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Introduction: Low back pain (LBP) is a prevalent and complex condition that poses
significant medical, social, and economic burdens worldwide. The accurate and
timely assessment and diagnosis of LBP, particularly non-specific LBP (NSLBP), are
crucial to developing effective interventions and treatments for LBP patients. In this
study, we aimed to investigate the potential of combining B-mode ultrasound image
features with shear wave elastography (SWE) features to improve the classification of
NSLBP patients.

Methods:We recruited 52 subjects with NSLBP from the University of Hong Kong-
Shenzhen Hospital and collected B-mode ultrasound images and SWE data from
multiple sites. The Visual Analogue Scale (VAS) was used as the ground truth to
classify NSLBP patients. We extracted and selected features from the data and
employed a support vector machine (SVM) model to classify NSLBP patients. The
performance of the SVMmodel was evaluated using five-fold cross-validation and
the accuracy, precision, and sensitivity were calculated.

Results:We obtained an optimal feature set of 48 features, among which the SWE
elasticity feature had the most significant contribution to the classification task.
The SVMmodel achieved an accuracy, precision, and sensitivity of 0.85, 0.89, and
0.86, respectively, which were higher than the previously reported values of MRI.

Discussion: In this study,we aimed to investigate the potential of combining B-mode
ultrasound image features with shear wave elastography (SWE) features to improve
the classification of non-specific low back pain (NSLBP) patients. Our results showed
that combining B-mode ultrasound image features with SWE features and employing
an SVM model can improve the automatic classification of NSLBP patients. Our
findings also suggest that the SWE elasticity feature is a crucial factor in classifying
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NSLBP patients, and the proposedmethod can identify the important site and position
of the muscle in the NSLBP classification task.

KEYWORDS

non-specific low back pain, ultrasound, shear wave elastography, machine learning,
automatic classification

Introduction

Low back pain (LBP) is defined as the pain between below the
gluteal folds and above the vertebral protrusion that lasts for at least
1 day with or without leg pain. LBP represents one of themost common
musculoskeletal disorders (Anderson, 1986; Hoy et al., 2010), with a
global prevalence of 7.8% in 2017 (Buchbinder et al., 2020). Meanwhile,
the number of patients increases with the population growth and aging
(Hartvigsen et al., 2018; Hurwitz et al., 2018). LBP is also an important
cause of physical disability (Vos, 2016), with an increasing financial
burden (Woolf and Pfleger, 2003; Hoy et al., 2010; Hartvigsen et al.,
2018; Hurwitz et al., 2018). LBP can be acute, with a duration of less
than 6 weeks, or chronic, which lasts more than 3 months (Koes et al.,
2006). Non-specific low back pain (NSLBP) refers to LBP without
specific physiological or pathological causes, and its prevalence is 23%,
which accounts for 90% of all LBP patients (Cheung et al., 2020).
Currently, the diagnosis of LBP mainly focuses on NSLBP. Accurate
and timely assessment and diagnosis of NSLBP can help the clinicians
to develop effective interventions and treatments for the affected
patients (Fritz et al., 2003; Liew et al., 2020).

The existing LBP prediction and assessment methods mainly focus
on the subjective report of patients, biological signal and imaging
studies. (Dunn and Croft, 2005) used a questionnaire to classify the
severity of LBP in the enrolled patients. Aoki (2012) and Ogon et al.
(1996) used a Visual Analogue Scale (VAS) to quantitatively assess
NSLBP patients. However, these methods are limited by their subjective
nature. Abdollahi et al. (2020) used kinematic data obtained from
motion sensors combined with a STarT Back Screening Tool (SBST)
questionnaire output to classify NSLBP patients into high risk and low-
medium risk groups. Jiang et al. (2017) used surface electromyography
(sEMG) combined with the support vector machine (SVM) algorithm
to classify and identify NSLBP patients who responded to functional
recovery rehabilitation, which helps healthcare workers improve the
efficiency of NSLBP rehabilitation. However, the performance of these
methods could be affected by the sources of their signals (sEMG or
kinematic data), which are susceptible to interference from other
human signals; this reduces the accuracy and stability of LBP
classification. Computed tomography (CT) was used in the work of
(Kamaz et al., 2007) to scan the paravertebral muscles of the L4-L5 level
vertebrae in chronic LBP patients and healthy individuals. Their results
showed that chronic LBP resulted in different degrees of atrophy of the
muscles [most prominent in themultifidusmuscle (MF)]. Furthermore,
(Ketola et al., 2020) used T2-weighted magnetic resonance imaging
(MRI) of the intervertebral disc for texture feature extraction. Then,
NSLBP patients were divided into symptomatic and asymptomatic
groups. However, CT and MRI are relatively inflexible for the
physicians to screen LBP and expensive for the patients (Gilbert
et al., 2004; Kamaz et al., 2007; Ketola et al., 2020).

Compared with CT and MRI, ultrasound is a non-invasive, low-
cost and easy-to-use imaging tool. In recent years, it has been used to

examine the skeletal muscle diseases (Cheung et al., 2020).
Combined with the artificial intelligence (AI) technology,
ultrasound has also been applied to the automatic classification
of muscle states (Sun et al., 2020; Xu et al., 2020).

A number of studies have performed ultrasound on themuscles of
the relevant parts of LBP patients. A review has discussed the studies
on the diagnostic application of ultrasound in spinal canal stenosis
and disc herniation (Todorov et al., 2018). Some results have shown
that the MF is important in maintaining the stability of the spine
(Hodges and Richardson, 1997), and most LBP patients have
asymmetric MF (Fortin et al., 2019) and larger fat area (Chan
et al., 2012). The thoracolumbar fascia (TLF) shear strain was
reported to be lower in human subjects with chronic LBP
(Langevin et al., 2011). LBP patients had a significantly smaller
increase in transversus abdominis (TrA) thickness with isometric
leg tasks compared with controls (Ferreira et al., 2004). The mobility
of the erector spinae (ES) in LBP patients was also reported to be
decreased in endurance tasks (Sanderson et al., 2019). In summary,
LBP has complex causes, which involve multiplemuscles andmultiple
sites. Hence, the diagnosis and prediction of LBP also need to combine
more comprehensive information from multiple sites to achieve a
more stable and robust prediction and diagnosis of LBP.

In addition to the B-mode ultrasound, shear wave elastography
(SWE) has also been increasingly applied in LBP studies. Chan (Chan
et al., 2012) found that the elasticity of the MF is different between
LBP patients and normal people in upright and forward-stooping
positions. Masaki et al. (2017) reported that the elasticity of the MF in
LBP patients is significantly higher than that in normal people.

In summary, considering the complex etiology of NSLBP, it is
particularly important to classify the severity or pain intensity of NSLBP
and formulate corresponding treatment plans according to different
classifications of NSLBP (Koes et al., 2010; Foster et al., 2011). However,
an accurate manual quantification of NSLBP is difficult and time-
consuming. Besides, it also relies on the physician’s subjective judgment.
An automatic classification ofNSLBP could help the physicians conduct
prompt interventions and formulate treatment plans for the patients.

Based on the previous report of the multiple images feature selection
(MIFS) (Sun et al., 2020) framework, this study integrated the B-mode
ultrasound image feature from multiple sites with the SWE elasticity
feature of NSLBP patients, and then employed SVM to classify NSLBP
patients using the VAS as ground truth. Furthermore, we explored the
importance ranking of related muscles in the diagnosis of NSLBP.

Materials and methods

Participants

B-mode ultrasound images and SWE elasticity of 52 NSLBP
patients were collected from August 2020 to April 2021 from the
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University of Hong Kong-Shenzhen Hospital. Before data collection,
VAS was used to evaluate the pain intensity of the patients. Each
patient was informed of the purpose and process of the experiments
and an informed consent form was collected from all the subjects.

Ethical approval was authorized by the University of Hong Kong-
Shenzhen Hospital ([2020]178).

The patients who had LBP with a significantly intense pain
during rest and/or daily activities (according to VAS ≥ 1) that
lasted for more than 3 months were included in the study. The
exclusion criteria included history of spinal or lower limb fractures,
spinal surgery or spinal deformities. According to the pain
intensity, the patients were divided into two groups: 1) NSLBP
patients with a mild pain (VAS ≤ 3) 2) NSLBP patients with a
moderate-severe pain (VAS > 3). Data statistics are shown in
Table 1.

Experimental design

Data acquisition

Mindray DC-80 (Mindray, China) with an 8.5 MHz linear array
ultrasonic transducer was used for data acquisition, which can
collect B-mode ultrasound images and the SWE elasticity values
(mean and standard deviation) of the muscles. In addition, the
quality of the obtained SWE elasticity values was checked using DC-
80 self-checking module for the elasticity imaging quality, to make
the SWE elasticity measurement more stable.

The data acquisition process included the following steps:

1) Taking the prone position, a thin pillow was put under the
abdomen of the patient to make the low back flat. Then, the arms
were placed flat on both sides (left side and right side) of the
body, as shown in Figure 1A.

i. B-mode ultrasound images of the muscle (MF, ES, TrA and TLF)
on both sides of the patient’s L2-L3 lumbar spine as well as the
SWE elasticity values (mean and standard deviation) of the
muscle region of interest (ROI) were acquired.

ii. B-mode ultrasound images of the MF on both sides of the
patient’s L4-L5 lumbar spine as well as the SWE elasticity
values (mean and standard deviation) of the muscle ROI were
acquired.

2) Taking the tabletop position (Mangum et al., 2016), the patient’s
low back was kept flat and relaxed, as shown in Figure 1B.

TABLE 1 Descriptive statistics from the data.

Mild (VAS ≤ 3) Moderate-severe (VAS > 3)

Male 12 15

Female 12 13

Total 24 28

mean ± std

Weight (Kg) 65.52 ± 11.52 64.38 ± 10.82

Height (m) 1.69 ± 0.10 1.69 ± 0.07

BMI 22.91 ± 2.72 22.54 ± 3.09

Age 35.96 ± 7.62 41.11 ± 10.24

Notes: There were no significant differences among the groups in terms of the weight, height, age or body mass index (BMI). Abbreviations: BMI, body mass index; std, standard deviation; Kg,

kilogram; m, meter.

FIGURE 1
Data acquisition positions. (A) Prone position, (B) Tabletop
position.
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i. B-mode ultrasound images of the MF on both sides of the
patient’s L2-L3 and L4-L5 lumbar spine and the SWE
elasticity values (mean and standard deviation) of the muscle
ROI were acquired.

Finally, we obtained the B-mode ultrasound images as well as the
SWE elasticity values of a total of 14 images from the patient’s
4 muscles (MF, ES, TLF and TrA), as shown in Table 2. The
representative B-mode ultrasound images are shown in Figure 2.

TABLE 2 Data collection sites and the patients’ positions.

L2-L3 L4-L5 L&R Prone position Tabletop position SWE elasticity

MF √ √ √ √ √ √

ES √ √ √ √

TLF √ √ √ √

TrA √ √ √ √

Notes: The√ represents the imaging of the muscle in the corresponding position. Abbreviations: L2-L3, L2-L3 lumbar spine muscle; L4-L5, L4-L5 lumbar spine muscle; L&R, left and right sides

of the lumbar spine muscle; SWE, shear wave elastography; MF, multifidus muscle; ES, erector spinae; TLF, thoracolumbar fascia; TrA, transversus abdominis.

FIGURE 2
Representative images of 4 acquired muscles. (A) B-mode ultrasound images of NSLBP patients with a mild pain. (B) B-mode ultrasound images of
NSLBP patients with a moderate-severe pain. MF, multifidus muscle; ES, erector spinae; TLF, thoracolumbar fascia; TrA, transversus abdominis.

FIGURE 3
The framework of this experiment. Mild, NSLBP patients with a mild pain (VAS ≤ 3); Moderate-severe, NSLBP patients with a moderate-severe pain
(VAS > 3); SVM, support vector machine.
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LBP framework

This experiment was based on the MIFS framework, as shown in
Figure 3, which was mainly composed of feature extraction and
feature selection. First, 55 B-mode ultrasound image features were
extracted from the ROI of muscles in multiple sites (details are
shown below). Then, they were combined with the SWE elasticity
feature from the ROI to form the total feature set. After feature
standardization and selection, important features were selected from
the total feature set to construct the optimal feature set. Finally, the
optimal feature set was used to train the SVM model and classify
NSLBP patients.

Data processing

Feature extraction

Based on the MIFS framework, this experiment extracted the
features from the B-mode images as well as SWE elasticity values,
including the following features:

1) Muscle morphological feature: composed of average thickness
feature of the muscle (TLF and TrA). Thickness is usually defined
as the distance between the midpoints of the upper and lower
muscle and calculated by the mean of the left and right sides of
the muscle (TLF and TrA) thickness. In order to ensure the
accuracy and validity of the value, we double checked the
thickness measurement.

2) Mean image frequency analysis features (MFAF) of the ROI:
calculated separately as the maximum entropy method and
multi-window method (Cakrak and Loughlin, 1999; Nishihara
et al., 2014).

3) Image texture features: composed of two features. One is the
first-order statistical (FOS) feature derived from the gray-level
histogram, including the integrated optical density, mean,

standard deviation, variance, skewness, kurtosis and energy.
The other is the high-order texture feature, including the
Haralick feature calculated from the Gray-Level Co-
occurrence Matrix (GLCM) (Harlick et al., 1973), Galloway
feature calculated from the Gray-Level Run-Length Matrix
(GLRLM) (Galloway, 1975) as well as local binary patterns
feature (energy and entropy) (Sun et al., 2020).

4) SWE elasticity feature: composed of the mean and standard
deviation of SWE elasticity from the muscle ROI.

Finally, we obtained 800 features (57 features per ROI of an
image and 14 images per subject) and 2 average thickness features of
the TLF and TrA of each subject. The details of the features are listed
in Table 3.

Feature selection

1) The variance between the features of the total feature set obtained
in this experiment was relatively large. To prevent the variance of
some features from being much larger than the variance of other
features, which could result in slow convergence or non-
convergence of the model, this experiment standardized the
total feature set to make the mean and variance of the feature
equal to 0 and 1, respectively, as shown in Eq. 1.

y � x − μ

σ
(1)

where y is the feature after standardization, x is the feature before
standardization, μ is the mean of the feature set, and σ is the
standard deviation of the feature set.

2) In this experiment, the number of features obtained by each
patient was 800. To prevent the model from overfitting or having
difficulty converging, it was necessary to perform feature
selection on the total feature set and to reduce the feature

TABLE 3 Details of the features.

Feature type Feature names Notes

Muscle morphological
feature

muscle (TLF and TrA) average thickness feature N = 2

Image frequency analysis
feature

MFAF Calculated by the maximum entropy method and multi-window method.
N = 2

FOS feature Integrated optical density, mean, standard deviation, variance,
skewness, kurtosis and energy

Derived from the gray-level histogram. N = 7

Haralick feature Contrast, correlation, energy, entropy, homogeneity and symmetry Calculated from the Gray-Level Co-occurrence Matrix (GLCM) with
4 directions: 0°, 45°, 90° and 135°. N = 24

Galloway feature Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray-Level
Non-Uniformity (GLNU),

Calculated from the Gray-Level Run-Length Matrix (GLRLM) with
4 directions: 0°, 45°, 90°, and 135°. N = 20

Run Length Non-Uniformity (RLNU) and Run Percentage (RP)

Local binary patterns
feature

Energy and entropy N = 2

SWE elasticity feature Mean and std N = 2

Abbreviations: N, the number of features; TLF, thoracolumbar fascia; TrA, transversus abdominis; FOS, first-order statistical; MFAF, mean image frequency analysis feature; SWE, shear wave

elastography; std, standard deviation.
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dimension. We used SelectPercentile of sklearn.feature_selection
in the machine learning package Scikit-learn (v. 0.22.1) for
feature selection. The score_func parameter contains several
feature selection methods. In this experiment score_func chose
the default f_classif as the feature selection method, and the
kernel method of f_classif was the analysis of variance (ANOVA)
(Larson, 2008). Due to the ability to combine all the feature
information, ANOVA does not only improve the efficiency, but
also increases the reliability of the feature selection. After feature
selection with ANOVA, the optimal feature set was finally
extracted from the total feature set.

Classification

1) The Scikit-learn (v. 0.22.1) machine learning library was used in
Python (v. 3.7.6) to build a machine learning-based pipeline to
analyze the feature data.

2) SVM was used to classify NSLBP patients. SVM is a two-
classification model, and its basic model is a linear classifier
with the largest interval defined in the feature space. The basic
idea behind SVM is to solve the separation hyperplane that can
correctly divide the dataset and have the largest geometric
interval. SVM has several complex kernel methods, which can
make the data that are inseparable in the linear space separable in
other dimensions. At the same time, the addition of
regularization enhances the robustness of the SVM model and
reduces the possibility of overfitting. The SVM model of this
experiment used a linear kernel and L2 regularization.

3) When the amount of data is sufficient, datasets are usually
divided into training set, validation set and test set, and the
final performance results come from the test set. However, since
the amount of data in this experiment is limited, the above-
mentioned single test set could not reliably report the
performance indicators of the classifier (Sun et al., 2020). To
overcome this disadvantage, five-fold cross-validation combined
with grid search was used to optimize and evaluate the
classification model in this experiment.

4) In the classification task of NSLBP of this experiment, NSLBP
patients with a moderate-severe pain were treated as positive
cases and those with a mild pain as negative ones. The metrics of
accuracy, specificity, sensitivity, AUC (area under the receiver
operator characteristic curve), precision and negative predictive
value (NPV) were used to quantify the classification results. At
the same time, the classification results of using the SWE
elasticity feature, B-mode ultrasound image feature and SWE
elasticity feature combined with B-mode ultrasound image
feature were compared.

Results

In this section, the results of feature selection using ANOVA and
SVM to classify NSLBP are presented. At the same time, this section
also exhibits the number of specific features in the optimal feature
set after feature selection, the top 10 important features of the SVM
model, the proportion of 4 muscles (MF, TLF, ES, TrA) in the
optimal feature set, the proportion of different positions and sites in

the optimal feature set, as well as the classification results between
MIFS framework and single image feature selection (SIFS)
framework.

Feature analysis

In order to find out the best performance in different
parameters, the percentile parameter of SelectPercentile was set
from 1 to 100 for feature selection. When the percentile was set
to 6, the model achieved the best performance, as shown in Figure 4

After feature selection, 48 features were finally obtained in the
optimal feature set, which accounted for 6% of the total feature set.
Table 4 shows the number of different features in the optimal
feature set.

The classification performance

Table 5 shows the classification results of different feature sets
after performing five-fold cross-validation using SVM. It can be
observed that the accuracy of using the SWE elasticity feature and
B-mode ultrasound image feature to classify NSLBP was 0.65 and
0.81, respectively. When both were used to classify NSLBP patients,
the accuracy reached 0.85.

In the SVM model, the absolute value of the feature weight can
indicate the importance of the feature in the classification task. In
this experiment, the top 10 important features obtained in the SVM
model are shown in Table 6. We conducted the Student’s t-test and
Mann-Whitney test in the top 10 important features came from the
normal distribution or not, respectively. As shown in Table 6
(indicated by asterisks), all the 10 features showed statistically
significant differences.

Discussion

1) Performance comparison between the proposed method and the
MRI work

This experiment combined the B-mode ultrasound image
feature with the SWE elasticity feature to classify NSLBP
patients. Compared with the MRI work in NSLBP classification
(Ketola et al., 2020), the accuracy and sensitivity after five-fold cross-
validation of this experiment were 0.85 and 0.89, respectively, which
were higher than MRI work (0.83 and 0.82, respectively), suggesting
that the proposed method can better identify NSLBP patients with a
moderate-severe pain. The precision was 0.86 in this experiment,
which is much higher than the MRI work (0.56), indicating that the
classification of the proposed method is more robust in classifying
positives than the MRI work. NPV refers to the proportion of true
negatives among all negative results, the NPV and specificity of this
experiment were 0.89 and 0.80, respectively, lower than those of the
MRI work (0.94 and 0.83, respectively), which means a relatively low
proportion of classifying negatives and indicates that NSLBP
patients with a mild pain are relatively more difficult to be
identified in this experiment. The AUC of this experiment was
0.88, lower thanMRI work (0.91), which suggests that the MRI work
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may be more robust in NSLBP classification. We understand that
direct comparisons between different studies can be challenging due
to variations in patient populations, imaging techniques, and other
factors. In future work, we plan to validate our approach on larger
and more diverse datasets, including comparisons with other
imaging modalities, such as MRI.

It should also be noted that the NSLBP classification in this
experiment is based on the pain intensity evaluated by VAS, which is
a subjective variable. However, all the patients have experienced

significant pain for more than 3 months, and we obtained a relatively
low proportion of false positives in the classification results, which is
desirable in medical research.

2) Involving SWE elasticity makes a difference

The classification results indicate that using the SWE elasticity
feature or using B-mode ultrasound image feature for classification
is not as good as combining both in the classification of NSLBP

FIGURE 4
The performance of feature selection with different values of the percentile parameter.

TABLE 4 Specific number of features in the optimal feature set.

Feature
type

Muscle
morphological

feature

Image
frequency

analysis feature

FOS
feature

Haralick
feature

Galloway
feature

Local binary
patterns
feature

SWE
elasticity
feature

Total

Select No. 0 2 3 27 12 0 4 48

Total No. 2 28 98 336 280 28 28 800

Abbreviations: FOS, first-order statistical; SWE, shear wave elastography.

TABLE 5 Classification results.

Feature set SWE elasticity B-mode ultrasound image feature Total

Accuracy 0.65 0.81 0.85

Sensitivity 0.76 0.82 0.89

Specificity 0.54 0.80 0.80

AUC 0.66 0.80 0.88

Precision 0.69 0.86 0.86

NPV 0.70 0.82 0.89

Abbreviations: AUC, area under curve; NPV, negative predictive value; SWE, shear wave elastography.
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patients. Besides, the classification results also confirmed the
importance of SWE in the clinical research (Zhou et al., 2018).

3) A brief discussion from the perspective of features

In this study, an optimal feature set with the size of 48 was
obtained after feature selection (as shown in Table 4). Among the
total feature proportion in the optimal feature set, the proportion of
the SWE elasticity feature was the highest, achieved 14.3% (4/28),
which indicates that SWE features plays an important role in the
NSLBP classification in this experiment. This also preliminarily
confirms the previous experiments by Chan et al. (2012) and
Masaki et al. (2017) (Fortin et al., 2019; Sanderson et al., 2019)
that the SWE elasticity of LBP patients is different from that of
normal people and the SWE elasticity of LBP patients could change.

By analyzing the top 10 important feature weights of the SVM
classificationmodel, the Galloway feature accounted for 40.0% of the
entire classification task (as shown in Table 6), indicating that the
Galloway feature calculated by the GLRLM could well show the
difference in the B-mode ultrasound image features between NSLBP
patients.

4) A brief discussion from the perspective of muscles

As shown in Table 7, among 48 selected features from 800 total
features, the features of MF and TLF had the highest proportions,
reaching 4.4% (20/456) and 22.6% (26/115), respectively, while ES
and TrA had the lowest proportions, reaching 1.6% (2/114) and

0.0% (0/115), respectively. It can be seen that MF and TLF play an
important role in the classification of NSLBP patients (Kamaz et al.,
2007; Chan et al., 2012), which indicates that more attention should
be paid to the MF and TLF in NSLBP classification in future
experiments.

5) A brief discussion from the perspective of positions and sites

As shown in Table 8, the feature of the L4-L5 lumbar spine
muscle accounted for 0.9% (2/228) in 48 selected features from
800 total features, while the feature of L2-L3 lumbar spine muscle
accounted for 8.0% (46/572), indicating that the L2-L3 lumbar
spine muscle was more important than the L4-L5 lumbar spine
muscle in the classification of NSLBP in this experiment. The
feature proportion of the left side of the lumbar spine muscle was
5.5% (22/399), while the right side of the lumbar spine muscle
was 6.5% (26/399), which indicates that both sides of the lumbar
spine muscle contributed equally to the NSLBP classification in
this experiment in some extent. As for the data acquisition
position, the tabletop position had more contribution
[accounted for 6.1% (14/228)] than the prone position
[accounted for 5.9% (34/572)], which verifies the importance
of the tabletop position in the imaging of related muscles (Foster
et al., 2011).

In this experiment, the MIFS framework extracts features from
all 14 images in multiple sites and searches for the best feature set. As
shown in Table 9, compared with the SIFS framework extracts the
feature from a single image in single site, the accuracy, specificity,

TABLE 6 Top 10 important features in the optimal feature set.

L4-L5_L_MF_FisrtOrderFeature.IOD (prone position) *

L2-L3_R_MF_SWE.Std (prone position) *

L2-L3_R_TLF_GallowayFeature.RLNU (prone position, direction = 0°) *

L2-L3_R_TLF_HaralickFeature.Homogeneity (prone position, direction = 90°) **

L2-L3_L_MF_GallowayFeature.RLNU (tabletop position, direction = 90°) **

L4-L5_R_MF_SWE.Std (tabletop position) **

L2-L3_L_ES_SWE.Std (prone position) *

L2-L3_R_TLF_MFAF (prone position, calculated by multi-window method) *

L2-L3_L_MF_GallowayFeature.GLNU (tabletop position, direction = 0°) **

L2-L3_L_MF_GallowayFeature.RP (tabletop position, direction = 0°) *

Abbreviations: L2-L3, L2-L3 lumbar spine muscle; L4-L5, L4-L5 lumbar spine muscle; L, left side of the lumbar spine muscle; R, right side of the lumbar spine muscle; SWE, shear wave

elastography; Std, standard deviation; GLNU, gray-level non-uniformity; MF, multifidus muscle; ES, erector spinae; TLF, thoracolumbar fascia; TrA, transversus abdominis; *, p-value < 0.05; **,

p-value < 0.01.

TABLE 7 The number of features from different muscles in the optimal feature set.

Muscle MF ES TLF TrA Total

Select No. 20 2 26 0 48

Total No. 456 114 115 115 800

Abbreviations: MF, multifidus muscle; ES, erector spinae; TLF, thoracolumbar fascia; TrA, transversus abdominis.
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AUC, precision and NPV of MIFS framework were higher than SIFS
framework, which indicated that MIFS framework had a better
performance in NSLBP classification.

In this experiment, the data acquisition repeatability test was
performed on the SWE elasticity values (Yu, 2022). The SWE
elasticity values of 10 people were measured by two clinical

TABLE 8 The number of features at different positions and sites of the optimal feature set.

Positions and sites L2-L3 L4-L5 L R Prone position Tabletop position

Select No. 46 2 22 26 34 14

Total No. 572 228 399 399 572 228

Abbreviations: L2-L3, L2-L3 lumbar spine muscle; L4-L5, L4-L5 lumbar spine muscle; L, left side of the lumbar spine muscle; R, right side of the lumbar spine muscle.

TABLE 9 MIFS framework and SIFS of NSLBP classification performance.

Muscle sites Accuracy Sensitivity Specificity AUC Precision NPV

L2-L3 0.67 0.93 0.38 0.61 0.64 0.87

_L_MF

L2-L3 0.63 0.93 0.30 0.61 0.62 0.65

_R_MF

L4-L5 0.68 0.65 0.71 0.66 0.71 0.66

_L_MF

L4-L5 0.69 0.80 0.59 0.72 0.73 0.78

_R_MF

L2-L3_L 0.77 0.75 0.79 0.79 0.81 0.76

_MF_TBT

L2-L3_R 0.75 0.83 0.65 0.75 0.75 0.77

_MF_TBT

L4-L5_L 0.67 0.67 0.66 0.69 0.76 0.67

_MF_TBT

L4-L5_R 0.77 0.89 0.62 0.74 0.76 0.88

_MF_TBT

L2-L3 0.66 0.72 0.58 0.61 0.71 0.62

_L_ES

L2-L3 0.65 0.85 0.41 0.61 0.65 0.65

_R_ES

L2-L3 0.73 0.75 0.70 0.78 0.77 0.71

_L_TLF

L2-L3 0.75 0.89 0.58 0.77 0.71 0.83

_R_TLF

L2-L3 0.62 0.67 0.54 0.61 0.69 0.59

_L_TrA

L2-L3 0.71 0.68 0.75 0.68 0.78 0.67

_R_TrA

Total 0.85 0.89 0.80 0.88 0.86 0.89

Abbreviations: L2-L3, L2-L3 lumbar spine muscle; L4-L5, L4-L5 lumbar spine muscle; L, left side of the lumbar spine muscle; R, right side of the lumbar spine muscle; TBT, tabletop position;

MF, multifidus muscle; ES, erector spinae; TLF, thoracolumbar fascia; TrA, transversus abdominis; AUC, area under curve; NPV, negative predictive value; MIFS, multiple images feature

selection; SIFS, single image feature selection.
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operators at different times, and significant differences were found
in the SWE elasticity of the TLF between the two operators, which
indicated possible differences between the operators in the SWE
elasticity measurement of the TLF. Furthermore, the choice of the
ROI of the B-mode ultrasound image in this experiment depended
on the experience of the clinical operator, and there was no fixed
size. In future experiments, with the use of automatic methods, such
as deep learning-based methods, the subjective influence of the
operators can be reduced. At the same time, with the increase of the
dataset size in feature experiments, the classification model can be
more robust.

Finally, although we used the VAS method as ground truth to
train our classifier, our proposed method has potential advantages
over the subjective nature of VAS.While the VASmethod is a widely
used tool for assessing pain, it is indeed limited by its subjective
nature, as the patient’s perception and reporting of pain can be
influenced by various factors. However, it remains a commonly used
method for assessing pain in clinical settings, including in the
assessment of NSLBP. As such, we used the VAS as the ground
truth in our study because it represents a standard and commonly
used method for assessing pain in NSLBP patients. The significance
of our study lies in the development of an automated method for
classifying NSLBP patients using B-mode ultrasound and SWE
features, which has the potential to improve the accuracy and
objectivity of NSLBP assessment. Our proposed method has
several advantages over the VAS method. First, it can provide an
objective measure of NSLBP severity that is not dependent on
patient self-reporting. Second, our method has the potential to
reduce inter-observer variability, which is a known limitation of
manual quantification methods. Third, our proposed method is
cost-effective and non-invasive, which may make it more accessible
and practical in clinical settings. Meanwhile, Low back pain is a
complex condition that can arise from various sources. It is crucial to
recognize that changes in the paraspinal muscles may not necessarily
be the primary cause of the pain, but rather a secondary effect of
underlying factors. Therefore, it is essential to explore a wide range
of possible pain generators when diagnosing low back pain. It is
important to note that our study’s emphasis on the paraspinal
muscles is not all-encompassing, and there may be other
contributors to low back pain that require consideration.

Conclusion

In conclusion, the current study utilized an SVM model in
combination with the MIFS framework and B-mode ultrasound
image feature and SWE elasticity feature to classify NSLBP patients.

The MIFS framework, previously proven effective in motion level
classification, was employed due to the complicated etiology of LBP
and the observed differences in multiple muscle sites of LBP patients
compared to normal individuals. The proposed approach achieved better
performance than the SIFS framework, providing preliminary evidence
for the potential of integratingmultiple sites of B-mode ultrasound image
and SWE elasticity features in the classification of NSLBP patients.
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