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Objective: The purpose of this study is to identify the blood pressure variation,
which is important in continuous blood pressuremonitoring, especially in the case
of low blood volume, which is critical for survival.

Methods: A pilot study was conducted to identify blood pressure variation with
hypovolemia using five Landrace pigs. New multi-dimensional morphological
features of Photoplethysmography (PPG) were proposed based on
experimental study of hemorrhagic shock in pigs, which were strongly
correlated with blood pressure changes. Five machine learning methods were
compared to develop the blood pressure variation identification model.

Results: Compared with the traditional blood pressure variation identification
model with single characteristic based on single period area of PPG, the
identification accuracy of mean blood pressure variation based on the
proposed multi-feature random forest model in this paper was up to 90%,
which was 17% higher than that of the traditional blood pressure variation
identification model.

Conclusion: By the proposed multi-dimensional features and the identification
method, it is more accurate to detect the rapid variation in blood pressure and to
adopt corresponding measures.

Significance: Rapid and accurate identification of blood pressure variation under
low blood volume ultimately has the potential to effectively avoid complications
caused by abnormal blood pressure in patients with clinical bleeding trauma.
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1 Introduction

Hemorrhagic shock is a pathophysiological process characterized by reduced effective
circulating blood volume and cardiac output, insufficient tissue perfusion, disordered cell
metabolism and impaired function due to massive blood loss caused by trauma (Liu et al.,
2015). Hemorrhagic shock is often accompanied by concomitant hypotension, which is
defined as systolic blood pressure less than 90 mmHg and differential pulse pressure less than
20 mmHg (Chou et al., 2016; Tran et al., 2018). According to World Health Organization

OPEN ACCESS

EDITED BY

John Allen,
Coventry University, United Kingdom

REVIEWED BY

Shaoxiong Sun,
King’s College London, United Kingdom
Kirk Shelley,
Yale University, United States

*CORRESPONDENCE

Guang Zhang,
zhangguang01@hotmail.com

RECEIVED 06 March 2023
ACCEPTED 17 July 2023
PUBLISHED 27 July 2023

CITATION

Chen R, He M, Xiao S, Wang C, Wang H,
Xu J, Zhang J and Zhang G (2023), The
identification of blood pressure variation
with hypovolemia based on the volume
compensation method.
Front. Physiol. 14:1180631.
doi: 10.3389/fphys.2023.1180631

COPYRIGHT

© 2023 Chen, He, Xiao, Wang, Wang, Xu,
Zhang and Zhang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 27 July 2023
DOI 10.3389/fphys.2023.1180631

https://www.frontiersin.org/articles/10.3389/fphys.2023.1180631/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1180631/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1180631/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1180631/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1180631&domain=pdf&date_stamp=2023-07-27
mailto:zhangguang01@hotmail.com
mailto:zhangguang01@hotmail.com
https://doi.org/10.3389/fphys.2023.1180631
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1180631


(WHO) statistics, about 10% of global deaths and 16% of disability
cases are caused by trauma, which is also the leading cause of death
for people under the age of 40 worldwide (World Health
Organization, 2019). In trauma patients, the death rate due to
excessive blood loss is about 30–40 percent (Edgard et al., 2015;
Keane, 2016; Palmer, 2017), and the death rate due to incorrect
treatment and inappropriate treatment is 10–20 percent (Küchler
et al., 2020).

Arterial blood pressure is critical for adequate tissue perfusion,
providing oxygen delivery for energy needs. Continuous and reliable
measurements of absolute blood pressure are required for critically
ill patients in the ICU, and variations in blood pressure of even a few
minutes in patients with hypovolemic blood loss pose unpredictable
risks, including hemorrhagic shock (Ameloot et al., 2013).
Continuous detection of the blood pressure trend of patients in
the state of blood loss and hypovolemia can provide important
cardiovascular state supporting data and provide early intervention
for corresponding treatment methods. The results of various studies
of continuous noninvasive blood pressure monitoring devices versus
invasive blood pressure monitoring methods were summarized by
Kim et al. They found a significant difference between the non-
invasive and invasive blood pressure obtained with the CNAP and
ClearSight devices based on the volumetric compensation method.
The standard deviations were 5.5 ± 9.3 mmHg and 3.5 ± 6.8 mmHg
for CNAP and ClearSight respectively (Kim et al., 2014; Vos et al.,
2014; Meidert and Saugel, 2017). This analysis shows that the
accuracy and precision of continuous noninvasive devices are not
interchangeable with invasive blood pressure measurements.

A method for blood pressure variation identification under
hypovolemia based on the volume compensation method and pulse
wave morphological characteristics is proposed in this study. Currently,
the volume compensation method is a relatively mature blood pressure
monitoring technology. This method keeps the blood volume constant
in the vessel by applying a pressure value equivalent to the intravascular
pressure outside the measurement (ZhangLiuChen and Liu, 2020).
Studies have shown that the PPG signal profile of the photoelectric pulse
wave signal is mainly controlled by the blood pressure waveform, and
contains cardiovascular information, such as blood vessel stiffness and
blood pressure. A large number of studies have verified that a large
amount of cardiovascular information is contained in the PPG signal,
which is strongly correlated to blood pressure (Mukherjee et al., 2018).
The morphological analysis of PPG has been applied to vascular
assessment (Fedotov, 2019a), providing rich information for
cardiovascular analysis (Fedotov, 2019b; Subashini et al., 2021).
There were also some studies that use morphological characteristics
of not only PPG but also ECG (Electrocardiogram) signals to jointly
estimate blood pressure, and to estimate SBP value every 30 s (Sun et al.,
2016; Sun et al., 2022). A study that predicted blood pressure by
combining various morphologies of Pulse Transit Time and PPG
verified that the morphological features of PPG improved the
accuracy of blood pressure estimation (Ding and Zhang, 2015; Ding
et al., 2016; Lin et al., 2017; Rastegar et al., 2019).

Based on the data set under the experimental model of animal
controlled hypovolemia, this study uses the photoelectric pulse signal
collected by the volume compensation method to identify the
variation of 11-degree blood pressure in the range of 5–15 mmHg.
Fivemodels, namely, LightGBM, Random Forest, XGBoost, CatBoost,
and Decision Tree, were employed to investigate the advantages of

multi-dimensional features compared with single-dimensional
features in the identification of blood pressure variation under low
blood volume. The accurate prediction of blood pressure variation was
realized, which verifies the validity of this research method. Using
accurate results of non-invasive blood pressure variation identification
under hypovolemia during blood loss can not only help avoid adverse
events caused by invasive blood pressure monitoring (Suess and
Pinsky, 2015; Minokadeh and Pinsky, 2016), but also provide
accurate diagnostic prediction for patients under cardiovascular
monitoring to reduce patient tissue hypoxia, mitigate oxidative
damage, prevent multiple organ failure, and improve clinical
outcomes (Janssen et al., 2017; Nachman et al., 2020).

2 Materials and methods

2.1 Experiment

An animal model of hemorrhagic hypovolemia was designed in
this study (The experimental schematic diagram is shown in Figure 1),
and five healthy Landrace pigs weighing 23 ± 6 kg were selected as the
subjects for a pilot study on blood pressure discrimination with
hypovolemia. After Landrace pigs were anesthetized, the pigs were
intubated and mechanically ventilated using a ventilator to prevent
spontaneous breathing from affecting signal acquisition. Mindray
monitor was used to monitor the physiological state and tail PI
(Perfusion Index) of pigs in real time. The femoral artery was
punctured on the pig, and the IBP signal was collected using the
Chengdu Instrument RM6240C multi-channel physiological
parameter acquisition device, while the self-developed device and
deflatable optoelectronic finger cuff was used to collect the PPG
signal on the pig’s tail (The light Emitting Diode inside the finger
cuff emits infrared light, which is transmitted through the tissues of the
pig’s tail and the arterial veins, and is received by the Photoelectric
Sensor. Due to the flow of blood in the arteries, there is a change in the
absorption of the light so that the transmitted light is converted into an
electrical signal to form a PPG signal. So the measured PPG signal is
opposite to the actual PPG signal waveform of the pig.). The sampling
frequency of Chengdu Instrument RM6240C multi-channel
physiological parameter acquisition instrument equipment is
1,000 Hz, and the sampling frequency of self-developed device is
500 Hz. Multiple bloodletting operations were performed through
the carotid artery until the tail PI (Perfusion Index) was under 0.3,
which indicated a state of hypovolemia. which indicates a state of
hypovolemia. IBP and PPG signals were collected synchronously
during bloodletting. The animal Invasive blood pressure span
changed during the blood loss process, where the blood pressure of
each animal decreased from different initial baseline blood pressure to
blood pressure under hypovolemia. Experiment in this study was
approved by the Medical Ethics Committee of Chinese PLA
General Hospital (No. S2020-045-01).

2.2 Pressure setting and signal acquisition

2.2.1 Constant pressure setting algorithm
The blood pressure change identification is based on the

photoelectric pulse wave signal of the detection site under
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constant pressure. In the process of external force change, when the
external force applied to the detection site is equal to the average
pressure in the artery, pulse wave peak reaches the maximum
intensity. As intra-arterial blood pressure changes, the shape of
the photoplethysmography wave changes significantly at the
constant pressure (Figure 2).

The peak-to-peak value was calculated according to the upper
and lower envelopes of the photoelectric pulse wave signal under
pressure (Find the function of the PPG signal envelope and the
parameters to be set: the function is envelope; parameter 1 is set to
250; parameter 2 is set to “peak”.). The maximum peak-to-peak
value corresponding to the pressure applied to the detection site

FIGURE 1
Schematic diagramof animal blood loss experiment. PPG signal (human finger probe used) under constant volume and invasive blood pressurewere
collected based on synchronization level signal sent by the finger cuff to achieve strict time alignment.

FIGURE 2
Relationship between PPG pulsation and external pressure at the detection site. The left y-label represents the externally applied pressure value, the
black diagonal line in the figure represents the pressure change, the right y-label represents the normalized PPG value, the blue line in the figure
represents the PPG waveform, and the red curve represents the upper and lower envelopes of the PPG waveform.
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was the average pressure corresponding to the detection site, and
the constant pressure was set at the detection. Repeated
application of 150 mmHg finger cuff pressure to the animal tail
before the experiment can result in the temporary blood flow
blocking effect, in addition to not causing venous congestion
damage to the tail. The external force of 150 mmHg was
repeatedly applied on the tail, released to 0 mmHg, and the tail
photoelectric pulse wave was collected in real time. In this
experiment, blood loss and transfusion were performed to
change the blood pressure state continuously, and constant
pressure value was calculated under a new blood pressure
homeostasis. A total of 214 groups of constant pressure sample
data were collected, with blood pressure ranging from 52 mmHg
to 119 mmHg.

2.2.2 Photoelectric pulse wave data set at constant
pressure

Before each blood loss operation in the animal experiment,
the constant pressure value that should be applied to the tail of
the animal was calculated, and the finger cuff was inflated to this
constant pressure value. On a constant pressure, the pressure
was maintained for 10 min during a single bloodletting of
200 mL, the pressure was released to zero after 10 min, and
the tail was relieved for 10 min. Two photoelectric pulse wave
data segments of blood loss process were collected for each
animal, and a total of ten blood loss data segments were
collected, based on the photoelectric acquisition terminal in
the tail finger cuff.

2.3 Data preprocessing

The photoelectric pulse wave signal was collected under
constant pressure in the state of continuous blood loss. The
experimental subject was accompanied by an accelerated
heartbeat and changes in the elasticity of blood vessels during
bloodletting. To minimize the influence of factors other than
intravascular pressure on the photoelectric pulse waveform, the
template processing (Figure 3) for the photoelectric pulse wave
was adopted. The templating process consists of five parts:

(1) Preprocessing: Check the original data and remove invalid data
segments during convulsions of animals or abnormal device
connections. Retain data from 0.3–20 Hz with Butterworth filter
to remove baseline drift, low frequency noise and high
frequency noise.

(2) Pulse wave single-cycle amplitude normalization: A pulse
wave cycle from the pulse wave trough value to the next
pulse wave trough value was defined. Amplitude
normalization was performed based on the waveform peak
and trough value of a single cycle, and the amplitude was fully
normalized as [0,1].

(3) Pulse wave single cycle length normalization: A pulse wave
cycle from the pulse wave trough value to the next pulse
wave trough value was defined, and the length in a single
cycle to 200 points was normalized. If the length of a single
cycle waveform is greater than two hundred points, the
waveform in the cycle will be downsampled, otherwise the

FIGURE 3
Data processing result graph. Figures (A), (B), (C) are the pulse wave waveform after single-cycle preprocessing, the pulse wave waveform after
single-cycle normalization, and the pulse wave waveform after single-cycle template, respectively; Figures (D), (E) and (F) are the ten consecutive cycles
pulse waveforms after of preprocessing, ten consecutive cycles pulse waveforms after normalizing, and ten consecutive pulse cycles waveforms after
templating, respectively.
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waveform in the cycle will be subjected to cubic spline
interpolation.

(4) Obtaining the pulse wave template waveform: Based on average
of the summation of the normalized waveform PPG_norm for
the first n cycles of maintaining a constant pressure, the
template formula is shown in (1):

PPG template � PPG norm 1( ) + PPG norm 2( ) + ...PPG norm n( )
n

(1)

(5) Find the pulse wave sample waveform: Starting from the i-th (i >
2) waveform, the moving average processing is performed

FIGURE 4
The change of PPG waveform shape during blood pressure change: Blood pressure drops and PPG waveform become shorter and wider. Blood
pressure increased, PPGwaveform became high and narrow. The red line represents the blood pressure and the blue line represents the PPGwaveform at
that blood pressure.

FIGURE 5
Schematic diagram of feature extraction.
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according to the normalized waveforms of the current n cycles,
until the last waveform cycle in the data segment is added to the
calculation. The calculation formula is shown in (2):

PPG sample � PPG norm i( ) + PPG norm i + 1( ) + ...PPG norm i + n − 1( )
n

(2)

2.4 Feature extraction

Three morphological features that are highly correlated with the
blood pressure changes during blood loss were extracted based on

previous research and the photoelectric pulse wave signal in this
experiment. Figure 4 shows the changes of the pulse waveform
characteristics and actual blood pressure values in the tail of the

FIGURE 6
The overall flow chart of blood pressure identification. ①Firstly, the animal experiment was carried out. IBP was collected from the left femoral
artery, PPG and Finger pressure were collected from the pig tail by self-developed device, and a total of three signals were collected;②The collected PPG
signals were preprocessed, the baseline drift and noise were removed by filtering, the amplitude and length of the signals were normalized, and finally the
PPG signals were templated; ③Feature extraction was carried out for the preprocessed PPG signals, and the integral area of the rising edge of the
waveform, the integral area of a single cycle of the waveform and the difference between the cross-correlation of the samplewaveform and the template
waveform and the autocorrelation of the template waveform; ④After feature extraction, the ten-fold cross-validation idea was used to construct the
model. The magnitude of a single feature value is used to determine changes in blood pressure and a machine learning model with multiple features is
built to identify changes in blood pressure, respectively. Feature 1 represents the integral area of the rising edge of the waveform, Feature 2 represents the
integral area of the waveform in one period, and Feature 3 represents the cross correlation between the sample waveform and the template waveform
and the difference between the template waveform and the template waveform; ⑤The optimal threshold points were selected by using the Youden’s
index, Automatic parameter tuning using Bayesian optimization; ⑥Statistical 10-fold cross validation evaluation index.

TABLE 1 Comparison with BHS standard.

Method Subject Cumulative error percentage (%)

≤5 mmHg ≤10 mmHg ≤15 mmHg

this study NIMBP 52.8 92.5 100

BHS Grade A 60 85 95

Grade B 50 75 90

Grade C 40 65 85

TABLE 2 Identification results of diastolic blood pressure variation under
different models (F1 represents the classification model based on the optimal
threshold of feature 1, F2 represents the classification model based on the
optimal threshold of feature 2, F3 represents the classification model based on
the optimal threshold of feature 3, M1 represents the LightGBM model,
M2 represents the Random Forest, M3 represents XGBoost model,
M4 represents CatBoost model, and M5 represents Decision Tree.).

ΔDBP (mmHg)
Model

ACC (%) AUC (%)

5 10 15 Mean 5 10 15 Mean

F1 79 82 90 83 80 86 90 85

F2 66 76 76 73 66 76 76 75

F3 74 80 80 78 75 81 82 79

M1 87 88 90 87 94 94 96 94

M2 83 85 93 87 95 95 97 95

M3 85 87 91 87 93 93 96 93

M4 84 87 92 88 93 95 96 94

M5 88 91 89 88 88 91 89 88
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animals during blood loss and blood transfusion. In the process of
blood pressure change from high to low, the shape of the pulse wave
changed from normal to wider and shorter. In the process of blood
pressure from small to large, the shape of the pulse wave changed
from normal to thinner and taller.

According to the above pulse wavemorphological changes, three
morphological features in the pulse wave waveform were extracted.

It includes the integral area of the rising edge of the waveform, the
integral area of a single cycle of the waveform and the difference
between the cross-correlation of the sample waveform and the
template waveform and the autocorrelation of the template
waveform. The feature extraction process is shown in Figure 5.

It includes the integral area of the rising edge of the waveform,
the integral area of a single cycle of the waveform and the difference

FIGURE 7
Bland-Altman plot comparing non-invasive mean blood pressure and invasive mean blood pressure. There are 214 groups of samples, with each
circle representing the mean blood pressure at the beginning of identification of blood pressure.

FIGURE 8
(A–C) are the correlation analysis of characteristic parameters with systolic blood pressure, diastolic blood pressure and mean blood pressure,
respectively.
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between the cross-correlation of the sample waveform and the
template waveform and the autocorrelation of the template
waveform.

As shown in Figure 5, the three feature extraction processes
were:

Feature 1 extraction:
A linear straight line was fitted in the direction from the pulse

trough value to the peak value, and the straight line was used as the
baseline to obtain the integral area of the area enclosed between the
rising edge curve of the waveform and the baseline.

Feature 2 extraction:
One third of the peak value of the pulse wave was taken as the

baseline, and the difference between the integral area of the upper
half waveform of the baseline and the lower half waveform of the
baseline was calculated.

Feature 3 extraction:
Step1, The cross-correlation matrix of the sample waveform and

the template waveform (Rt-s) were calculated. Then the sample
waveform was multiplied by the point-by-point sliding and then
summed. The calculation formula is shown in (3):

Rt−s � ppg template n( )*ppg sample* −n( ) (3)
Step2, The autocorrelation matrix of the template waveform

(Rt-t) was calculated. Autocorrelation is a special case of cross-
correlation, that is, the correlation between the sequence and itself.
The calculation formula is shown in (4):

Rt−t � ppg template n( )*ppg template* −n( ) (4)
Step3, The difference between the cross-correlation matrix and

the auto-correlation matrix was calculated, and this difference was
described by the area enclosed by the two matrix curves, as shown in
formula (5).When the sample waveform and the template waveform
had high similarity, the area enclosed by the two matrix curves was
small, otherwise, the difference between the two was considered to
be greater.

difference � ∑
n

i�1 Rt−s i( ) − Rt−t i( )| | (5)

2.5 Construction of blood pressure variation
identification model

2.5.1 Construction of blood pressure variation
identification model based on single feature

Three classification models based on the classification
thresholds of the three features and ten-fold cross-validation
were constructed. In the process of ten-fold cross validation ten
sub-data sets were randomly generated from the data set, one sub-
data set was selected each time as the test set, and the ten sub-data
sets were sequentially used as the test set. Using the traditional
single-feature PPG single-cycle integral area as the prediction model
index. The minimum and maximum sample values in the model
were identified, the value was divided into 100 parts with the
maximum and minimum values, and the 100 values were in turn
cycled as the classification threshold. According to 10 test results
(the intersection of sensitivity curve, specificity curve and accuracy
curve), the optimal classification threshold of the model was
selected. Finally, the test set was identified based on the optimal
classification threshold, and the results were evaluated by the
Accuracy (ACC) and Area Under the Curve (AUC) values.

2.5.2 Construction of blood pressure variation
identification model based on multiple features

The PPG feature sample dataset and label corresponding to the
process of diastolic blood pressure, systolic blood pressure, and
mean blood pressure variation of 5–15 mmHg obtained in the blood
loss experiment in this study were used as input. Five classic
machine learning algorithms, namely, LightGBM, Random
Forest, XGBoost, CatBoost, and Decision Tree were used. The
learning model performed classification and identification. The
following indicators were used to evaluate the ability of five

TABLE 3 Identification results of mean blood pressure variation under different
models (F1 represents the classification model based on the optimal threshold
of feature 1, F2 represents the classification model based on the optimal
threshold of feature 2, F3 represents the classification model based on the
optimal threshold of feature 3, M1 represents the LightGBM model,
M2 represents the Random Forest, M3 represents XGBoost model,
M4 represents CatBoost model, and M5 represents Decision Tree).

ΔMBP (mmHg)
Model

ACC (%) AUC (%)

5 10 15 Mean 5 10 15 Mean

F1 82 85 93 86 82 87 93 88

F2 65 75 77 73 67 77 79 75

F3 83 86 90 86 85 84 90 87

M1 78 89 94 89 92 96 98 96

M2 82 91 95 90 92 96 98 96

M3 79 90 94 89 92 96 97 95

M4 77 90 94 89 92 96 98 96

M5 83 91 93 90 83 91 93 90

TABLE 4 Identification results of systolic blood pressure variation under
different models (F1 represents the classification model based on the optimal
threshold of feature 1, F2 represents the classification model based on the
optimal threshold of feature 2, F3 represents the classification model based on
the optimal threshold of feature 3, M1 represents the LightGBM model,
M2 represents the Random Forest, M3 represents XGBoost model,
M4 represents CatBoost model, and M5 represents Decision Tree.).

ΔSBP (mmHg)
Model

ACC (%) AUC (%)

5 10 15 Mean 5 10 15 Mean

F1 82 83 86 84 84 84 88 85

F2 64 74 77 73 65 76 79 74

F3 78 82 85 83 80 83 85 84

M1 83 90 91 90 93 96 96 95

M2 80 90 93 89 94 97 96 96

M3 84 90 93 90 92 96 96 95

M4 82 91 90 89 93 96 97 96

M5 86 91 89 90 86 91 89 90
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machine learning models to identify changes in blood pressure
under hypovolemia. ACC represents the accuracy of the model,
AUC represents the integral area under the Receiver Operating
Characteristic (ROC) curve, Matthews correlation coefficient
(MCC) represents the consistency of the predicted classification
with the actual classification, F1 score (F1_score) considers the
accuracy and recall rate of the classification model, Kappa: tests
the consistency coefficient, AUPRC: the area under the precision-
recall curve. Figure 6 shows the overall flow chart of blood pressure
identification.

2.6 Constant pressure setting results

The results of the constant pressure setting algorithm described
above showed that the correlation between the non-invasive mean
blood pressure of the tail and the invasive mean blood pressure of
the left thigh of the animal collected simultaneously was 84%.
Table 1 shows the comparison between the error analysis results
of the non-invasive mean blood pressure and invasive mean blood
pressure and the British Hypertension Society (BHS) standard
results. The Bland-Altman analysis results are shown in Figure 7.

Using self-developed device, the mean deviation of non-invasive
blood pressure detection and invasive blood pressure detection was
0.41 mmHg, and the 95% confidence of the difference between the
two was −11.44 mmHg–12.26 mmHg, which can accurately detect
blood pressure. According to the above Bland-Altman diagram, there
are 3 samples, namely, 3/214 (1.4%), and less than 5% of the samples
exceed the 95% consistency limit. The initial non-invasivemean blood
pressure detection is highly consistent with the invasive mean blood
pressure, which proves the reliability of the self-developed device.

2.7 Correlation analysis between
characteristic parameters and blood
pressure

Correlation analysis was performed based on the extracted
feature parameters and invasive blood pressure values to evaluate

the relationship between the above three pulse wave morphological
features and blood pressure. Five periodic waveform periods were
used as the sliding window size to perform template processing, and
the processed waveforms were the extracted features. A total of
1942 groups of valid feature samples were extracted from five
animals. Three characteristic parameters and invasive blood
pressure data of an animal under blood loss for 5 minutes were
extracted and analyzed (Figure 8). The correlation between the two
was 0.892–0.948, and the blood pressure change state under blood
loss could be identified based on the characteristic parameters.

With reference to the normal fluctuation range of blood pressure
within 12 h and 24 h in humans, the standard of blood pressure change
was identified as 5 mmHg–15 mmHg. First, taking the blood pressure
change threshold of 5 mmHg as an example, in the blood loss data
segment, the samples with invasive blood pressure changes within
5 mmHg were defined as no change in blood pressure and were
considered as negative sample data. Conversely, when the blood
pressure was greater than 5 mmHg, the samples were identified as
the occurrence of individual blood pressure during blood loss and the
change was considered as positive sample data. In order to avoid over-
fitting caused by the large proportion of category samples, the prediction
results would be biased towards the classification with the large number
of samples. The positive samples and negative samples for blood
pressure change identification classification are 1:1. Taking the data
set during the blood loss of a case of an animal as an example,
340 characteristic samples were extracted, and correlation analysis
was carried out with the synchronously collected invasive blood
pressure data (Figures 8A, B, C). The correlation between the three
features and the invasive systolic blood pressure were 0.903, 0.892, and
0.903, respectively, the correlation between the three features and the
invasive mean blood pressure were 0.925, 0.914, and 0.948, respectively,
and the correlation between the three features and the invasive diastolic
blood pressure were 0.927, 0.916, and 0.938, respectively.

2.8 BP variation identification model results

The data set after template processing was analyzed with five
waveform periods as the sliding window size, and the blood pressure

FIGURE 9
(A–C) are the analysis of identification results under different blood pressure variability under diastolic blood pressure, mean blood pressure and
systolic blood pressure, respectively.
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FIGURE 10
(A) is the mean values of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for systolic blood pressure at different sliding window sizes, in models
established for blood pressure changes spanning 5–15 mmHg, respectively. (B) is the mean values of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for
diastolic blood pressure at different sliding window sizes, in models established for blood pressure changes spanning 5–15 mmHg, respectively. (C) is the
mean values of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for mean blood pressure at different sliding window sizes, in models established for
blood pressure changes spanning 5–15 mmHg, respectively. The X label of each graph represents the size of the slidingwindow and the Y label represents
the different evaluation metrics for blood pressure changes across 5–15 mmHg under the current sliding window.
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FIGURE 11
(A) is the standard deviations of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for systolic blood pressure at different sliding window sizes, in models
established for blood pressure changes spanning 5–15 mmHg, respectively. (B) is the standard deviations of ACC,MCC, F1 score, AUC, KAPPA and AUPRC
for diastolic blood pressure at different sliding window sizes, in models established for blood pressure changes spanning 5–15 mmHg, respectively. (C) is
the standard deviations of ACC, MCC, F1 score, AUC, KAPPA and AUPRC for mean blood pressure at different sliding window sizes, in models
established for blood pressure changes spanning 5–15 mmHg, respectively. The X label of each graph represents the size of the sliding window and the Y
label represents the different evaluation metrics for blood pressure changes across 5–15 mmHg under the current sliding window.
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identification range was 5–15 mmHg. Variation identification
accuracy and AUC values of blood pressure (diastolic blood
pressure, mean blood pressure, systolic blood pressure) at
5 mmHg, 10 mmHg, 15 mmHg and average variation under
5–15 mmHg based on single-feature identification model and five
machine learning models based on multi-feature are shown in
Tables 2, 3, 4.

As shown in Tables 2, 3, 4: the blood pressure variation
identification model under hypovolemia in this study was
constructed based on the two newly extracted feature parameters,
compared with the traditional Feature 2. The reported ACC and AUC
values for diastolic blood pressure increased with theΔDBPmore than
5%, while the ACC and AUC values for mean blood pressure and
systolic blood pressure increasedwith the ΔMBP andΔSBPmore than
10%. The identification model results based on multi-dimensional
features compared with the traditional feature 2 blood pressure
variation identification model showed that the diastolic blood
pressure variation identification ACC and AUC increased with the
ΔDBP 14%–15% and 15%–20%, respectively; themean blood pressure
variation average identification ACC and AUC were increased with
the ΔMBP 16%–17% and 15%–21%, respectively, and the mean
identification of systolic blood pressure variation ACC and AUC
were increased with the ΔSBP 16%–17% and 16%–22%, respectively.
Comparison of the results of multi-dimensional-based blood pressure
variation identification under hypovolemia showed that the features
proposed in this study are better for mean blood pressure and systolic
blood pressure variation identification than diastolic blood pressure
fluctuation identification under hypovolemia. Furthermore, the
analysis of the results of the five machine learning models showed
that the variation identification accuracy of the mean blood pressure
and systolic blood pressure in the range of 5–15 mmHg under the
random forest and decision tree machine learning models can reach
90% and all the AUC values exceeding 90%.

3 Analysis and discussion

3.1 Comparative analysis of different blood
pressure identification range results

Following template processing, the data set was analyzed with five
periodic waveforms as the sliding window size, and blood pressure
variation identification was performed for 5 mmHg–15 mmHg in
turn. Based on three characteristics of systolic blood pressure, diastolic
blood pressure, and average blood pressure variation identification
model using the five machine learning models, the average ACC and
the average AUC were calculated (Figure 9). With the increase of
blood pressure variation range, the ACC values and AUC values show
an overall increasing trend.

3.2 Comparison of identification results of
blood pressure changes under different
template waveforms

According to the above template processing process, five cycles
of pulse waves were selected for sliding average processing. In order
to compare the optimal sliding window size, this study repeats the

above feature extraction process and modeling process for
waveforms processed based on two to seven cycles of pulse
waves. Based on different template waveforms, blood pressure
changes were identified for 5–15 mmHg in turn, and the mean
and standard deviation of the systolic blood pressure, diastolic blood
pressure, and mean blood pressure variation identification
indicators under the above-mentioned multi-feature identification
model were used to analyze the mean value and standard deviation,
respectively (Figures 10, 11). The results in the two figures show that
the average value and standard deviation of the indicators of
different template waveforms are comprehensively compared, and
the blood pressure change identification effect is the best based when
the three-cycle pulse wave was used as the template-processed
waveform of the sliding window size.

3.3 Limitation

In this work, we used 1942 samples of 5 pigs to get the result, in
the early stage to verify the feasibility of our method, and later
experiments with larger samples data will be done to further
improve its stability and extensibility.

4 Conclusion

New features and the blood pressure variation identification
models under hypovolemia are proposed and established in this
study, based on the morphological characteristics of
photoplethysmography wave in the tail of animals. The results
showed that the morphological characteristic parameters of the
volumetric pulse wave under constant pressure can effectively
and accurately identify the degree of blood pressure variation
under blood loss. Compared with the traditional features, the two
new features can further improve the accuracy of the traditional
volumetric compensation method to capture blood pressure
variation under low perfusion. Compared with single feature
models, the classification model based on multi-dimensional
features can achieve better identification effect. The feature
proposed in this study is more suitable for the variation
identification of mean blood pressure and systolic blood pressure,
compared with the fluctuation identification of diastolic blood
pressure under low blood volume. The results of blood pressure
identification at different levels of 5–15 mmHg proposed in this
paper can provide information of blood pressure variation for
patients with mild blood loss or hemorrhagic shock, and provide
non-invasive continuous blood pressure change warning for
different clinical application scenarios. Furthermore, the new
morphological features proposed in this study can provide an
additional new blood pressure tracking method for the
continuous non-invasive blood pressure monitoring equipment
based on the volume compensation method.
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