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The present study aimed to investigate sex differences in measures of cardiac
chronotropy and heart rate variability (HRV) in 132 young adult wild-type
Groningen rats (n = 45 females). Electrocardiographic signals were recorded
for 48 h in freely moving rats to quantify heart rate (HR) and inter-beat interval
(IBI) as measures of cardiac chronotropy, and time- and frequency-domain HRV
parameters as physiological readouts of cardiac vagal modulation. Females
showed greater vagally-mediated HRV despite having higher HR and shorter
IBI than males during undisturbed conditions. Such differences were evident i)
at any given level of HRV, and ii) both during the 12-h light/inactive and 12-h dark/
active phase of the daily cycle. These findings replicate the paradoxical cardiac
chronotropic control reported by human meta-analytic findings, since one would
expect greater vagally-mediated HRV to be associated with lower HR and longer
IBI. Lastly, the association between some HRV measures and HR was stronger in
female than male rats. Overall, the current study in young adult rats provides data
illustrating a sex-dependent association between vagally-mediated HRV and
indexes of cardiac chronotropy. The current results i) are in line with human
findings, ii) suggest to always consider biological sex in the analysis and
interpretation of HRV data in rats, and iii) warrant the use of rats for
investigating the neuro-hormonal basis and temporal evolution of the impact
of sex on the association between vagally-mediated HRV and cardiac
chronotropy, which could inform the human condition.
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1 Introduction

It is widely known that parasympathetic (vagal) modulation exerts a negative
chronotropic effect on the heart by slowing spontaneous depolarization of the
pacemaker cells in the sinoatrial node (Bartos et al., 2015). Cardiac vagal modulation
can be indirectly assessed through analysis of heart rate variability (HRV), as shown by
pharmacological studies suggesting that vagal influences to sinoatrial node activity are
responsible for HRV within the respiratory frequency band (McCabe et al., 1985; Pagani
et al., 1986; Japundzic et al., 1990). Therefore, the association of respiratory-linked HRVwith
vagal influence as its putative mechanism has led to the use of HRV metrics as an
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approximation of cardiac vagal modulation (Laborde et al., 2017).
Thus, one would expect greater vagally-mediated (vm) HRV to be
associated with lower heart rate (HR) and longer inter-beat interval
(IBI). However, in humans there is an apparent sex paradox in the
relationship between resting measures of vmHRV and indexes of
cardiac chronotropy. Specifically, meta-analytic findings showed
women to have greater vmHRV and, paradoxically, higher HR
and lower IBI compared to men (Koenig and Thayer, 2016).
Further, a recent study conducted on a large sample (n = 628) of
young adults demonstrated stronger associations between resting
measures of vmHRV and both HR and IBI in women than man
(Williams et al., 2022). According to the authors, this finding
suggests that vagal modulation (as indexed by vmHRV) is of
greater impact on cardiac chronotropic control (i.e., HR and IBI)
in women compared to men, which may be due to the effects of sex
hormones, such as estradiol, on the sensitivity to the cholinergic
neurotransmitter acetylcholine (ACh) (Du et al., 1994; Dart et al.,
2002). Thus, given the popularity and feasibility of HRV research
nowadays, they recommended considering gender as a fundamental
covariate in HRV research (Koenig and Thayer, 2016; Williams
et al., 2022).

The use of HRV as a non-invasive physiological read-out of
cardiac vagal modulation has become popular also in rodent
research to increase the knowledge of several (patho)physiological
processes (e.g., Wood et al., 2012; Lee et al., 2013; Carnevali and
Sgoifo, 2014; Chuang et al., 2017; Morais-Silva et al., 2019). Yet,
much uncertainty remains in the translational relevance of the
results. One of the most important criticisms concerns the fact
that sympatho-vagal contributions to cardiac chronotropy may vary
significantly between humans and rodents. For example, in humans
resting HR is largely determined by vagal modulation (Tan et al.,
2009), while in mice and rats vagal contributions to resting HR seem
less predominant (Japundzic et al., 1990; Ishii et al., 1996; Gehrmann
et al., 2000; Carnevali and Sgoifo, 2014; Axsom et al., 2020).
Therefore, one may argue that rodent-based findings on resting
measures of vmHRV have little translational relevance for the
human condition. Nevertheless, several studies have reported that
in rodents, like in humans, resting measures of vmHRV i) decline
with advancing age (Rossi et al., 2014; Piantoni et al., 2021), ii) may
be important predictors of ventricular arrhythmic risk (Carnevali
et al., 2019), iii) are influenced by environmental factors such as
stress exposure (Grippo et al., 2002; Wood et al., 2012), and iv) are
associated with specific behavioral phenotypes (e.g., Grippo et al.,
2002; Wood et al., 2012; Carnevali et al., 2013a; Carnevali et al.,
2014). Importantly, most of these studies have been conducted on
male rodents, and none has investigated the potential impact of
biological sex on vmHRV and its association with indexes of cardiac
chronotropy in freely moving rodents. Such an investigation would
be useful for providing further support to the translational value of
HRV findings in rodent models and for gaining new knowledge on
sex differences in cardiac chronotropic control. Therefore, in the
present study we assessed measures of HRV and cardiac
chronotropy from 24-h radiotelemetric ECG recordings in young
adult male and female rats. Based on human findings (Koenig and
Thayer, 2016; Williams et al., 2022), we hypothesized that i) female
rats would show greater vmHRV and, paradoxically, higher HR -
and lower IBI - than male rats, and that ii) the association between
vmHRV and HR/IBI would be stronger in female than male rats.

2 Materials and methods

2.1 Animals

Three-month-old wild-type Groningen rats were considered
for the present investigation. This rat strain, originally derived
from the University of Groningen (Netherlands), is currently
bred at the University of Parma in climate-controlled rooms, with
a 12-h light/dark cycle (lights on at 7 p.m.) and ad libitum food
and water. Data were pooled across seven studies conducted
within our lab (Carnevali et al., 2012; Carnevali et al., 2013a;
Carnevali et al., 2013b; Carnevali and Sgoifo, 2014; Carnevali
et al., 2020; Andolina et al., 2021; and one ongoing study). There
were 87 males and 45 females available for the analysis. Each
study was approved by the Italian legislation on animal
experimentation (D.L. 04/04/2014, n. 26, authorization of the
ongoing study n.473/2022-PR).

2.2 ECG recordings and analysis

In each experiment, rats were implanted under anesthesia with
radiotelemetric transmitters (TA11CTA-F40, Data Sciences
International, St. Paul, MN) for recordings of ECG signals
(sampling frequency 1,000 Hz). The transmitter body was placed
in the abdominal cavity; one electrode was fixed to the dorsal surface
of the xyphoid process and another electrode was placed in the
anterior mediastinum close to the right atrium, according to the
previously described procedure (Sgoifo et al., 1996). Animals were
allowed a 2-week recovery period before the beginning of ECG
recordings.

For the analysis of ECG signals, we considered 2-min segments
recorded every hour for two consecutive days during undisturbed
conditions and before the execution of any other experimental
procedure (e.g., stress protocols) adopted in the original studies.
Initially, each raw ECG segment was visually inspected to ensure
that all R-waves were correctly detected. Those parts of ECG traces
which exhibited recording artifacts or arrhythmias were discarded
without substitution and excluded from further analysis. ECG
segments were then analyzed for the present investigation using
ChartPro 5.0 software (ADInstruments, Sydney, Australia). For each
2-min segment, mean HR (reported in beats per minute, bpm), IBI
(ms), and time- and frequency-domain parameters of HRV were
quantified. In the time-domain, we considered the standard
deviation of IBIs (SDNN, ms), which reflects both vagal and
sympathetic influences, and the root mean square of successive
beat-to-beat interval differences (RMSSD, ms), which reflects vagal
regulation of HR. For spectral (frequency-domain) analysis of HRV,
a power spectrum was obtained with a fast Fourier transform-based
method (Welch’s periodogram: 256 points, 50% overlap, and
Hamming window). We considered the power (ms2) of the low
frequency band (LF, 0.2–0.75 Hz), which reflects both vagal and
sympathetic influences, and the power (ms2) of the high frequency
band (HF, 0.75–2.5 Hz), which reflects vagal regulation of HR. In
sum, measures of cardiac chronotropy included HR and IBI and
measures of HRV included RMSSD and HF as indexes of vagal
modulation and SDNN and LF as indexes of both sympathetic and
vagal influences. HR, IBI, and HRV data were averaged to obtain 24-
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h values and 12-h values for the light and dark phases of the daily
cycle.

2.3 Statistical analysis

All statistical analyses were performed using the IBM SPSS
statistical package (version 28). The normal distribution of
variables was checked by means of the Kolmogorov–Smirnov

test. Significantly skewed variables, including SDNN, RMSSD, LF
and HF were log transformed (ln) to fit assumptions for linear
analyses.

A series of Student’s t-tests for independent samples were
applied to test potential differences between male and female rats
on all variables. Zero-order correlations (Pearson’s r) were
computed to investigate the relationship between HRV
parameters and measures of cardiac chronotropy in the full
sample and, separately, in the two sexes. Sex differences in

TABLE 1 Mean differences between male and female rats on 24-h values and on 12-h values for the light (inactive) and dark (active) phases of the daily cycle.

Males (n = 87) Females (n = 45) t p d

HR (bpm) 24-h 344.1 ± 27.1 362.5 ± 21.9 −3.93 <0.001 −0.72

HR (bpm) 12-h light 326.4 ± 29.0 346.6 ± 22.9 −4.01 <0.001 −0.74

HR (bpm) 12-h dark 361.5 ± 29.8 378.5 ± 23.6 −3.32 <0.001 −0.61

IBI (ms) 24h 177.4 ± 15.0 168.1 ± 10.1 4.23 <0.001 0.69

IBI (ms) 12-h light 186.1 ± 18.1 175.6 ± 11.3 4.07 <0.001 0.65

IBI (ms) 12-h dark 168.9 ± 15.3 160.7 ± 10.3 3.64 <0.001 0.59

SDNN (ms) 24-h 6.65 ± 1.17 7.71 ± 1.56 −3.89 <0.001 −0.78

SDNN (ms) 12-h light 6.93 ± 1.33 8.02 ± 1.68 −3.57 <0.001 −0.73

SDNN (ms) 12-h dark 6.37 ± 1.31 7.40 ± 1.58 −3.62 <0.001 −0.72

(ln)SDNN 24-h 1.88 ± 0.19 2.02 ± 0.22 −3.53 <0.001 −0.71

(ln)SDNN 12-h light 1.92 ± 0.20 2.06 ± 0.22 −3.40 <0.001 −0.68

(ln)SDNN 12-h dark 1.83 ± 0.21 1.98 ± 0.24 −3.29 <0.001 −0.66

RMSSD (ms) 24-h 2.89 ± 0.71 3.30 ± 0.82 −3.04 0.003 −0.56

RMSSD (ms) 12-h light 3.06 ± 0.83 3.45 ± 0.92 −2.47 0.015 −0.45

RMSSD (ms) 12-h dark 2.71 ± 0.68 3.15 ± 0.84 −3.24 0.002 −0.59

(ln)RMSSD 24-h 1.03 ± 0.25 1.16 ± 0.30 −2.59 0.011 −0.48

(ln)RMSSD 12-h light 1.08 ± 0.27 1.20 ± 0.31 −2.18 0.031 −0.40

(ln)RMSSD 12-h dark 0.97 ± 0.26 1.11 ± 0.31 −2.76 0.007 −0.51

LF (ms2) 24-h 2.45 ± 1.42 4.13 ± 2.12 −4.79 <0.001 −1.00

LF (ms2) 12-h light 2.74 ± 1.69 4.34 ± 2.40 −3.97 <0.001 −0.81

LF (ms2) 12-h dark 2.15 ± 1.35 3.92 ± 2.23 −4.87 <0.001 −1.04

(ln)LF 24-h 0.74 ± 0.56 1.23 ± 0.73 −4.24 <0.001 −0.78

(ln)LF 12-h light 0.83 ± 0.62 1.26 ± 0.74 −3.50 <0.001 −0.64

(ln)LF 12-h dark 0.60 ± 0.59 1.14 ± 0.78 −4.52 <0.001 −0.83

HF (ms2) 24-h 3.23 ± 1.66 4.07 ± 1.94 −2.58 0.011 −0.47

HF (ms2) 12-h light 3.74 ± 2.20 4.59 ± 2.49 −2.01 0.046 −0.37

HF (ms2) 12-h dark 2.73 ± 1.42 3.54 ± 1.76 −2.88 0.005 −0.53

(ln)HF 24-h 1.05 ± 0.51 1.26 ± 0.61 −2.11 0.037 −0.39

(ln)HF 12-h light 1.17 ± 0.54 1.36 ± 0.64 −1.74 0.085 −0.32

(ln)HF 12-h dark 0.87 ± 0.52 1.11 ± 0.64 −2.15 0.024 −0.42

Note. Data are reported as mean ± SD., Independent samples t-test include both t- and p-values in addition to Cohen’s d. Abbreviations: HR, heart rate; IBI, inter-beat interval; SDNN, standard

deviation of IBIs; RMSSD, root mean square of successive beat-to-beat interval differences; LF, low frequency power (0.2–0.75 Hz); HF, high frequency power (0.75–2.5 Hz); ln, natural

logarithm.
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correlation coefficients were tested using Fisher’s r-to-z
transformation (Steiger, 1980).

Then, based on (Williams et al., 2022), the SPSS macro
“PROCESS” was used to test if sex moderated the relationship
between HRV indexes and cardiac chronotropy. Specifically,

“Model 1” was used to test the interactive effect of 24-h HRV
measures (independent variable) and sex (moderator, 1 = males, 2 =
females) on 24-h HR values. Conditional effects were used to
determine the differential relationship between male and female
rats on the association between 24-h HRV parameters and 24-h HR

FIGURE 1
Box plots for 24-h values of heart rate (A), inter-beat interval (IBI, (B)), standard deviation of IBIs (SDNN, (C)), rootmean square of successive beat-to-
beat interval differences (RMSSD, (D)), low frequency power (LF, 0.2–0.75 Hz; (E)), and high frequency power (HF, 0.75–2.5 Hz; (F)), divided by male (n =
87) and female (n = 45) rats. The boxes show the data between the 25th and 75th percentile, the middle line represents the median, the black dot
represents the mean. Ln, natural logarithm. Statistics are reported in Table 1.
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using simple slope analyses. The Johnson-Neyman technique was
applied to identify regions of significance and determine how male
and female rats differed in HR at low, mean, and high levels of HRV
(predictor), with high and low HRV values that were derived
using ±1SD from the mean. Statistical significance was set at
p < 0.05.

3 Results

3.1 Sex differences in indexes of cardiac
chronotropy and HRV

Table 1 reports 24-h values of cardiac chronotropy and HRV
and separate estimates for the 12-h light and 12-h dark phase of the
daily cycle in male and female rats. Box and whisker plots in Figure 1
show representative distributions of 24-h measures of cardiac
chronotropy and HRV in both sexes.

Female rats showed higher 24-h HR and lower 24-h IBI
compared to male rats (Table 1; Figure 1). These significant
differences emerged both during the light and dark phase of the
daily cycle (Table 1). Female rats had also higher 24-h values of
SDNN, natural log-transformed SDNN, RMSSD, natural log-
transformed RMSSD, LF power, natural log-transformed LF, HF
power, and natural log-transformed HF (Table 1; Figure 1). These
sex differences in HRV values were significant during both the 12-h
light and 12-h dark phase of the daily cycle, with the only exception
of (ln)HF light values (p = 0.085) (Table 1).

3.2 Correlations between indexes of cardiac
chronotropy and HRV

Table 2 reports correlation coefficients for 24-h values of cardiac
chronotropy and HRV in the full sample and stratified by sex. In the
full sample, there was a near-perfect negative association between
HR and IBI (r = 0.993) and a near-perfect positive association
between the two indexes of vagally-mediated HRV (natural log-
transformed RMSSD and HF, r = 0.983) (Table 2 A). As expected,
higher HR and lower IBI were significantly associated with lower
vagally-mediated HRV (natural log-transformed RMSSD and HF
values) (Table 2 A). Significant and strong positive correlations were
also found between time-domain indexes of HRV (natural log-
transformed SDNN and RMSSD, r = 0.690), and between frequency-
domain indexes of HRV (natural log-transformed LF and HF, r =
0.824). This result confirms that, besides the two well-accepted
indexes of vagally-mediated HRV (i.e., RMSSD and HF), cardiac
vagal influences in the rat are also largely captured by SDNN and LF
values. As for sex differences, female rats tended to have a stronger
negative correlation between (ln)RMSSD and HR than males
(r = −0.534 vs. r = −0.394), although this difference did not
reach statistical significance (p > 0.05) (Table 2 A, B). Notably, a
significant negative correlation was found between (ln)SDNN and
HR in females (r = −0.544, p < 0.01) (Table 2 C), but not in male rats
(r = −0.172, p > 0.05) (Table 2 B), with correlation coefficients that
differed significantly between sexes (p = 0.02). Similarly, a significant
negative correlation was found between (ln)LF and HR in females
(r = −0.451, p < 0.01) (Table 2 C), but not in male rats (r = −0.207,

TABLE 2 Correlation coefficients in the full sample and stratified by sex for 24-h values of cardiac chronotropy and heart rate variability.

A: Full sample 1 2 3 4 5 6

1. 24-h HR -

2. 24-h IBI −.993** -

3. 24-h (ln)SDNN −.118 .103 -

4. 24-h (ln)RMSSD −.327** .330** .690** -

5. 24-h (ln)LF −.138 .133 .870** .831** -

6. 24-h (ln)HF −.378** .381** .692** .983** .824** -

B: Males

1. 24-h HR -

2. 24-h IBI −.995** -

3. 24-h (ln)SDNN −.172 .186 -

4. 24-h (ln)RMSSD −.394** .414** .552** -

5. 24-h (ln)LF −.207 .212* .822** .771** -

6. 24-h (ln)HF −.462** .478** .561** .978** .762** -

C: Females

1. 24-h HR -

2. 24-h IBI −.996** -

3. 24-h (ln)SDNN −.544** .553** -

4. 24-h (ln)RMSSD −.534** .519** .811** -

5. 24-h (ln)LF −.451** .445** .880** .895** -

6. 24-h (ln)HF −.512** .501** .832** .990** .907** -

Note. in the table, A represents the correlation coefficients between the variables of interest for the full sample (n = 132), B and C represent these correlation coefficients split by male (n = 87) and

female (n = 45) rats. Abbreviations: HR, heart rate; IBI, inter-beat interval; SDNN, standard deviation of IBIs; RMSSD, root mean square of successive beat-to-beat interval differences; LF, low

frequency power (0.2–0.75 Hz); HF, high frequency power (0.75–2.5 Hz); ln, natural logarithm. *p < 0.05 and **p < 0.01.
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p > 0.05) (Table 2 B), although sex differences in correlation
coefficients did not reach statistical significance (p = 0.14). The
same results were obtained when IBI, rather than HR, was used as
index of cardiac chronotropy. Further, results were consistent when
correlation coefficients were computed separately for the 12-h light
(Table 3) and 12-h dark (Table 4) phases of the daily cycle.

3.3 Prediction of HR by HRV indexes and the
moderating role of sex

Significant negative associations were found between (ln)
RMSSD and HR [B = −45.5 (22.9) (confidence intervals:
−90.9, −0.1], p < 0.05] and (ln)HF and HR [B = −30.9 (11.1)
(confidence intervals: −52.9, −8.9), p < 0.05], independently from
sex. The Johnson-Neyman technique revealed that in rats with (ln)
RMSSD above 0.45 and (ln)HF above 0.17, respectively, females
showed higher HR than males (Figures 2, 3). Sex significantly
moderated the association between 24-h values of (ln)SDNN and
HR [R2

Δ = 0.05, B = −30.1 (12.8) (confidence intervals: −75.4, −15.2),
p < 0.05], such that female rats showed a stronger negative
association [B = −54.2 (15.7) (confidence intervals: −85.5, −22.9),
p < 0.05] compared to male rats [B = −24.1 (16.5) (confidence
intervals: −56.8, 8.6), p > 0.05]. The Johnson-Neyman technique
showed that in rats with (ln)SDNN below 2.33, females had higher
HR than males. No significant associations were found between (ln)
LF and HR.

4 Discussion

In this study, we analyzed 24-h ECG recordings in freely moving
young adult wild-type Groningen rats to investigate the extent to
which cardiac chronotropic control differs as a function of
biological sex.

Our first hypothesis that female rats would show greater
vmHRV (i.e., RMSSD and HF indexes) and higher HR—and
lower IBI - compared to male rats was confirmed by the present
results. These findings replicate the paradoxical cardiac
chronotropic control observed in humans (Koenig and Thayer,
2016), since higher vmHRV is typically associated with lower HR
and longer IBI. Notably, female rats had approximately 0.7 standard
deviation (Cohen’s d) higher HR and lower IBI than males, with the
magnitude of this sex difference being greater than those reported in
a previous human meta-analysis (Hedge’s g = 0.36 for IBI) (Koenig
and Thayer, 2016) and in a recent study in young adult humans (d =
0.30 for HR and d = 0.27 for IBI) (Williams et al., 2022). Further,
female rats showed greater cardiac vagal modulation indexed by
both RMSSD and HF power of HRV, while women were found to
exhibit higher HF, but not RMSSD, values (Koenig and Thayer,
2016;Williams et al., 2022). Notably, while HR was higher in women
compared to men especially at lower levels of vmHRV (Williams
et al., 2022), here we show that at any given level of vmHRV
(RMSSD and HF) female rats showed higher HR than male rats.
Therefore, the sex paradox in cardiac chronotropic control
(i.e., greater vmHRV but faster HR in females) seems more

TABLE 3 Correlation coefficients in the full sample and stratified by sex for 12-h values of cardiac chronotropy and heart rate variability during the light phase of
the daily cycle.

A: Full sample 1 2 3 4 5 6

1. 12-h HR -

2. 12-h IBI −.962** -

3. 12-h (ln)SDNN −.127 .166 -

4. 12-h (ln)RMSSD −.303** .333** .734** -

5. 12-h (ln)LF −.120 .139 .876** .815** -

6. 12-h (ln)HF −.359** .379** .736** .982** .814** -

B: Males

1. 12-h HR -

2. 12-h IBI −.955** -

3. 12-h (ln)SDNN −.251 .326* -

4. 12-h (ln)RMSSD −.382** .431** .659** -

5. 12-h (ln)LF −.200 .230* .845** .762** -

6. 12-h (ln)HF −.454** .487** .670** .977** .767** -

C: Females

1. 12-h HR -

2. 12-h IBI −.995** -

3. 12-h (ln)SDNN −.449** .459** -

4. 12-h (ln)RMSSD −.441** .426** .821** -

5. 12-h (ln)LF −.340* .331* .880** .876** -

6. 12-h (ln)HF −.430** .417** .838** .991** .878** -

Note. in the table, A represents the correlation coefficients between the variables of interest for the full sample (n = 132), B and C represent these correlation coefficients split by male (n = 87) and

female (n = 45) rats. Abbreviations: HR, heart rate; IBI, inter-beat interval; SDNN, standard deviation of IBI; RMSSD, root mean square of successive beat-to-beat interval differences; LF, low

frequency power (0.2–0.75 Hz); HF, high frequency power (0.75–2.5 Hz); ln, natural logarithm. *p < 0.05 and **p < 0.01.
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evident in this sample (n = 132) of young adult rats than that
previously described in a large sample of young adult humans (n =
628, mean age = 19.22 ± 1.68 years) (Williams et al., 2022) and in the
human meta-analysis (Koenig and Thayer, 2016). This could be due
to the numerous anthropometric (e.g., body mass index), lifestyle
(e.g., smoking; physical activity), and/or environmental (e.g., social
stress) variables known to influence HRV in healthy subjects
(Fagard et al., 1999; Aeschbacher et al., 2016; Kim et al., 2018),

which could attenuate sex differences in humans but can clearly be
controlled for and standardized in rats born and raised in a
laboratory environment.

Of note, in a previous study we demonstrated that
pharmacological blockade of cardiac vagal influences with the
muscarinic receptor antagonist methylscopolamine provoked a
nearly complete reduction of RMSSD values and HF power in
the same wild-type Groningen strain used in the current

TABLE 4 Correlation coefficients in the full sample and stratified by sex for 12-h values of cardiac chronotropy and heart rate variability during the dark phase of
the daily cycle.

A: Full sample 1 2 3 4 5 6

1. 12-h HR -

2. 12-h IBI −.971** -

3. 12-h (ln)SDNN −.134 .162 -

4. 12-h (ln)RMSSD −.329** .322** .646** -

5. 12-h (ln)LF −.164 −.140 .826** .813** -

6. 12-h (ln)HF −.371** .346** .628** .978** .817** -

B: Males

1. 12-h HR -

2. 12-h IBI −.965** -

3. 12-h (ln)SDNN −.136 .237 -

4. 12-h (ln)RMSSD −.357** .365** .505** -

5. 12-h (ln)LF −.215* .191 .729** .774** -

6. 12-h (ln)HF −.416** .393** .467** .971** .780** -

C: Females

1. 12-h HR -

2. 12-h IBI −.995** -

3. 12-h (ln)SDNN −.563** .566** -

4. 12-h (ln)RMSSD −.581** .576** .764** -

5. 12-h (ln)LF −.482** .481** .880** .844** -

6. 12-h (ln)HF −.555** .552** .781** .987** .864** -

Note. in the table, A represents the correlation coefficients between the variables of interest for the full sample (n = 132), B and C represent these correlation coefficients split by male (n = 87) and

female (n = 45) rats. Abbreviations: HR, heart rate; IBI, inter-beat interval; SDNN, standard deviation of IBIs; RMSSD, root mean square of successive beat-to-beat interval differences; LF , low

frequency power (0.2–0.75 Hz); HF, high frequency power (0.75–2.5 Hz); ln, natural logarithm. *p < 0.05 and **p < 0.01.

FIGURE 2
The left panel shows a scatterplot of 24-h values of (ln)RMSSD and heart rate as a function of sex. The right panel illustrates the prediction of heart
rate values in both sexes at low, mean, and high (ln)RMSSD values. Higher and lower estimates of (ln)RMSSD were derived from ±1SD from the mean. (ln)
RMSSD = natural log-transformed root mean square of successive beat-to-beat interval differences.
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investigation (Carnevali et al., 2013a). This strongly supports the use
of RMSSD values and HF power of HRV as indexes of vagal
modulation in rats, as in humans (Laborde et al., 2017). Relatedly,
a strong positive correlation between vagus nerve electrical activity
and HF power has been demonstrated in anesthetized rats (Kuo et al.,
2005), although a recent study failed to replicate this finding but in a
very small number of rats (Marmerstein et al., 2021). On the other
hand, SDNN and LF power are generally thought to reflect both vagal
and sympathetic influences in humans (Laborde et al., 2017), with
contrasting views on whether LF power can be used as an index of
baroreflex function (e.g., Rahman et al., 2011; Martelli et al., 2014).
Nevertheless, men showed higher SDNN and LF power of HRV than
women (Koenig and Thayer, 2016; Williams et al., 2022), whereas in
this study in rats we observed the opposite phenomenon. To explain
this discrepancy, we found strong correlations between time-domain
HRV indexes (i.e., SDNN and RMSSD) and between frequency-
domain HRV indexes (LF and HF power), suggesting that SDNN
values and LF power mostly capture cardiac vagal modulation in rats.
Relatedly, in a previous study in young adult mice,
methylscopolamine administration provoked a drastic reduction
not only in RMSSD values and HF power, but also in SDNN
values and HF power (Piantoni et al., 2021). Therefore, if female
rats had greater vmHRV than male rats and vagal influences are also
reflected in SDNN values and LF power, then it is not surprising that
these HRV parameters were higher in female than male rats.

Our second hypothesis that the association between vmHRV and
measures of cardiac chronotropywould be stronger in female thanmale
rats was not fully supported by the current results. Specifically, female
rats showed significantly stronger association between SDNN and both
HR and IBI, replicating human findings (Williams et al., 2022). On the
other hand, sex differences in the association between other HRV
metrics (RMSSD, HF and LF) and indexes of cardiac chronotropy did
not reach statistical significance, unlike in humans (Williams et al.,
2022). Nevertheless, in comparing the current results in young adult
rats with those reported in the sample of young adult humans
(Williams et al., 2022), we ought to underline two important
aspects. First, associations between vmHRV and indexes of cardiac
chronotropy seem, in general, stronger in humans than rats. For
example, the correlation coefficient for the association between

RMSSD and HR was −.636 in humans (Williams et al., 2022)
and −.327 in this sample of rats. However, in humans the analysis
was conducted on a 5-min recording period during which participants
sat in a resting position (Williams et al., 2022) and presumably vagal
modulation had a stronger influence on cardiac chronotropy, whereas
in rats the analysis was conducted on 24-h recordings during which rats
were free to move and behave. Therefore, it would be interesting to
investigate whether the associations between 24-h indexes of vmHRV
and cardiac chronotropy in humans are weaker than those reported for
5-min baseline recordings and similar to those reported here in rats.
The second aspect relates to sex differences in correlation coefficients.
For example, the association between RMSSD andHRwas significantly
stronger in women (−.698) than man (−.560) in the previously studied
large sample (n = 628) of young adult participants (Williams et al.,
2022). In this smaller sample of young adult rats (n = 132), the
magnitude of this sex difference was somewhat replicated
(females = −.534 vs. males = −.394) and failure to reach full
statistical significance may be due to insufficiently powered analysis.

4.1 Implications for translational research

Nowadays, the use of HRV as a polyvalent prognostic tool and
reliable health indicator spans across researchers and practitioners
frommany different fields (Laborde et al., 2022). HRV is also assessed
in rat models to increase the knowledge of the role of cardiac vagal
modulation in several (patho)physiological processes (e.g., Sgoifo
et al., 1997; Wood et al., 2012; Lee et al., 2013; Carnevali and
Sgoifo, 2014; Chuang et al., 2017; Morais-Silva et al., 2019). To
comprehensively appreciate the translational value of HRV
measurement in rats, it is imperative that core biological
characteristics that influence HRV in humans have the same
effects in rats. Here, we demonstrate that biological sex influences
the relationship between vmHRV and cardiac chronotropy in rats in a
way that resembles the difference described between women andmen.
Therefore, the current results i) support the translational value of
HRV findings in rat models, and ii) strongly recommend preclinical
researchers to ensure that the HRV data obtained in rats of one sex are
not generalized to both sexes, or, when possible, use both males and

FIGURE 3
The left panel shows a scatterplot of 24-h values of (ln)HF and heart rate as a function of sex. The right panel illustrates the prediction of heart rate
values in both sexes at low,mean, and high (ln)HF values. Higher and lower estimates of (ln)HFwere derived from±1SD from themean. (ln)HF, natural log-
transformed high frequency power.
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females. Further, studies in rats have shown that i) vagal nerve
stimulation leads to greater cardiac effects in female than male
rats, presumably due to a higher level of ACh release following
nerve activation (Du et al., 1994), that ii) the enzymatic
breakdown of ACh occurs slower in newborn female than male
rats (Loy and Sheldon, 1987), and that iii) the synthesis and
clearance of neurotransmitters, including ACh, in both the heart
and vasculature are regulated by sex hormones (Dart et al., 2002).
Intriguingly, a recent study (Leung et al., 2021) explored sex
differences in the rat intrinsic cardiac nervous system, which
includes the network of the intracardiac ganglia and
interconnecting neurons that receive inputs from both local
afferent and extrinsic autonomic (vagal and sympathetic) nerves
(Achanta et al., 2020). The authors found that female rat hearts
had fewer neurons and lower packing density than males, which may
explain some of the sex differences observed at a functional level
(Leung et al., 2021). Given such findings and the current results, we
believe that rat models offer an important opportunity to
systematically investigate the neuro-hormonal basis of the sex
difference in the relationship between vmHRV and cardiac
chronotropy. Importantly, an age-dependent decline in HRV has
been described in humans and, similarly, cross-sectional evidence
suggests that HRV is reduced in aged male rats and mice (Rossi et al.,
2014; Piantoni et al., 2021). Therefore, given the relatively short
lifespan of rodents compared to other animal species, it would be
interesting to adopt longitudinal protocols in rodents to consider how
sex differences in the association between HRV and cardiac
chronotropy may be more or less evident with advancing age and
the role of sex hormones.

4.2 Conclusion

Overall, the current study in a relatively large sample of freely
moving young adult rats provides data illustrating a sex-dependent
association between vmHRV and indexes of cardiac chronotropy.
In particular, female rats showed greater vmHRV and higher HR
than male rats, replicating the sex paradox described in humans
(Koenig and Thayer, 2016), and a relatively stronger association
between HRV and HR, as observed in young adult humans
(Williams et al., 2022). We acknowledge that these results were
obtained in wild-type Groningen rats and should be confirmed in
different rat strains and potentially in other animal species, such as
rabbits, with a more similar cardiovascular system to humans to
increase their validity and generalizability. Moreover, the analysis
was conducted on ECG signals recorded during undisturbed,
baseline conditions to exclude the effects of environmental
factors (e.g., stress exposure) on HRV measures, but the
potential influence of trait behavioral characteristics was not
considered. Nevertheless, the current results support the
translational value of HRV findings in rat models and suggest
researchers to always consider biological sex in the analysis and,
most importantly, interpretation of HRV data in rats. Lastly, the
present results represent, in our view, a solid starting point for a
systematic investigation of the neuro-hormonal basis and temporal
evolution of the impact of biological sex on the association between
vmHRV and cardiac chronotropy in rats, which could inform the
human condition.
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