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General anesthesia produces multiple side effects. Notably, it temporarily impairs
gastrointestinal motility following surgery and causes the so-called postoperative
ileus (POI), a multifactorial and complex condition that develops secondary to
neuromuscular failure and mainly affects the small intestine. There are currently
limited medication options for POI, reflecting a lack of comprehensive
understanding of the mechanisms involved in this complex condition. Notably,
although acetylcholine is one of the major neurotransmitters initiating excitation-
contraction coupling in the gut, cholinergic stimulation by prokinetic drugs is not
very efficient in case of POI. Acetylcholine when released from excitatory
motoneurones of the enteric nervous system binds to and activates M2 and
M3 types of muscarinic receptors in smooth muscle myocytes. Downstream of
these G protein-coupled receptors, muscarinic cation TRPC4 channels act as the
major focal point of receptor-mediated signal integration, causing membrane
depolarisation accompanied by action potential discharge and calcium influx via
L-type Ca2+ channels for myocyte contraction. We have recently found that both
inhalation (isoflurane) and intravenous (ketamine) anesthetics significantly inhibit
this muscarinic cation current (termed mICAT) in ileal myocytes, even when G
proteins are activated directly by intracellular GTPγS, i.e., bypassing muscarinic
receptors. Here we aim to summarize Transient Receptor Potential channels and
calcium signalling-related aspects of the cholinergic mechanisms in the gut and
visceral pain, discuss exactly how these may be negatively impacted by general
anaesthetics, while proposing the receptor-operated TRPC4 channel as a novel
molecular target for the treatment of POI.
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1 Introduction

Postoperative ileus (POI) remains one of the most common and
costly for the healthcare system complications of surgery, in
particular abdominal surgery. POI is a multifactorial problem,
whereby administration of general anaesthetics and anxiolytics is
certainly one of the multiple risk factors, and is likely especially
important during the first neurological phase of POI involving
sympathetic and enteric nervous systems (Venara et al., 2016;
Wattchow et al., 2021).

General anaesthetics are primarily aimed at targeting specific
receptors of the central nervous system (CNS), but these drugs
can also affect other molecular off-targets, such as receptors and
ion channels outside of the CNS. Understanding how general
anaesthetics can negatively affect gut motility would seem to
require, in the first place, knowledge of their effects within the
enteric nervous system (ENS), as well as on the pacemaker cells of
the gastrointestinal (GI) tract - Interstitial Cells of Cajal (ICC
cells), which coordinate and regulate the sensory, secretory and
motor functions of the gut (Spencer and Hu, 2020). Indeed, one
of the pioneer studies in this area has demonstrated that
phencyclidine and related drugs including ketamine decreased
neurogenic contractions of guinea-pig ileum and shifted the
dose-response curve to acetylcholine to higher agonist
concentrations. The authors have thus suggested that these
drugs interact with both enteric neurones and smooth muscle
myocytes (Gintzler et al., 1982). However, there has not been
much subsequent progress towards delineating specific
molecular and/or cellular pathways involved. On the other
hand, among various prokinetic drugs used for POI treatment
(Venara et al., 2016), low concentrations of neostigmine, which is
an inhibitor of acetylcholinesterase, may be beneficial (results of
the recent systematic review and meta-analysis performed by
Liao et al., 2021), which calls for a better understanding of the
possible dysfunction of the acetylcholine-mediated signal
transduction during the impairment of GI motility by general
anaesthetics.

Strong evidence has been accumulated over the recent years
indicating a major functional role of various subtypes of Transient
Receptor Potential (TRP) channels in smooth muscles and sensory
neurons (Venkatachalam and Montell, 2007; Tsvilovskyy et al.,
2009). Recent studies (Matta et al., 2008; Abeele et al., 2013;
Dryn et al., 2018; Wang et al., 2019; Melnyk et al., 2020) have
shown that TRP channels could interact with general anesthetics at
subclinical doses, which makes them highly likely primary
candidates for the development of side effects produced by local
and general anaesthetics. Thus, in recent years we focused our
research on the problem of how general anaesthetics, such as
isoflurane and ketamine, affect acetylcholine-activated
TRPC4 channels, which mediate muscarinic cation current in
ileal myocytes, termed mICAT (Tsvilovskyy et al., 2009). Since
TRPC4 channels are widely expressed in the CNS, ENS, ICC and
GI smooth muscle myocytes they are increasingly proposed as
promising pharmacological targets (Boesmans et al., 2011), but
their role in GI pathophysiology in general, and specifically in
the pathogenesis of POI, remains to be better elucidated,
prompting us to summarize the current status of this research in
this Perspective.

1.1 TRP channels and pain

Chronic pain significantly impairs quality of life. As reviewed by
Julius (2013), TRP channels play a significant role in pain signalling
(Julius, 2013). TRP channels are known as polymodal sensors of
various stimuli, including chemical modulators, reactive oxygen
species, changes in pH and temperature, and mechanical forces
(Wu et al., 2010). Being a vital protective mechanism, pain
perception could be a considerable problem under some
pathological conditions, such as inflammation, when chronic pain
develops. Among multiple other co-morbidities, severe pain also
correlates with POI. Recent studies have highlighted the
involvement of several members of the TRP superfamily of ion
channels in producing pain. The cold receptor TRPM8 is expressed
in various sensory neurons and is involved in cold nociception
(Knowlton et al., 2013). Notably, these channels perceive noxious
cold, innocuous cooling and TRPM8-mediated analgesia differently
(Laing and Dhaka, 2016). These channels are implicated in
inflammatory and neuropathic cold allodynia and other cold
hypersensitivity (Bautista et al., 2007; Colburn et al., 2007; Moran
and Szallasi, 2018). A recent study has identified the efficacy of novel
TRPM8 antagonists in treating both inflammatory and neuropathic
pain (De Caro et al., 2018). Different pharmaceutical companies
have been developing novel TRPM8 antagonists as pharmacological
treatment for chronic or inflammatory pain, migraine and
chemotherapeutic-induced allodynia (Weyer and Lehto, 2017).
However, as of yet there are no ongoing clinical trials of these
compounds.

The other member of the TRP superfamily which is expressed in
neuronal, smooth muscles cells and other non-neuronal cells is
TRPV4, a multimodal sensor which underlies regulation of several
important physiological functions such as osmotic, mechanical and
warm temperature sensation (Everaerts et al., 2010; Moore et al.,
2018). Recent studies revealed the involvement of this channel in
nociception, in particular in joint- and skin-mediated inflammatory
pain, neuropathic pain and visceral pain (Alessandri-Haber et al.,
2004; Brierley et al., 2008; Moore et al., 2013; O’Conor et al., 2016;
Qu et al., 2016). These data indicate that TRP channels are
promising therapeutic targets for chronic pain relief. Better
understanding of the underlying molecular mechanisms of the
TRP channels’ role in nociception could promote the search for
chemical compounds as prospective and novel pharmacological
approaches targeting these channels for effective pain relief.

1.2 The role of TRP channels in visceral pain
generation triggered by smooth muscle
spasm

The GI tract has differentiated sensory afferent innervation, with
sensory neurones located in the dorsal root ganglia (DRGs), nodose
ganglia and the inferior ganglion of the vagus nerve (Brookes et al.,
2013; Spencer and Hu, 2020). Visceral pain can be associated with
smooth muscle (SM) spasms, in turn causing irritable bowel
syndrome (IBS). Abdominal pain is a primary symptom of IBS
(Keszthelyi et al., 2012a; 2012b). Several of the TRP channels (most
notably TRPA1, TRPC4, TRPV1 and TRPV4) are expressed in the
gut, where they play important roles in multiple pathophysiological
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processes, including visceral nociception and pain (Boesmans et al.,
2011; Holzer, 2011). Thus, TRPC4 channels opened secondary to
muscarinic acetylcholine receptor activation trigger excitation and
contraction of small intestinal smooth muscles (Bolton et al., 1999;
Tsvilovskyy et al., 2009). TRPV4 senses local pressure that can
become painful when it exceeds certain threshold level (Liedtke,
2005). Moreover, TRPV4 in afferent nerves can be sensitized via
protease-activated receptor 2 thus evoking visceral hyperalgesia
(Sipe et al., 2008). The molecular pathophysiology of IBS is not
completely understood (Shah et al., 2020), but among other ion
channels, TRPV4 and TRPA1 have been suggested as important
sensory channels in IBS (Yang et al., 2022).

Currently, three main agent classes are used for SM
antispasmodic action: antimuscarinic agents (Tobin et al., 2009),
calcium channel inhibitors (Evangelista, 2004), and direct smooth
muscle relaxants (Subissi et al., 1983), but their efficiency is less than
optimal, making these compounds questionable for their clinical
use. There is thus an urgent need to develop other therapies for
treating chronic abdominal pain, such as TRP channels modulators.

1.3 The mechanism of general anaesthesia
action on TRP channels

Inhaled anesthetics rapidly equilibrate between air in the alveoli
and capillary blood. Small hydrophobic molecules like anesthetics
can first of all affect the membrane lipid bilayer, thus nonspecifically
altering the functions of multiple, if not all, transmembrane proteins
(Tsuchiya and Mizogami, 2013). The second, much better
understood group of their molecular targets includes plasma
membrane receptors and ion channels. Among the latter, both
voltage-gated (Ca2+, Na+ and K+ channels of different types) and
ligand-activated (such as nicotinic acetylcholine receptors,
serotonin, glycine and GABAA receptors) received considerable
attention in this context (Jenkins et al., 1996; Tassonyi et al.,
2002; Hara and Sata, 2007; Alberola-Die et al., 2011; Germann
et al., 2016; Liu et al., 2019; Mathie et al., 2021). For example, the
inhalational anaesthetic isoflurane, which is a halogenated ether,
targets GABAA, glutamate and glycine receptors, while ketamine is
best characterised as an antagonist of NMDA receptors, which
determines its strong analgesic action (Franks, 2006; Franks, 2008).

The TRP channels discussed above represent yet another group
of such targets. There is indeed growing evidence in this area of
research showing that, for example, halothane, chloroform, and
propofol can inhibit TRPC5 channels (Bahnasi et al., 2008),
isoflurane can activate TRPA1 channels in sensory DRG
neurones (Matta et al., 2008), while propofol affects TRPA1 and
TRPV1 channels as became evident from observing propofol-
induced vasorelaxation of coronary arterioles (Wang et al., 2015).

Acetylcholine, a major neurotransmitter that plays multiple
important roles in the central and peripheral nervous system,
activates muscarinic acetylcholine receptors (mainly of M2 and
M3 subtypes), which are the main excitatory receptor subtypes
expressed in GI smooth muscles (Bolton, 1972; 1979; Zholos,
2006). This, in turn, results in the openings of two receptor-
operated cation channels, TRPC4 and TRPC6, of which TRPC4 is
of main importance since it mediates about 85% of mICAT
(Tsvilovskyy et al., 2009). Signal transduction pathways leading to

TRPC4 are complex, since two receptor subtypes, which are
differentially coupled to Gi/o and Gq/11 proteins, are involved
(M2 and M3 receptors, respectively). These have been previously
extensively studied and reviewed (Zholos and Bolton, 1997; Bolton
et al., 1999; Zholos et al., 2004; Zholos, 2006; Sakamoto et al., 2007;
Tanahashi et al., 2020), as summarised schematically in Figure 1. In
brief, these receptors systems act in synergy, whereby the M2/Gi/o is of
primary nature, while the M3/Gq/PLC system and the increase in
intracellular Ca2+ concentration it produces by InsP3-evoked Ca2+

release play both permissive (at least in part via PIP2 depletion) and
potentiating (via [Ca2+]i elevation) roles. We therefore reasoned that
inhibition of mICAT generation as the primary mechanism of
cholinergic excitation-contraction coupling in the gut (Bolton
et al., 1999) can occur at different levels, ranging from muscarinic
receptors and the G-proteins that are coupled to them, and to Ca2+

signalling and TRPC4 channels themselves.
We have addressed these possibilities using a range of

experimental techniques, from patch-clamp recordings to in vitro
contractile recordings, in our recent studies of isoflurane and
ketamine effects on mICAT and spontaneous as well as carbachol-
stimulated contractions of ileal smooth muscles (Dryn et al., 2018;
Melnyk et al., 2020). To bypass the receptor activation step, GTPγS
infusion via patch-pipette was employed for direct activation of all
trimeric G-proteins. Intriguingly, both isoflurane and ketamine
strongly inhibited both carbachol- and GTPγS-induced mICAT at
clinically relevant concentrations, and the inhibitory effects had much
in common. Thus, muscarinic receptors are not the major targets of
their action, and hence any strategy aimed at the upregulation of
mACh receptor activity, such as inhibitors of acetylcholinesterase,
would be, in theory, not very efficient. At the same time the effect of
ketamine was effectively opposed by the direct TRPC4 agonist
(−)-englerin A (EA) indicating that the function of the channel
itself was preserved (Melnyk et al., 2020) (Figure 1). We thus
concluded that TRPC4 agonists may be used for the correction of
GI motility suppression induced by general anesthesia. It is worth
noting that there has recently been significant progress in developing
nontoxic analogue of EA (Seenadera et al., 2022).

1.4 Post-traumatic stress disorder and
antidepressants

Currently, the most effective and widely used treatments for
post-traumatic stress disorder (PTSD) are antidepressants and
anxiolytics, but other novel treatments are being considered,
especially for the treatment of more refractory and disabling
cases of PTSD (Ipser and Stein, 2012; Liriano et al., 2019). Thus,
ketamine is not only a widely used anesthetic, but has recently been
considered as a potential antidepressant (Duman et al., 2012; Zanos
and Gould, 2018; Jeong et al., 2022), in particular as a promising and
novel pharmacotherapeutic agent for PTSD patients, especially in
more complex cases (Liriano et al., 2019).

Recent studies have shown that some novel modulators of TRP
channels possess antidepressant action. A recently identified
inhibitor of TRPC4/C5 channels, M084, has demonstrated
antidepressant and anxiolytic effects (Yang et al., 2015). HC-070,
a new small molecule antagonist of these channels, also possess
antidepressant effects and may be proposed as a treatment for a
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number of symptoms of psychiatric disorders (Just et al., 2018).
Antidepressants, in turn, affect TRP channels, and not only in the
nervous system, but also in other systems and organs, where they
can produce side effects. It was shown that tricyclic antidepressants,
which are also used for treating IBS, inhibited TRPC4 channels in
colonic myocytes, resulting in suppression of GI motility (Jeong
et al., 2022). These results well correlate with our recent studies of
the inhibitory action of ketamine and isoflurane on the
TRPC4 channel-mediated mICAT in mouse small intestinal
myocytes (Dryn et al., 2018; Melnyk et al., 2020). Thus,
antidepressants and anxiolytics can modulate the TRP channels
function, which in turn could lead to intestinal complications.

2 Conclusion and further research

Currently, continuation of the studies of the side effects of
anaesthetics and antidepressants on TRP channels, in particular
in intestinal myocytes, remains an important task. War and military
actions are the most significant factors of PTSD development, and
also of the increase in the number and complexity of surgical
interventions. According to the latest medical reports from the
Ministry of Health of Ukraine, as a result of the Russian invasion
of Ukraine in 2022 and the ongoing war, the risk of PTSD
occurrence can be very high and will amount from 4.5 to
15 million people, including both military personnel and civilians
(Bryant et al., 2022; Cai et al., 2022; Chaaya et al., 2022; Zaliska et al.,
2022). The results of such studies as outlined in this Perspective can

propose some recommendations for optimizing protocols for the use
and dosage of certain types of anaesthetics and antidepressants in
medical practice, in particular in the treatment of PTSD. Thus, our
own future studies will be aimed at revealing ion channel
mechanisms of side effects of other widely used anaesthetics, as
well as anxiolytics and antidepressants, and their combinations.
Moreover, other members of the TRP family, in particular
TRPV4 and TRPM8 channels, which are important for the
regulation of blood vessel tone, need to be more fully
characterized in this context (Melanaphy et al., 2016; Dryn et al.,
2018). There is accumulating evidence that some anaesthetics can
affect these two types of channels (Abeele et al., 2013; Wang et al.,
2019), as well as vascular tone (Liu et al., 2009; Gille et al., 2012; Sakai
et al., 2014), therefore this research area is also relevant and
promising.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

The animal study was reviewed and approved. This
Perspective refers to some results in our two papers published

FIGURE 1
The schematic illustration of the possible mechanism of anaesthetics side-effects action on the novel molecular targets in intestinal myocytes.
Acting in synergy with muscarinic M2 and M3 receptors coupled to Gi/o- and Gq/11-proteins, respectively, TRPC4 channels are the main molecular
component of depolarizing inward current mICAT, which is the principal regulator of cholinergic excitation-contraction coupling in intestinal smooth
muscles. Anaesthetics (ketamine and isoflurane) strongly suppressed mICAT, acting more likely on G-proteins, but minimally on M2/M3 receptors.
TRPC4 channels direct agonist (−)-englerin A recovered ketamine-induced inhibition of mICAT, suggesting that this anaesthetic is targeting G-proteins
rather than TRPC4 channels.
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