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We investigated the effect of different sampling frequencies, input parameters and
observation times for sample entropy (SaEn) calculated on torque data recorded
from a submaximal isometric contraction. Forty-six participants performed
sustained isometric knee flexion at 20% of their maximal contraction level and
torque data was sampled at 1,000 Hz for 180 s. Power spectral analysis was used
to determine the appropriate sampling frequency. The time series were
downsampled to 750, 500, 250, 100, 50, and 25 Hz to investigate the effect of
different sampling frequency. Relative parameter consistency was investigated
using combinations of vector lengths of two and three and tolerance limits of 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, and 0.4, and data lengths between 500 and 18,000 data
points. The effect of different observations times was evaluated using Bland-
Altman plot for observations times between 5 and 90 s. SaEn increased at sampling
frequencies below 100 Hz andwas unaltered above 250 Hz. In agreementwith the
power spectral analysis, this advocates for a sampling frequency between 100 and
250 Hz. Relative consistency was observed across the tested parameters and at
least 30 s of observation time was required for a valid calculation of SaEn from
torque data.
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Introduction

Measurement of isometric force or joint torque is a commonly used method for
investigation of human motor control. Traditionally, quantification of spatial
characteristics of the produced force using linear measures such as mean, range,
standard deviation and coefficient of variation has been used to elucidate motor control
decrement following various pathological conditions or aging (Vaillancourt et al., 2002;
Tracy et al., 2005; Vieluf et al., 2013). However, these measures ignore the force fluctuations
over time during a continuous isometric contraction (Slifkin and Newell, 1999; Stergiou,
2004). Within the last two decades, there has been an increasing interest for the nature of
these fluctuations, as they have been theoretically linked to a deeper insight of the underlying
motor control (Lipsitz and Goldberger, 1992; Newell and Corcos, 1993; Stergiou and Decker,
2011). Specifically, quantification of the regularity and complexity of isometric force using
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entropy measures has revealed differences in the motor control of
various age groups (Slifkin and Newell, 1999; Deutsch and Newell,
2001; 2003; Challis, 2006).

While the implementation of entropy measures such as sample
entropy (SaEn) is relatively straight forward, there are several
methodological choices which can bias the outcome and
potentially invalidate the results interpretation (Yentes and
Raffalt, 2021).

SaEn requires the selection of three input parameters: the length
N of the investigated data series, the vector length m used for
comparisons across the time series, and the tolerance radius r for
determination of similar vectors (Richman and Moorman, 2000;
Yentes and Raffalt, 2021). Additionally, the recording of biological
signals includes a choice of the appropriate sampling frequency
while keeping the Nyquist theorem in mind (Hamill et al., 1997).

Substantially different methodological choices have been
reported in biomechanical and physiological literature when
applying entropy measures on isometric force recordings. This
includes sampling frequencies between 30 and 1,000 Hz, m of 2,
r of 0.1–0.2 times the standard deviation, and N of 220–5,000 data
points (Slifkin and Newell, 1999; Vaillancourt and Newell, 2003;
Challis, 2006; Rose et al., 2013; Pethick et al., 2015; Oliveira et al.,
2022; Bauer et al., 2023). These differences in methodology
potentially invalidate comparison of results and conclusion across
studies (Yentes and Raffalt, 2021). Previously, we have investigated
the consequences of different methodological choices in kinematics
signals obtained from walking and observed that both the sampling
frequency and input parameters were crucial for the analysis output
(Yentes et al., 2013; 2018; McCamley et al., 2018; Raffalt et al., 2019).
Recent discussions in the literature have also emphasized the
importance of the awareness to these methodological choices
(Hunter et al., 2021; Yentes et al., 2021).

To capture the temporal evolution of any given biological
phenomenon requires sufficient observation time for the
dynamics of the phenomenon to unfold. This is not to be
confused with data length. While data length is the number of
data points recorded, observation time is the duration (i.e., in
seconds or minutes) the dynamics of the phenomenon is
captured. For continuous signals, data length can be increased by
increasing the sampling frequency without increasing the
observation time. However, if the observation time is insufficient
to capture the dynamics of the phenomenon, increasing the
sampling frequency will not compensate for this.

To ensure comparability and validity of future studies using
SaEn on isometric force or torque signals, methodological guidelines
are needed. These guidelines should address the following topics: 1)
selection of the appropriate sampling frequency based on a power
spectral analysis to establish which frequencies contain the majority
of the information in the signal and on the operating time scale of
the biological phenomenon in question, 2) selection of appropriate
input parameters (m, r and N) to ensure relative parameter
consistency, such that changes in input parameters do not lead
to change in the between-group or between-test condition
relationship of the entropy outcomes, and 3) selection of the
appropriate observation time to capture sufficient information
about the dynamics of the biological phenomenon. Therefore, the
purpose of the present study was to determine the appropriate
methodological approach of the use of SaEn on isometric torque

signals. This was achieved by investigating 1) the effect of different
sampling frequencies, 2) the effect of different input parameters, and
3) the effect of different observation times.

Materials and methods

Subjects

Fifty male professional football (soccer) players (22.3 ± 5.3 years,
1.82 ± 0.08 m, body mass: 74.7 ± 9.0 kg) were recruited from a
convenience sample. Injured or in-recovery athletes did not
participate in the present study. This study was approved by the
local ethics committee (21/2016).

Experimental setup

The participants completed one test session during the pre-
season of 2017–2018. They were instructed not to perform strength
or flexibility training for at least 72 h before the test sessions. Upon
arrival to the laboratory, the participants were informed of the
purpose of the study and the experimental protocol. For the
experiment, they were positioned in the prone position, with the
hips in a neutral position, and the tested knee flexed at 30° (0° = full
extension). The foot of the tested limb was fixed in a foot holder,
with the ankle at 90°, which contained a force transducer (Model
STC, Vishay Precision, Malvern, PA) near the heel level to collect the
linear force perpendicular to the leg orientation. The knee flexion
force was measured at a sampling rate of 1,000 Hz using custom-
made built equipment (Figure 1) (Mendes et al., 2020; Freitas et al.,
2022). The signals were amplified (Model UA73.202, Sensor
Techniques, Cowbridge, United Kingdom), digitally converted
(USB-230 Series, Measurement Computing Corp., Norton, MA),
recorded using the DAQami software (v4.1, Measurement
Computing Corp., Norton, MA), and multiplied by the
perpendicular distance between the force transducer center and
the femoral lateral condyle, to calculate the knee flexion torque.

The participants were first familiarized with the experimental
setup and then completed a warm-up protocol that comprised of
around 20 submaximal knee flexion contractions at approximately
50% of perceived maximal intensity. The experiment first included
two maximal voluntary isometric contraction (MVIC) knee flexion
trials for both limbs with 1-min of rest in between. After 5 min rest,
the participants performed a sustained submaximal isometric knee
flexion at 20% of theMVIC level until failure. Failure was considered
when the force produced decreased 5% from the required target
contraction intensity for more than 5 s, or when the participant was
unable to continue the task. Visual feedback of the force signals was
provided and verbal encouragement was given to the participants
through the course of the fatiguing task.

Data analysis

If a participant was not able tomaintain the force for aminimum
of 5 min, the torque time series was excluded to avoid fatigue
development that would be reflected in the torque data. This
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reduced the number of included participants to 5, 6. Furthermore, to
ensure that the torque data represented a non-fatigue stage, only the
first 183 s were used for further analysis. The initial 3 s were
removed to avoid transient effects from rest-to-contraction.

The original and unfiltered torque time series sampled at
1,000 Hz and cropped to 180 s included a total of 180,000 data
points. To determine the selection of the appropriate sampling
frequency base on a power spectral analysis to establish which
frequencies contain the majority of the information in the signal
and on the operating time scale of the biological phenomenon in
question, a power spectral analysis of each of the torque time series
was completed. The 99.9% cut-off was recorded for each trial
(Table 1).

The time series were then downsampled to 750, 500, 250, 100,
50, and 25 Hz. From these, new time series were cropped with each
sampling frequency to contain either 1) a fixed observation time of
180 s with a flexible total number of data points ranging from
180,000–4,500 or 2) a fixed number of data points of 4,500 for a
flexible observation time ranging from 4.5–180 s. SaEn was
calculated from all the cropped time series using the equation
presented by Richman and Moorman (2000) withm = 2 and r = 0.2.

We then sought to determine the selection of appropriate input
parameters (m, r and N) to ensure relative parameter consistency.
Our power spectral analysis revealed a maximal frequency across all
subjects of 21.9 Hz (Table 1). For any further analysis, we used a
sampling frequency of 100 Hz following the recommendation by
Stergiou (2004) of a sampling frequency five times greater than the
highest frequency in the time series of interest. Using the time series
sampled at 100 Hz with a 180 s duration, SaEn was calculated using
combinations ofm = 2 and 3 and r = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and
0.4 times the standard deviation. Furthermore, using the time series
sampled at 100 Hz, SaEn was calculated using m = 2 and r = 0.2 for
six time series lengths of 500, 1,500, 3,000, 6,000, 9,000 and
18,000 data points.

Lastly, the selection of the appropriate observation time to
capture sufficient information about the dynamics of the
biological phenomenon was investigated. From the time series
sampled at 100 Hz and with a duration of 180 s, consecutive
windows of 5, 15, 30, 60 and 90 s were generated. SaEn was then
calculated from the two windows using m = 2 and r = 0.2 for each
window length.

Statistics

To investigate the effect of different sampling frequencies on the
SaEn, a one-way repeated measure ANOVA with sampling
frequency as independent factor and SaEn as dependent variable
was applied for both the fixed observation time condition and the
fixed number of data points condition. In case of a significant effect
of sampling frequency, a Holm-Sidak post hoc test was applied.

To investigate the effect of different input parameters r andm on
the SaEn, a two-way repeated measure ANOVA with r and m as
independent factors and SaEn as dependent variable was applied. In

FIGURE 1
Experimental setup.

TABLE 1 Power spectral density outcome.

Frequency (Hz)

Group mean of the highest frequency 11.4

Group SD of the highest frequency 5.4

95% confidence interval 9.84–12.96

Maximal frequency across participants 21.9

Minimal frequency across participants 3.7
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case of a significant effect of r or m or an r-m interaction, a Holm-
Sidak post hoc test was applied. To investigate the effect of N on
SaEn, a one-way repeated measure ANOVA with N as independent
factor and SaEn as dependent variable was applied. In case of a
significant effect of N, a Holm-Sidak post hoc test was applied.

Bland-Altman plot analysis was performed to quantify the
agreement between the SaEn values from the first and second
half of the five different observation times. The SaEn bias
(i.e., mean within-subject difference), bias SD, bias 95%
confidence intervals, limits of agreement and 95% confidence
intervals of the upper and lower limit of agreement were
calculated. Additionally, coefficient of repeatability was calculated
as the 1.96 times the square root of the standard deviation of the
within-subject difference. Low coefficient of repeatability indicates
better repeatability of the SaEn from the first to the second half of the
time series. Level of significance was set at 5%. All statistical
calculations were performed in Sigmaplot (Systat Software, Inc.
2014, version 13.0, Germany).

Results

The power spectral density analysis revealed a groupmean of the
highest frequency in the torque signals of 11.4 Hz and a maximal
frequency across all participants of 21.9 Hz (Table 1; Figure 2).

There was a significant effect of sampling frequency for both the
fixed observation time condition (Figure 3A, F-value = 227.9, p <
0.001) and the fixed number of data points condition (Figure 3B,
F-value = 95.9, p < 0.001). The post hoc tests revealed that for both
conditions, there were no differences in SaEn between the four
highest sampling frequencies. With each decrement in sampling
frequency from 250 Hz, the SaEn increased significantly (p <
0.001 for all decrement).

There was a significant r-m interaction on the SaEn
(Figure 4A, F-value = 63.5, p < 0.001). For both m = 2 and
m = 3, there was a significant decrease in SaEn with each

increment in r-value (p < 0.022 for all comparisons). There
was a significant effect of time series length on SaEn
(Figure 4B, F-value = 11.4, p < 0.001). The SaEn of the time
series with 500 data points was significantly higher compared to
the 6,000, 9,000 and 18,000 data point time series (p < 0.001 for
all comparisons). The SaEn of the time series with 1,500 data
points was significantly higher compared to the 9,000 (p = 0.023)
and 18,000 (p < 0.001) data point time series. No differences in
SaEn were observed between time series with more than
1,500 data points.

The Bland-Altman plot analysis revealed that the line of equality
was within the 95% confidence intervals of the SaEn bias for all the
five observation times (Figure 5; Table 2). The bias SD, the range of
limits of agreement and the coefficient of repeatability decreased
with increasing observation time.

Discussion

The purpose of the present study was to determine the
appropriate methodological approach of the use of SaEn on
isometric force or torque signals. We investigated 1) the effect of
different sampling frequencies 2) the effect of different input
parameters, and 3) the effect of different observations durations.

When recording biological signals, it is important to select an
appropriate sampling frequency. First of all, the Nyquist theorem
should be followed such that the sampling frequency is at least twice
the size of the highest frequency presence in the signal of interest
(Hamill et al., 1997). In the present study, we observed a maximal
frequency in the torque time series of 21.9 Hz which would require a
minimum sampling frequency of approximate 44 Hz. However, it
has been recommended to use a sampling frequency of 4–6 times the
highest frequency embedded in the signal to ensure an adequate
representation of the time domain which led us to use 100 Hz for the
later part of our analysis (Stergiou, 2004). While technological
advancements have made it possible to record force and torque
signals at higher sampling frequencies (e.g., above 1,000 Hz), this is
not necessarily advisable. When recording signals from human
movements such as force or torque, it is important to keep in
mind that the nervous system does not have infinite resolution but
modulation of muscle activity operates on a millisecond level (Lin
et al., 1997; Sinkjær et al., 2000). Sampling with too high frequency
when observing a phenomenon which evolves with low frequency
oscillations could lead to the collection of redundant information
(Yentes and Raffalt, 2021). The results of the present study suggest
that torque data should be collected with sampling frequencies of a
least 100 Hz, as lower frequencies for a fixed observation time of
180 s significantly decreases the SaEn. The results also suggest that
torque data should not be collected at sampling frequencies beyond
250 Hz, as increasing the frequency further for a fixed number of
data points of 4,500 did not change the SaEn. Thus, increasing the
sampling frequency until 100 Hz provides greater details of the
signal dynamics but increasing beyond 250 Hz does not add new
information in terms of regularity suggesting that redundant
information is collected at higher frequencies.

We have previously observed that the selection of input
parameters affects continuous variables such as the torque
collected in the present study data more than discrete variables

FIGURE 2
Power spectral density of the torque signals for each participant.
Frequencies between 5.5 and 18.5 Hz and powers between 850 and
1,550 have been omitted.
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(i.e., stride time intervals recorded from locomotion) (McCamley
et al., 2018). This emphasizes the importance of investigating the
effect of different input parameters on SaEn calculated from torque
data. Furthermore, it is important to consider the interpretation of
the vector length m. In a discrete time series, m = 2 or m =
3 represents two or three distinct observations of the
phenomenon in question e.g., walking strides or heart beats. The
recorded variable is then a time interval in seconds or a stride length
in meters. For a continuous time series, the recorded variable (e.g.,
torque or force) is collected at a specific and constant time point
given by the sampling frequency. In this case, the vector length
represents a time interval related to the sampling frequency. In the
present study, a sampling frequency of 100 Hz resulted in a vector
length ofm = 2 andm = 3 representing 20 and 30 milliseconds of the
behavior of the phenomenon of interest. For a sampling frequency of
1,000 Hz, the corresponding vectors represented 1 and
2 milliseconds of behavior. With a maximal frequency of 21.9 Hz
in the torque data, the minimum duration of oscillations within the
signals was approximately 50 milliseconds. This means that the
fastest oscillatory patterns within the signals will be detectable for
100 Hz and m = 3 because the longest duration of the compared

vectors i.e., m = 3 and m = 3 + 1 will not exceed 50 milliseconds.
However, it also means that increasing the sampling frequency will
increase the number of repeated patterns detected within each
oscillation decreasing the SaEn. This was observed until 250 Hz
suggesting that increasing the sampling frequency further did not
provide additional information regarding the regularity of the time
series.

The SaEn decreased with increases in bothm and r similar to what
we have observed in previous studies when investigating different
kinematic variables obtained from walking (Yentes et al., 2013; 2018;
McCamley et al., 2018; Raffalt et al., 2019). The significant difference
in SaEn between the 2m values did not change direction when
altering the r. This suggests relative parameter consistency when
using the range of r in the present study. When designing studies
including two or more experimental conditions or two or more
groups, it is important to test the relative parameter consistency of
between-group and between-condition differences. Thus, between-
group and between-condition differences should be consistent across
a range of input parameters and not change direction when input
parameters are altered. Because the relative input parameter
consistency for between-group and between-condition studies can

FIGURE 3
Sample entropy of the time series with six different sampling frequencies for (A) the fixed observation time of 180 s and (B) the fixed number of
4,500 data points. * indicates significant decrease in sample entropy with increment in sampling frequency.
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be highly data specific, this should always be tested and reported
(Yentes and Raffalt, 2021).

To fully capture the dynamics of any biological phenomenon, it
is crucial that the observation time allows the phenomenon to
unfold. To the best of our knowledge, there is no standardized
way of determining the appropriate observation time. However, at
least two parameters should be taken into account. First, the mean
frequency of the signals in question is the inverse of the average
duration of the oscillations of the signal. In the present study, the
mean frequency was approximately 11 Hz which gives a mean
oscillation duration of approximately 91 milliseconds. For the
range of observation times from 5 to 90 s in the present study,
this would result in between 55 and 989 oscillations, respectively. As
the range of frequencies within the signal was relative large, it is
unlikely that short observation time enables the capture of the
behavior of all types of oscillations i.e., from high frequent to low
frequent oscillations. Second, the motor control of movements relies

on incorporation of sensory input relevant to the task in question.
During the isometric contraction task, the muscle force is regulated
based on visual input from the screen informing the participants of
the target force and actual force and proprioceptive input from
muscles and tendons around the knee joint (Tracy et al., 2007).
These inputs are continuously accounted for in the generatedmuscle
force (Nielsen, 2004). However, this process has an inherent delay of
at least 40 milliseconds due to transmission time in afferent and
efferent nerves, process time in higher order neural networks and
spinal networks, electromechanical delay and rate of muscle force
incline and decline (Nielsen, 2004; 2015; Debenham and Power,
2019; Schmid et al., 2019). This means that the neural modulations
are reflected in the force oscillations below 25 Hz. Therefore, to fully
capture the dynamics of the motor control requires sufficient
observation time for these low frequency oscillations to unfold.
Based on the results of the present study, at least 30 s of observation
is required. Thus, the effect of data length for a fixed sampling

FIGURE 4
(A) Sample entropy of the time series sampled at 100 Hz for an observation time of 180 s withm = 2 or 3 and r = 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 or
0.40. * indicates significant decrease in sample entropy with increase in r for a given m. $ indicates significant difference between m for a given r. (B)
Sample entropy of the time series sampled at 100 Hz, withm = 2 and r = 0.2 and data lengths between 500 and 18,000 data points. A indicates significant
different sample entropy from the time series with 500 data point and b indicates significant different sample entropy from the time series with
1,500 data point.
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frequency of 100 Hz on the SaEn revealed that using less than
3,000 data points (equal to an observation time of 30 s) would
significantly affect the SaEn while using more than 3,000 data points
would not. Furthermore, the results from the Bland-Altman plots
indicated that the longer observation time, the better repeatability.

Together this clearly suggests the observation time should be at least
30 s long and preferably longer.

In the present study, we only included a single relative low
torque level. The use of higher torque levels would induce fatigue
earlier during the isometric contraction and thereby reduce the

FIGURE 5
Bland-Altman plot of the difference in sample entropy between the first and second window of the time series against the average of the sample
entropy from the two time series for the five different observation times. Solid horizontal line indicates sample entropy bias and dashed lines indicate
upper and lower limits of agreement.

TABLE 2 Bland-Altman analysis outcome for the comparisons of sample entropy calculated from the five different observation times. Sample entropy bias, bias SD,
bias 95% confidence intervals, limits of agreement, 95% confidence intervals of the upper and lower limit of agreement and coefficient of repeatability.

t 5 s 15 s 30 s 60 s 90 s

Bias −0.0007 −0.027 −0.039 −0.029 −0.027

SD 0.204 0.167 0.134 0.143 0.118

Bias 95% CI −0.061–0.060 −0.077–0.022 −0.079–0.001 −0.071–0.014 −0.062–0.008

Limits of agreement −0.400–0.399 −0.354–0.299 −0.300–0.227 −0.309–0.252 −0.258–0.204

Lower limit of agreement 95% CI −0.505–-0.295 −0.440–-0.268 −0.369–-0.232 −0.383–-0.235 −0.318–-0.197

Upper limit of agreement 95% CI 0.294–0.503 0.214–0.385 0.154–0.291 0.178–0.325 0.144–0.265

Coefficient of repeatability 0.885 0.800 0.716 0.741 0.673
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observation time that is feasible for valid assessment of the torque
dynamics. If at least 30 s of non-fatigued torque cannot by acquired
at a given the torque level, we do not recommend calculating SaEn
from the recorded time series. It should also be noted that results of
the present study could be affected by the relative low torque level
and the investigated muscle. Consequently, future studies should
keep in mind that the results of the present study might not be
generalizable across different torque levels or muscles. Furthermore,
only torque signals recorded during isometric contractions were
included in the present study and the generalization of the
recommendations to other signals such as electromyography or
electroencephalogram should be made with caution. We have
previously provided guidelines for the application of entropy
measures to kinematic signals from gait research (Yentes and
Raffalt, 2021); however, future studies should explore the
appropriate application of SaEn to other signals and during a
wider range of movements. As discussed above, recording data
with too high a sampling frequency can lead to the collection of
redundant information. The present study did not filter the data
prior to downsample or calculating sample entropy as this could
remove biological information (Yentes and Raffalt, 2021). However,
it should be noted that filtering can be appropriate when data is
known to contain non-biological noise. As such it could be suggested
to filter the data for higher frequencies (in this case above 5 Hz). To
the best of our knowledge no formal test of data redundancy exists,
and future work should aim at establishing this Based on the results
of the present study, we can list three recommendations for future
studies using SaEn to quantify regularity of low isometric force or
torque signals: 1) the appropriate sampling frequency is between
100 and 250 Hz, 2) between-group and/or between-condition
relative consistency of the input parameters r, m, and N should
be tested and reported as SaEn changes with change in input
parameter, and 3) the observation time should be at least 30 s to
ensure the unfolding of the phenomenon in question.
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