing actions on network function, such that slight changes in

their relative expression can alter E2’s net effects and thus explain the
heterogeneity in its effects (Kunte et al., 2014; Borrow and Handa,
2017).

E2 was initially shown to act via “classical” ERα and ERβ that are
ligand-activated transcription factors influencing gene expression;
however, both receptors are also expressed outside the nucleus
where they induce non-genomic actions. E2 binds equally well to
ERα and ERβ, but the two receptors are not functionally
interchangeable; the differences in their localisation throughout
the rodent brain support this functional divergence (Figure 5;
adapted from (Shughrue et al., 1997). Interestingly, the
distribution of ERα and ERβ is similar between sexes (Hara
et al., 2015), but the levels of expression are generally greater in
females (Garcia-Segura et al., 2001). E2 also exerts rapid effects via
membrane-bound G-protein estrogen receptors (GPERs); their
discovery being more recent (1990s), the responses induced by
GPERs are less documented (Hara et al., 2015; Barton et al.,

FIGURE 6
Neonatal stress disrupts the plasma 17β-estradiol (E2) response to CO2 inhalation of female rats. Plasma E2 levels measured across the different
phases of the estrus cycle (A) in room air and (B) 30 min following exposition to 5% CO2 for 10 min. The numbers in brackets indicate the number of
replicates in each group. (C) Schematic representation of the changes in estradiol, progesterone, and testosterone across the estrus cycle in rat.
Repreoduc with persmission from (Pfaus et al., 2015). Data are reported as means ± SEM; * indicates a value different from corresponding proestrus
value at p < 0.05; † indicates a value different from corresponsing control value at p < 0.05; # indicates a value signifincatly different from corresponsing
baseline value at p < 0.05 compare to baseline value. Reproduced with permission from (Tenorio-Lopes et al., 2020).
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2018). Together, these receptors allow E2 to alter the structure and
function of neuronal networks via multiple mechanisms with time
courses ranging from seconds to days (Evrard and Balthazart, 2004).
We know for instance that E2 facilitates the transmission of electrical
signals by promoting synaptic transmission via ERα. The concurrent
actions of E2 on ERβ promote the formation of dendritic spines such
that in the hippocampus, the spine density fluctuates with the estrus
cycle and peaks on the day of proestrus (Woolley and McEwen,
1992; Tan et al., 2012), which is the phase when the largest CO2

response in NMS females were observed (Figure 1) (Tenorio-Lopes
et al., 2020). E2 is strongly linked with anxiety disorders and a
common view is that activation of ERβ is responsible for its
anxiolytic effects whereas ERα initiate fear and anxiety-like
behaviors (Walf and Frye, 2006; Frye et al., 2008; Borrow and
Handa, 2017). Such generalisation requires caution, however,
because each receptor type has distinct effects on glutamatergic
and GABAergic signalling. The relative expression of each receptor
type thus determines the balance between excitation and inhibition
and E2’s net effect on a system (Woolley, 2007; Liu et al., 2008; Tan
et al., 2012; Tian et al., 2013). Still, this balance is plastic and factors
such as E2 levels and stress influence the relative expression of ERs.
For instance, acute immobilization stress augments ERα
immunolabeling in the PVN and medullary noradrenergic
neurons (A2 area) of females (Estacio et al., 1996). Conversely,
E2 generally reduces ERs in the hypothalamus (Simerly and Young,
1991; Garcia-Segura et al., 2001). GPERs also contribute to anxious
phenotypes but their role remains unclear because opposing
behavioral responses have been reported (Tian et al., 2013;
Borrow and Handa, 2017).

Disruption of E2-signalling has therefore emerged as a key
mechanism in anxiety disorders (Östlund et al., 2003; Albert
et al., 2015) and although respiratory symptoms are an important
feature of PD, our comprehension of the actions of E2 on the
respiratory control system (including CO2 sensing) is still in its
infancy, especially in females. Because female rats previously
subjected to NMS closely replicate ontogenic and cyclic features
of respiratory manifestations of PD, we took advantage of this model
to further our understanding of the contribution of E2 on the
ventilatory response to CO2.

Comparison of basal E2 and progesterone levels between NMS
and controls across the estrus cycle does not indicate that NMS
affects the gonadotropic axis at rest (Figure 6) (Dumont et al., 2011;
Tenorio-Lopes et al., 2020). However, analysis of samples harvested
following CO2 inhalation shows that this acute challenge stimulates
E2 release during proestrus in controls but not in NMS females
(Tenorio-Lopes et al., 2020) (Figure 6). We then noted that during
proestrus, the intensity of the hyperventilatory response observed in
NMS females was inversely proportional to E2 levels observed
following CO2 exposure (Tenorio-Lopes et al., 2020). These data
indicate that high E2 is a powerful inhibitor of the ventilatory
response to CO2 but the E2 level achieved in NMS females is
insufficient to prevent an excessive HcVR, especially during
proestrus (Tenorio-Lopes et al., 2020). We then tested those
conclusions by injecting E2 (3, 10, or 25 µg) in ovariectomized
(OVX) females once per day every 4 days to restore E2 level
within physiological range and mimic cyclic fluctuations. The last
injection was performed ~2 h prior to ventilatory measurements.
Consistent with previous observations in rats, OVX reduced the
HcVR (Marques et al., 2015), but the drop was greater in NMS
females such that their HcVR (post-OVX) was comparable to that of
controls with intact gonads (Tenorio-Lopes et al., 2020). Results
from supplementation experiments clearly show that in NMS
females, E2’s actions are biphasic with an increasing stimulatory
effect until plasma levels reached the range observed during
proestrus (~150 pMol/l); higher doses no longer stimulated the
HcVR. In contrast, E2’s influence on the HcVR of controls was
limited. In a preliminary and unpublished experiment, we
determined whether ERβ contributes to this process by testing
the effect of acute IP injection of E2 (40 μg/kg) and the selective
ERβ agonist diarylpropionitrile (DPN, 0.1 mg/kg) 1 h prior to CO2

inhalation test. Preliminary observations suggest that, at these doses,
this treatment is more effective than E2 at reducing the HcVR,
especially in NMS females (Figure 7). These results require further
validation and raise questions about the stimulatory actions of a
selective ERα agonist on the HcVR. Notwithstanding, E2 can be an
important modulator of the neural pathways regulating the CO2

response; it would be interesting to determine whether those actions
take place within “classical” medullary circuits or involve more
rostral structures. As we discuss below, recent data revealed orexin
producing neurons of the hypothalamus as key players in the
process.

6 Conclusion and future directions

CO2 monitoring is essential to respiratory homeostasis and
health; consequently, deciphering the cellular and molecular

FIGURE 7
17-β estradiol supplementation attenuates the ventilatory
response to the CO2 inhalation (5% CO2; 10 min) in female rats. Rats
with intact ovaries either received vehicle, 17-β estradiol (40 μg/kg), or
the ER-β agonist diarylpropionitrile (DPN; 0.1 mg/kg) 1 h before
the onset of the experiment. Data are reported as means ± SEM; all
phases of the cycle are combined. The low number of replicates in
DPN treated rats did not allow proper statistical analysis.
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underpinnings of CO2 sensing and the neural networks driving
reflexive responses has been a long-standing quest for physiologists.
The presence of CO2 sensing neurons on the ventral surface of the
medulla has been suspected since the 1960s and today, the RTN is
firmly established as a primary structure in feedback regulation of
breathing (Guyenet and Bayliss, 2022). The use of modern, “state of
the art” approaches has led to important discoveries regarding the
role and function of the RTN and we now know that this structure
responds to very small changes in CO2/H

+ to induce precise
respiratory adjustments without producing any conscious
aversive sensation (dyspnea), stress, or arousal (Guyenet and
Bayliss, 2022). This mini-review and other contributions to this
special issue demonstrate that other (non-medullary) brain regions
are important contributors to central CO2 chemosenstivity (Nattie
and Li, 2011). Figure 2 illustrates how these various structures
interact to influence breathing and how E2 related signalling
influences network function. While the evidence indicating that
these structures can reflexively induce arousal and behavioral
responses is compelling, further experiments are necessary to
determine their specific contribution to respiratory control since
the threshold for their activation seems greater than the RTN.
Moreover, it is imperative to determine whether their response to
CO2 is the result of a direct action of CO2/H

+ or “network driven”
changes. Although the contribution of these structures to
homeostasis maybe limited under “standard” (healthy)
conditions, their contribution to various respiratory disorders is
convincing. For instance, CO2-induced arousal contributes to sleep
fragmentation during sleep apnea (Kaur et al., 2017; Kaur and Saper,
2019; Kaur et al., 2020) and impairment of this arousal response may
be important in the pathophysiology of sudden unexpected death in
epilepsy, sudden infant death syndrome, and sleep apnea (Buchanan
and Richerson, 2010; Smith et al., 2018; Buchanan, 2019). Here, our
discussion focused on PD and the mechanistic studies performed in
this context brings further support to this notion as they show that

the excessive HcVR observed in stressed female rats reflect abnormal
CO2 sensing taking place in structures near the hypothalamus.
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