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Cranial neural crest cells (NCCs) are the origin of the anterior part of the face and the
head. Cranial NCCs are multipotent cells giving rise to bones, cartilage, adipose-
tissues in the face, and neural cells, melanocytes, and others. The behavior of cranial
NCCs (proliferation, cell death, migration, differentiation, and cell fate specification)
are well regulated by several signaling pathways; abnormalities in their behavior are
often reported as causative reasons for craniofacial anomalies (CFAs), which occur in
1 in 100 newborns in the United States. Understanding the pathological mechanisms
of CFAs would facilitate strategies for identifying, preventing, and treating CFAs. Bone
morphogenetic protein (BMP) signaling plays a pleiotropic role in many cellular
processes during embryonic development. We and others have reported that
abnormalities in BMP signaling in cranial NCCs develop CFAs in mice. Abnormal
levels of BMP signaling cause miscorrelation with other signaling pathways such as
Wnt signaling and FGF signaling,whichmutations in the signaling pathways are known
to develop CFAs inmice and humans. Recent Genome-Wide Association Studies and
exome sequencing demonstrated that some patients with CFAs presented single
nucleotide polymorphisms (SNPs), missense mutations, and duplication of genes
related to BMP signaling activities, suggesting that defects in abnormal BMP signaling
in human embryos develop CFAs. There are still a few cases of BMP-related patients
with CFAs. One speculation is that human embryos with mutations in coding regions
of BMP-related genes undergo embryonic lethality before developing the craniofacial
region as well as mice development; however, no reports are available that show
embryonic lethality caused by BMP mutations in humans. In this review, we will
summarize the recent advances in the understanding of BMP signaling during
craniofacial development in mice and describe how we can translate the
knowledge from the transgenic mice to CFAs in humans.
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Introduction

Craniofacial anomalies (CFAs)

Craniofacial anomalies (CFAs) are birth defects affecting the shape of the head and the
face. The incidence is approximately 1 in 100 newborns (Twigg and Wilkie, 2015; Sakai
and Trainor, 2016; Wei et al., 2016; Kitami et al., 2018). Orofacial cleft (1:700) and
craniosynostosis (1:2000) are the most common CFAs (Morriss-Kay and Wilkie, 2005;
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Nasreddine et al., 2021). Approximately 70% of patients with
orofacial cleft and 85% of patients with craniosynostosis are
non-syndromic, with no other abnormalities in the patients,
and most have no other affected family members (Timberlake
et al., 2016; Howe et al., 2018). Therefore, it has been unclear
whether genetic or non-genetic reasons cause that, and caused by
single gene mutation or combined effect of several genes. The
current primary therapeutic option for orofacial cleft and
craniosynostosis is invasive surgeries, which decrease their
quality of life (Esparza and Hinojosa, 2008; Seruya et al., 2011;
Shkoukani et al., 2014; Opriş et al., 2022; Spazzapan et al., 2022).
Therefore, defining the molecular and cellular pathogenesis of
CFAs could facilitate the strategies for the early identification,
prevention, and treatment of these developmental diseases. Cranial
neural crest cells (NCCs) are the origin of the face and the anterior
part of the head (Mishina and Snider, 2014). Cranial NCCs are
multipotent cells giving rise to osteoblasts, chondrocytes,
adipocytes, melanocytes, odontoblasts, neural cells, glia,
pituitary hormone-producing cells and others (Le Douarin
et al., 2004; Ishii et al., 2012; Ueharu et al., 2017; Srinivasan
and Toh, 2019). Defects of migration, proliferation, cell death,
differentiation, and cell fate specification in cranial NCCs are often
reported as causative reasons for CFAs (Yu et al., 2005; Teng et al.,
2008; Gu et al., 2014). Thus, understanding the regulation
mechanisms of cranial NCCs would provide new therapeutic
options for CFAs. Two transgenic mice, Wnt1-Cre mice and
P0-Cre mice, are largely used for tracing NCCs and NC-specific
activation or deletion of targeted genes by the Cre-LoxP system
(Danielian et al., 1998; Yamauchi et al., 1999). Both transgenic
mice label cranial NCCs in a similar manner, but due to the small
differences in the expression patterns, resulting mutant mice
sometimes show phenotype differences between Wnt1-Cre mice
and P0-Cre mice (Wang et al., 2011; Kulkarni et al., 2018; Zhang
et al., 2022; Ueharu et al., 2023b). Detailed comparison between
2 Cre transgenes using R26-LacZ reporter mice revealed that
Wnt1-Cre activity initially found at the midbrain region while
that of P0-Cre is found at the hindbrain region (Chen et al., 2017).
Wnt1 (not Wnt1-Cre) expression is more abundant in
premigratory neural crest cells that post-migratory cells
(Echelard et al., 1994), while P0-Cre proteins present at the
19 somite stage (Chen et al., 2017). Expression of endogenous
P0 gene during neural crest development is not available. Taken
together, these differences may result similar but unique
phenotypes.

Bone morphogenetic proteins (BMPs)

Bone morphogenetic proteins (BMPs) are members of the
Transforming Growth Factor Beta superfamily. Upon BMP
ligands (e.g., BMP2, BMP4, BMP7) binding, BMP receptors
form hetero-multimers consisting of BMP type II receptors
(BMPR2 and ACVR2A and ACVR2B) and BMP type I
receptors (BMPR1A, BMPR1B, ACVR1, and ACVRL1) then
transduce the signaling through phosphorylation of SMAD1/5/
9 (SMAD-dependent pathway) or TAK1/p38 MAP kinases
(SMAD-independent pathway) (Wu et al., 2016; Gomez-
Puerto et al., 2019). The signaling level of BMPs is well

regulated by a BMP antagonist Noggin and inhibitory
SMAD6/7 (Figure 1).

Bone morphogenetic proteins (BMPs) were originally
discovered as bone inducers (Urist, 1965). Interestingly, recent
reports published by our group and others demonstrated that
BMP signaling plays pleiotropic roles in embryogenesis, including
craniofacial development, by regulating proliferation, cell death,
differentiation, and cell fate specification, in addition to
osteogenesis (Komatsu et al., 2013; Graf et al., 2016; Grafe et al.,
2018; Yang et al., 2021a). Many studies have shown that loss of
function mutation or gain of function mutation of BMPs, BMP
receptors, and downstream target genes for BMP signaling in mice
develops CFAs; however, only a few case reports of human patients
with BMP mutations are available. In this review, we will describe
that transgenic mice targeted for BMP signaling and BMP-
downstream genes that develop CFAs. We will further discuss a
potential reason of the discrepancy in why it is rare to see human
CFAs patients with BMP mutations while many transgenic mice
develop CFAs.

Orofacial cleft

Orofacial cleft (cleft lip, cleft palate, and midfacial cleft) is the
most common CFAs that show splitting lip and/or splitting shelves
of the mouth (palate) (Shkoukani et al., 2014). Because of the
abnormal structures, patients with an orofacial cleft frequently
have difficulties feeding, swallowing, and breathing (Warren
et al., 1992; Reid, 2004; Duarte et al., 2016). Serial invasive

FIGURE 1
BMP signaling and BMP-related genes. Once BMP ligands bind to
BMP receptor type 2 (BMPR2/ACVR2A/ACVR2B) and BMP receptor
type 1 (BMPR1A/BMPR1B/ACVR1/ACVRL1) complexes, type
1 receptors are phosphorylated by type 2 receptors.
Subsequently, BMP type 1 receptors phosphorylate SMAD1/5/
9 proteins that transduce signals to the nucleus with SMAD4 protein to
alter expressions of downstream target genes (e.g., Msx2 and Dkk1).
Inhibitory SMAD6 and SMAD7 prevent the phosphorylation and thus
nuclear transition of SMAD1/5/9 proteins. Noggin is an extracellular
antagonist for the BMP ligands to suppress BMP signaling.
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surgeries after birth are the only therapeutic options (Srinivasan and
Toh, 2019), which are burdens for the patients and increase medical
expenses; thus understanding molecular mechanisms of
pathological craniofacial development could facilitate the
strategies for early identification and prevention of orofacial cleft,
which will provide us novel therapeutic options such as taking a drug
to the pregnant mothers to prevent developing orofacial cleft, in
addition to surgeries.

The Pierre-Robin sequence is a birth defect characterized by
an underdeveloped lower jaw (Hsieh and Woo, 2019). The
underdeveloped lower jaw results in bringing the tongue back
and preventing closure of the palate. As a result of the smaller
jaw, approximately 85% of Patients with the Pierre-Robin
sequence develop a cleft palate (Hsieh and Woo, 2019). Bmp7-
deficient mice (Bmp7Δ/Δ mice) develop cleft palates with the
shorter Meckel’s cartilage (Kouskoura et al., 2013). Their ex
vivo culture of palatal shelves showed that palatal shelves from
Bmp7Δ/Δ mice retain the ability to fuse when placed in close
proximity (Kouskoura et al., 2013). This fact may suggest that the
shorter Meckel’s cartilage by Bmp7 deletion could develop a cleft
palate by mimicking the Pierre-Robin sequence. However, ex vivo
culture of the mutant embryos after removal of the mandibular,
the tongue and the brain show poor shelf elevation and failure to
fuse, suggesting directing involvement of BMP7 function in
palatial shelf elevation (Kouskoura et al., 2013). Palatal
mesenchyme-specific Noggin expressing mice (Osr2-Cre;pMes-
Noggin mice) develop cleft palate with lower proliferation and
suppressed osteogenic condensation at the palate (Li et al., 2021).
On the other hand, neural crest (NC)-specific deletion of Bmp2 in
mice (Wnt1-Cre;Bmp2fl/fl mice) develops cleft palate as a
consequence of the failure of tongue descent (Chen et al.,
2019). Wnt1-Cre;Bmp2fl/fl mice showed lower cell proliferation
in the mandibular and the Meckel’s cartilage, but not in the
anterior and posterior palate, than that in control mice, along
with the failure of the tongue descent. These studies suggest that
downregulation of BMP signaling causes lower proliferation and
suppressed differentiation in the craniofacial tissues that causes
miscoordinations of craniofacial development, resulting in
developing orofacial cleft, but its etiology may not be same as
that of the Pierre-Robin Sequence.

On the other hand, NC-specific expression of constitutively
activated Bmpr1a (caBmpr1a, the kinase activity is ligand-
independent due to the Q233D mutation) in mice (Wnt1-Cre;
pMes-caBmpr1a mice) also develop cleft lip and cleft palate.
Wnt1-Cre;pMes-caBmpr1a mice showed reduced proliferation
and ectopic cartilage formation at the palatal mesenchyme (Li
et al., 2013). NC-specific deletion of Tak1 in mice (Wnt1-Cre;
Tak1fl/fl mice) develops cleft palate association with a higher level
of fibroblast growth factor (FGF) signaling that is a known causative
reason for Apert syndrome, a subset of patients with the syndrome
develops cleft palate (Song et al., 2013; Willie et al., 2022). We found
that NC-specific expression of caBmpr1a with deletion of Tak1 in
mice (P0-Cre;caBmpr1afl/+;Tak1fl/fl mice) develops cleft palate while
P0-Cre;caBmpr1afl/+mice and P0-Cre;Tak1fl/flmice did not develop a
cleft palate. (Liu et al., 2018). Although the phenotype differences
between us and other laboratories might be developed by the
difference of Wnt1-Cre mice and P0-Cre mice, it is reasonable to
speculate that unbalance between the SMAD-dependent and

SMAD-independent pathways in cranial NCCs may be a reason
for an orofacial cleft in P0-Cre;caBmpr1afl/+;Tak1fl/fl mice. We
recently reported that two transgenic mouse lines expressing
constitutively activated Acvr1 (caAcvr1, Acvr1 with the Q207D
mutation) in NCCs in mice (P0-Cre;caAcvr1-L35 line and P0-Cre;
caAcvr1-A11 line) develops midfacial defects including orofacial
cleft (Yang et al., 2021a; Yang et al., 2021b). Interestingly, the
facial phenotypes between P0-Cre;caAcvr1-L35 line and P0-Cre;
caAcvr1-A11 line are different. There are still questions why three
transgenic mice, i.e., caBmpr1a mice, caAcvr1-L35 mice, and
caAcvr1-A11 mice crossed with P0-Cre mice, showed different
phenotypes. We found that the phosphorylation level of SMAD1/
5/9 differs between caAcvr1-L35 mice and caAcvr1-A11 mice (Yang
et al., 2021b), which may be a reason for similar but distinct
phenotypes between these two lines. Another possibility is that
because these mice have been generated through random
transgenesis, their expression patterns may be different
depending on the genomic locus where the transgenic constructs
are integrated. The third possibility is intrinsic differences between
type 1 receptors. For example, ACVR1 is known to bind to activins
without signal transduction, while BMPR1A does not bind to
activins (Alessi Wolken et al., 2018). Phosphorylation of Smad1/
5/9 is the common downstream event but there may be unique
functions of each receptor for signal transduction, which is poorly
understood.

Taken together, craniofacial tissues coordinate to develop the
craniofacial region, and abnormal SMAD-dependent pathways and
SMAD-independent pathways disrupt the orchestration, causing
CFAs such as orofacial cleft.

Craniosynostosis

Craniosynostosis is another common CFAs characterized by
abnormal shapes of the skull and the face caused by premature
fusions of cranial sutures. Cranial sutures consist of mesenchymal
tissues housing stem/progenitor cells to support the growth of
infant’s bones. Premature fusion of cranial sutures results in an
imbalance of growth between the skull and brain leading to an
increase of intracranial pressure and may secondarily develop
neurologic issues such as deafness (Swanson and Mishina, 2021).
It has been thought that excess osteogenic differentiation of suture
mesenchymal cells causes craniosynostosis. As the name implies,
BMP signaling prompts osteogenic differentiation. Many scientists
focused on the relation between craniosynostosis and BMP
signaling; however, recent studies have shown that BMP
signaling develops craniosynostosis by disruptions of cranial
NCCs and suture stem cells, in addition to prompt osteogenic
differentiation of osteoblasts.

In 1993, a gain of function mutation of MSX2, a downstream
target of BMP signaling, was found in human patients with the
Boston-type craniosynostosis (Jabs et al., 1993). Higher
Msx2 expression at the middle of the sagittal suture in mice
developed overgrown parietal bones (Liu et al., 1999).
Interestingly, NC-specific deletions (cKO) of three out of four
alleles in Msx1/Msx2 in mice (Wnt1-Cre;Msx1cKO/+;Msx2cKO/cKO or
Wnt1-Cre;Msx1cKO/cKO;Msx2cKO/+) develop large calvarial defects in
the frontal bones as expected; however, NC-specific deletions of all
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four alleles in Msx1/Msx2 in mice (Wnt1-Cre;Msx1cKO/cKO;
Msx2cKO/cKO) develop ectopic bones at the calvaria (Roybal et al.,
2010). Tamoxifen-inducible deletions of Msx1/Msx2 in mice (Cagg-
CreER™; Msx1cKO/cKO;Msx2cKO/cKO mice) demonstrated that
Msx1 and Msx2 at E10.5 to E11.5 are required to suppress the
ectopic bone formation while those at E11.5 to E12.5 are required to
prompt calvarial formation (Roybal et al., 2010). These results
suggest that MSX proteins during calvarial development control
two distinct biological processes; one is to suppress the cell fate of
neural crest cells towards osteogenic differentiation and the other is
to prompt osteogenic differentiation once the progenitor cells
commit to osteogenic lineage.

An antagonist of BMP signaling Noggin is expressed in the
patent sutures (Warren et al., 2003). Elevation of FGF signaling, a
causative reason for some craniosynostosis such as Crouzon
syndrome and Apert syndrome, suppressed Noggin expression
in the coronal suture in mice (Warren et al., 2003). Inhibition of
Smad7 expression in the calvaria results in premature fusion of
the coronal suture (Zhou et al., 2014). Smad6 and Smad7 are
known as inhibitory Smads inhibiting signaling pathways of the
TGFβ superfamily (Massagué and Chen, 2000). Protein levels of
FGF10 and phosphorylated ERK1/2, a transducer of FGF
signaling, were elevated by siSmad7-treated suture cells, in
which TGFβ signaling level was augmented while BMP
signaling level was not examined in this experiment (Zhou
et al., 2014). We previously reported that P0-Cre;caBmpr1a
mice showed elevation of FGF signaling; however, unlikely the
case of Crouzon syndrome, the elevated FGF signaling does not
directly involve in craniosynostosis (Komatsu et al., 2013).
Suggestively, it is reported that during calvarial development
BMP signaling negatively regulates levels of FGF signaling
(Maruyama et al., 2010; Maruyama et al., 2017). When BMP
signaling was enhanced in Axin2 expressing cells, resulting mice
show premature suture fusion with ectopic cartilage, but FGF
signaling is suppressed (Maruyama et al., 2017). Taken together,
these suggest that augmented BMP signaling is a primary reason
for craniosynostosis in these mouse models. However, there is a
sharp contrast about the levels of FGF signaling between two
models, suggesting that mechanisms of how BMP signaling
regulates FGF signaling is developmental stage and cell type-
specific manner. In our P0-Cre;caBmpr1a mice, an elevation of
BMP signaling in neural crest cells starts around E8.0-E8.5
(Komatsu et al., 2013; Ueharu et al., 2023b); however,
Maruyama et al. designed to elevate BMP signaling in Axin2-
expressing suture stem cells during late embryonic stage to
newborn stage by Doxycycline, and they observed elevated
BMP signaling activity at postnatal day 3 (Maruyama et al.,
2017). The differences in cell type and developmental stage
between the two animal models may generate different
outcomes in FGF signaling.

We reported that NC-specific expression of caBmpr1a in
mice (P0-Cre;caBmpr1a mice) develops premature fusion of
the anterior frontal suture and the naso-premaxillary suture,
which leads to craniosynostosis (Komatsu et al., 2013; Pan
et al., 2017; Kramer et al., 2018; Liu et al., 2018; Ueharu et al.,
2023b). We found elevated cell death in cranial NCCs in P0-Cre;
caBmpr1a mice, and inhibition of p53-induced cell death
partially rescued premature suture fusion (Komatsu et al.,

2013; Hayano et al., 2015; Ueharu et al., 2023a; Ueharu et al.,
2023b). Of note, ectopic cartilage is developed only in the sutures
which prematurely fused, and during the fusion process, the
ectopic cartilage is replaced into bone nodules (Ueharu et al.,
2023b). It is reported that global knockout of Axin2 with
heterozygous Fgfr1 develops premature suture fusion in the
presence of ectopic cartilage in sutures (Maruyama et al.,
2010). Together with a follow up report, it is suggested that an
imbalance between BMP and FGF signaling may alter cell fate of
cranial suture mesenchymal cells to develop ectopic cartilage
leading to premature fusion of cranial sutures (Maruyama et al.,
2017). Thus, we propose that augmentation of BMP signaling in
cranial NCCs prompts them towards chondrogenic fate and that
results in premature suture fusion through endochondral
ossification (Figure 2). In the future, it is an essential effort to
identify how cell death and ectopic cartilage formation
cooperatively or independently causes craniosynostosis.
Interestingly, the premature suture fusion patterns between
P0-Cre;caBmpr1a mice and Wnt1-Cre;caBmpr1a mice are
different, which the anterior frontal suture commonly causes
premature fusion in both P0-Cre;caBmpr1a mice and Wnt1-Cre;
caBmpr1a mice while the naso-premaxillary suture causes
premature fusion only in P0-Cre;caBmpr1a mice (Ueharu
et al., 2023b). As we discussed, P0-Cre mice and Wnt1-Cre
mice showed similar but not identical recombination patterns.
Therefore, utilizing the two transgenic mice could facilitate to
identify the pathological mechanisms for craniosynostosis by
BMP signaling. On the other hand, Bmpr1a cKO mice
(Axin2Cre−Dox;Bmpr1afl/fl) develop craniosynostosis (Maruyama
et al., 2021). Self-renewal and osteogenic capability of suture
mesenchymal stem cells were dramatically reduced in Bmpr1a
cKO mice. These results suggest that defects of stem cells in
sutures are one of the reasons for craniosynostosis rather than
excess osteogenic differentiation by BMP signaling. The insights
are letting us shift the strategies to the next step, which is how the
stemness of suture stem cells is controlled, and whether we can
control their stemness in a timely manner by genetic and
epigenetic methods.

Taken together, both loss of and gain of function mutations of
BMP signaling develop craniosynostosis and orofacial cleft. These
results suggest that BMP signaling plays a critical role in calvarial
development depending on stages of development by fine-tuning in
proliferation, cell death, differentiation, and cell fate specification of
cranial NCCs.

Human cases

We described that many of BMP signaling-targeted transgenic
mice develop CFAs. However, there are few reports regarding BMP-
related CFAs in human. Here, we describe human cases of BMP-
related CFAs and discuss how knowledge from animal models can
help understanding etiology of BMP-related CFAs in human.

Duplication of human chromosome 10 q22.3q23.2, which
includes BMPR1A, develops a hypertelorism (van Bon et al.,
2011). Micro deletion of 20p12.3, including BMP2, develops cleft
lip and palate (Sahoo et al., 2011). BMP4 polymorphisms are found
in patients with cleft lips w/wo cleft palate (Li et al., 2017). Those
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reports may suggest that defects in BMP signaling develop CFAs in
humans. In cases of mice, global loss of function mutations and gain
of function mutations in BMP ligands, BMP receptors, and BMP-
related genes causes embryonic lethal at the early embryonic stage
(Mishina et al., 1995; Winnier et al., 1995; Zhang and Bradley, 1996;
Mishina et al., 1999). It is reasonable to speculate that a significant
change in BMP signaling activity may also cause lethality in human
subjects. Recently, it has been reported that homozygous missense
mutation of BMPR1A (results in amino acid substitution of
BMPR1AR406L) develops brachycephaly with unilateral coronal
craniosynostosis in humans with a slight elevation of phospho-
SMAD levels (Russell et al., 2019). Mutations in ACVRL1
(ACVRL1V228I, kinase domain) and ACVR2A (ACVR2AT63A,
BMP7 binding site) are found in patients with lambdoid
craniosynostosis (Timberlake et al., 2022). Despite a lack of
experimental evidence, it is possible to speculate that these two
mutations alter levels of BMP signaling. These results suggest that
slight elevation or slight suppression of BMP signaling in humans
develop CFAs otherwise they cause embryonic lethal at an early
embryonic stage.

Recent reports focusing on patients with non-syndromic
craniosynostosis showed that single nucleotide polymorphisms
(SNPs) were found in a Smad6 exon and a putative enhancer
region of BMP2, and frameshift mutations in Smad6 were found
(Justice et al., 2012; Komatsu and Mishina, 2016; Timberlake
et al., 2016; Timberlake et al., 2018). SMAD6 is an inhibitory
SMAD, that inhibits the phosphorylation of SMAD1/5/9 (Estrada
et al., 2011). As discussed above, patients with unilateral coronal
craniosynostosis slightly elevated the phospho-SMAD1/5/9 level
(Russell et al., 2019). Based on the knowledge from animal

studies, it is reasonable to speculate that mutations in
regulatory sequences may slightly alter levels of wild-type
proteins, which may lead to pathologic conditions. From that
point of view, the fact that a limited portion of human subjects
with the SNPs in the putative enhancer region of BMP2 develops
CFA while all patients who also have mutations in a SMAD6 exon
develop craniosynostosis eloquently demonstrate small increase
of BMP signaling is critically involved in etiology of CFAs in
human.

There are still uninvaded niches, especially, why missense or
nonsense mutations in genes related to BMP signaling are rarely
found in patients with CFAs. In the future, it is an essential effort to
analyze BMP mutations in preterm and stillbirth babies. It is also
essential to identify gene mutations in patients with non-syndromic
CFAs. Genome-wide association studies (GWAS) and exome
sequencing are powerful tools to determine whether they have
mutations in BMP ligands, BMP receptors, Smads, noncanonical
signaling of BMP signaling, and downstream target genes of BMP
signaling, especially identifying SNPs in regulatory regions. We also
need to examine whether these mutations change signaling levels of
BMP signaling by testing the phosphorylation of SMAD1/5/9 and
non-SMAD signaling levels, which is less understood at this
moment. These efforts could provide novel therapeutic options
for non-syndromic patients with CFAs.

Author contributions

HU and YM contribute to the conception and design of the
review. HU wrote the manuscript draft and YM reviewed and edited

FIGURE 2
Augmentation of BMP signaling in cranial neural crest cells develops craniosynostosis through endochondral ossification due to cell fate switching
towards chondrogenic fate. Enhanced BMP signaling alters cell fate of cranial neural crest cells towards chondrogenic fate at early embryonic stages
along with excess cell death leading to ectopic cartilage formation in the sutures, where cause premature suture fusion. These data suggest that the
premature fusion of cranial sutures is caused by endochondral ossification prompted by ectopically formed cartilage.
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