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Aims: The purpose of this research was to assess the effect of chlorogenic acid
(CGA) in the diet on ileac structure, barrier function, immunological state, and
microbial profile of broiler chickens in a high stocking density (HD) environment.

Methods: Four hundred and seventy-six male AA broiler chickens were randomly
split into four groups, twowith a normal stocking density (ND) of fourteen birds per
m2 and two with a high stocking density of twenty-two birds per m2. Each of the
treatments consisted of five replicates. One of the two ND and HD groups
received the usual feed, while the other two were given at 1.5 g/kg CGA as
part of their dietary regimen.

Results: The ND CGA group showed a greater increase in villus height and villus
height/crypt depth compared to the ND group at 35 and 42 days. The HD group
experienced a greater elevation in villus height due to CGA supplementation than
the HD group across days 28, 35, and 42. At day 42, the HD group saw a decline in
OCLN and ZO-1mRNA expression in the ileum, but CGAwas able to restore them.
The HD group experienced a greater rise in OCLN mRNA than the control HD
group when supplemented with CGA. The expression of TNF-α, IL-1β, and IL-6 in
the ileum was higher in the HD group, and CGA supplementation enhanced this
effect. The HD group experienced a greater rise in IL-10 mRNA expression than
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the control group following the administration of CGA. The HD group showed
reduced alpha diversity and an increase in detrimental microbes such as
Turicibacter and Shigella in the gut compared to the ND group, while the HD
CGA group saw a reduction in Turicibacter, Shigella, and other harmful microbes.
These findings reveal that HD stress suppressed the growth of ileac villi, decreased
the expression of tight-junction genes, amplified the expression of inflammatory
genes, and disturbed the gut microbiota, ultimately leading to increased intestinal
permeability.

Conclusion:Weconclude that when chickens are given dietary CGA, the disruption
of the ileac barrier and increased oxidative damage and inflammation due to HD
stress are reduced, which increases ileac integrity and the presence of beneficial
intestinal bacteria.

KEYWORDS

high stocking density stress, chlorogenic acid, antioxidant capacity, ileac barrier function,
microbial community, broilers

1 Introduction

In recent years, the poultry industry has seen a major increase in
production of broilers worldwide to meet the demands of a growing
population. This extensive development has not only improved quality
of life, but has had a substantial positive effect on national economies (Li
et al., 2019). As broilers have become more important as a meat source,
it would be more cost-effective to increase the stocking density (SD) in
order to produce more meat per unit area (Thaxton et al., 2006).
Nevertheless, there is a growing emphasis on animal health and welfare
concerns, which are closely linked to SD (Vanhonacker et al., 2009;
Wang et al.,2019). SD varies from country to country with 45–54 kg/m2

being the norm in the Netherlands, 40 kg/m2 in the United Kingdom,
41.5 kg/m2 in the United States, and 30–36 kg/m2 in Switzerland (Nasr
et al., 2021). A recommended SD, in consideration of animal welfare, is
thought to be beneficial for broiler production and high product quality
(Simitzis et al., 2012). High stocking density (HD) has been shown to
cause oxidative stress and has been linked to diminished production in
broilers, as well as an increased likelihood of health problems (Dozier
et al., 2005). Consequently, many strategies have been implemented to
improve production of broiler chickens under HD (Abd El-Hack et al.,
2020; Sugiharto, 2022). It has been widely accepted that dietary
supplementation with certain antioxidants is a viable and convenient
solution to reduce HD stress.

As the site in the digestion of starches and fats, the ileum harbors
a highly varied microbial population, making intestinal homeostasis
a critical element in maintaining the health of broilers (Stanley et al.,
2014). HD stocking can cause oxidative stress (OS), which can
damage ileal structures by shortening the villi, deepening the
recesses, and depleting mucosal epithelial cells, leading to severe
disruption of ileal integrity (Tan et al., 2010). Research has
demonstrated that OS can dramatically decrease the expression
of occludin (OCLN), claudin-1 (CLDN1), and zonula occludens-1
(ZO-1) in the broiler intestine (He et al., 2016; Zhang et al., 2017),
along with an increase in the expression of interleukin-6 (IL-6)
(Quinteiro-Filho et al., 2017) and tumor necrosis factor-α (TNF-α)
(He et al., 2019) in the intestinal mucosa, and a decrease in
interleukin-10 (IL-10) mRNA expression in the intestine
(Quinteiro-Filho et al., 2017). Despite this, it is still unclear if OS
caused by HD has a negative effect on ileal homeostasis.

Chlorogenic acid (CGA), a bioactive dietary polyphenol, is
esterified by quinic acid and caffeic acids, which are found in
green coffee bean extract (Tajik et al., 2017). CGA is widely used
in many Chinese herbal medicines, derived from botanical sources
likeDendranthema grandiflora (L. chrysanthemum), F. lonicerae (Flos
lonicerae) and Eucommia ulmoides (E. ulmoides) (Leiss et al., 2009). It
has been documented that CGA has a range of pharmacological
effects in animals, which can augment development, strengthen
immunity, and modify the gut microbiota by enhancing
bioactivities such as antioxidant (Liang and Kitts, 2015), anti-
inflammatory (Vukelić et al., 2018), antibacterial (Zhang et al.,
2020), and antiviral (Gamaleldin Elsadig Karar et al., 2016), and
by regulating lipid metabolism (Sung et al., 2015). In light of current
regulations to limit the generation of antimicrobial resistance by
eliminating addition of antibiotics to feed, as well as restrictions on
resistance in livestock and poultry breeding, the future of animal
husbandry appears to be returning to the use of safe natural plant
products with similar medicinal properties (Jiang and Xiong, 2016;
Vizzier Thaxton et al., 2016).

Our prior research has demonstrated that chickens experienced
a decrease in weight gain and feed intake due to HD stress at 28, 35,
and 42 days. Despite this, administering 1.5 g/kg of CGA proved to
be effective in enhancing both body weight and average daily gain in
the HD chickens. These data presented points to the potential of
CGA supplementation in chicken diets to counteract the effects of
HD stress on chicken productivity (Liu et al., 2023). Consequently,
we forecast that CGA boosts efficacy from HD stress by fortifying
ileum wellness and augmenting advantageous bacteria. The main
goal of this study was to assess the influence of supplementing the
feed with CGA on the ileal structure, protective capability, immune
system, and gut bacteria of broilers under HD stress conditions at 28,
35, and 42 days of age.

2 Materials and methods

2.1 Statement of ethical treatment

The Care and Use of Experimental Animals Committee of the
Henan University of Science and Technology (HUST) (AW20602202-
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1-3) gave its consent to the experimental protocol of this study in 2020.
The experiments conformed to their regulations for the humane
treatment of animals.

2.2 Animals and experimental design

Four hundred and seventy-six healthy one-day-old male
Arbor Acres broiler breeders were obtained from the Henan
Quanda Poultry Breeding Co., Hebei, China, and experiments
were carried out at the Animal Research Unit of HUST. The
chickens were inspected upon arrival to detect illness or physical
problems. Chickens were housed with an automated system for
ventilation, temperature, humidity, and illumination regulation.

At the beginning of the experiments, the temperature of the
feeding room was held at 33°C ± 1°C for 1 week, then gradually
lowered by 1°C-2°C per week until it reached a final temperature
of 25°C ± 2°C by the 42nd day. The room humidity was
maintained at 60%–70 %, and lights were kept on for 23 h
daily and turned off from 7 to 8 p.m. On the seventh day, five
replicates each of healthy broilers, with an average weight of
138.5 ± 2.2 g, were randomly distributed among four different
experimental treatments: normal stocking density of 14 birds/m2

(ND), high stocking density of 22 birds/m2 (HD), and dietary
supplementation with CGA at 1.5 g/kg in the ND CGA and HD
CGA groups. To guarantee that the density stayed the same for
each sampling date, three extra sets were prepared for every
density group.

TABLE 1 Ingredients and nutrient levels in the basal diet.

Ingredient (g/kg) Starter (1–21 days) Grower (22–42 days)

Corn 527.9 577.8

Soybean meal 368.9 300.0

Zea gluten meal 0 24.3

Soybean oil 40.0 40.0

Sodium chloride 3.0 3.0

Choline chloride 3.0 2.6

Vitamin premixb 0.3 0.3

Trace element premixa 2.0 2.0

Stone powder 12.2 11.7

Dicalcium phosphate 19.1 16.2

DL-Methionine 2.7 1.1

L-Lysine 0.4 0.45

Wheat bran 20.0 20.0

Total 1,000 1,000

Metabolic energy (MJ/kg) 12.4 13.0

Crude protein 211.8 198.4

Lysine 11.4 10.5

Methionine 4.9 4.8

Calcium 10.2 8.5

Available P 4.5 4.2

Total P 6.9 6.3

Threonine 7.7 2.2

Analyzed content

Calcium 10.2 8.5

Total P 6.8 6.2

Calcium: Total P 1.50 1.37

aTrace element premix is provided as per kg of feed: 8 mg copper (CuSO4·5H2O); 80 mg iron (FeSO4); 100 mg manganese (MnSO4·H2O); 0.15 mg selenium (Na2SeO3); 0.35 mg iodine (KI).
bVitamin premix per kg feed: VA, 9500 IU, VD, 362.5 µg, VE, 30 IU, VK, 32.65 mg, VB1 2 mg, VB6 6 mg, VB12 0.25 mg, biotin 325 μg, folic acid 1.25 mg, pantothenic acid 12 mg, niacin

50 mg.
cCalculated nutrient concentrations.
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2.3 Diet composition and CGA
supplementation

The main ration for broilers consisted of the corn-soybean meal
pellet feed, with the nutritional information listed in Table 1. The
supplemental CGA (98% pure) was provided by Changsha Staherb
Natural Ingredients Co., Ltd. (Changsha, China). The amount of
CGA used here (1.5 g per kg of feed) was in line with the conditions
of published studies, and CGA was continually present during the
experiment (Liu et al., 2023). An unlimited supply of food and water
was made available.

2.4 Sample collection

Two chickens were randomly selected from each replicate
and humanely euthanized by inhalation of carbon dioxide. The
entire digestive apparatus was swiftly extracted and placed in an
icy stainless-steel container and washed with pre-chilled saline
solution. The ileum, positioned between Meckel’s diverticulum
and the ileocaeco-colic junction, was carefully dissected using
sterile forceps and scissors. Approximately 5 cm of the intestine
was cut from the middle of the organ and a front portion of ileal
approximately 1.5 cm was taken and treated with 4%
paraformaldehyde (PFA) for hematoxylin and eosin (H&E)
staining and further examination of intestinal structure from
28, 35, 42 days of age, while the remaining part was quickly
frozen in liquid nitrogen and stored at −80°C for mRNA
expression analysis. At 42 days old, five birds from each
treatment were sampled for their ileac contents, which were
then immediately placed in a sterile container, frozen with
liquid nitrogen, and kept at −80°C for microbial analysis.
The entire sampling process was completed in a quarter of
an hour.

2.5 Intestinal morphology

The tissue samples fixed in 4% PFA were dehydrated with a
graded series of ethanol solutions (70%, 96%, and 100%), embedded
in paraffin, and 5-μm sections were cut andmounted on a slide. Each
section was dewaxed with 100% xylene and then rehydrated. The
intestinal tissues were H&E-stained for 8 min, rinsed for 10 s with
1% HCl in ethanol, extensively washed with deionized water, and
restrained with eosin for 1 min. Stained slides were washed with
deionized water for 6 min, dehydrated with ethanol, cleared in
xylene, and allowed to dry overnight. The sections were
visualized using a scanner (Pannoramic MIDI, Hungary) for
better examination of intestinal morphology and accurately
measuring changes in villi. The height of the villi was determined
by calculating the distance from the apex to the crypt entrance, and
the crypt depth was ascertained by determining the distance from
the crypt base to the crypt opening. The average height of villi and
depth of crypts was determined by computing the mean values. Case
Viewer was used to measure the heights of villi and depths of crypts,
and calculate the ratio of villus height to crypt depth (villus height/
crypt depth, V/C).

2.6 Determination of intestinal mRNA
expression by quantitative real-time PCR
(qRT-PCR)

Total RNA was isolated from ileal tissues with TRIzol reagent.
RNA quality and quantity were established by spectrophotometer
(Nanodrop 2000C, Thermo Fisher). The A260/A280 ratio of 1.9-
2.0 showed that the RNA was of suitable quality for mRNA
determinations. The process of reverse transcribing RNA into
cDNA was completed using the universal SYBR qPCR master
mix, and a real-time fluorescence quantitative PCR reaction was
then performed using the HiScript III RT SuperMix for qPCR kit
(Takara Biotechnology Co., Ltd., Tokyo, Japan). The PCR was
conducted using a CFX96 thermocycler (Bio-Rad Touch, Bio-
Rad) with a 20 μL PCR reaction composed of 2 μL of template
cDNA, 10 μL of SYBP master-mix, 0.4 μL of each primer, and 7.2 μL
of dd H2O. Table 2 provides the primer information of the gene to be
tested, while GAPDHwas employed as the reference genes. The PCR
amplification was followed by the visualization of the melting curve.
The PCR amplification was followed by a visualization of the melting
curve. The 2−△△Ct relative quantitative method was employed to
determine relative gene expression.

2.7 16s rRNA sequencing of ileal
microorganisms

The ileac contents (100 mg) were processed with the QIAamp
Fast Stool Mini Kit (Qiagen, Hilden, Germany) to isolate microbial
DNA, which was stored at −80°C. The DNA concentration was
determined with a Qubit® 3.0 fluorometer, and its integrity was
checked by electrophoresis on a 2 % agarose gel. The V3 and
V4 hypervariable regions of the 16S rRNA genes were amplified
using the primers: 341F—CCTACGGRRBGCASCAGKVRVGAAT,
and 806R–GGACTACNVGGGTWTCTAATCC. Adapters were
attached to the ends of the amplicons to produce indexed
libraries suitable for sequencing on an Illumina Miseq sequencer.
The accuracy of the DNA library’s concentration was checked using
the Qubit® 3.0 fluorometer. The Illumina MiSeq was loaded with
10 nM DNA libraries which were multiplexed in accordance with
the manufacturer’s guidelines (Illumina, San Diego, CA,
United States). The raw reads that were acquired were combined
into continuous sequences based on the overlaps between them, and
any low-quality or inadequate sequences were rejected. The software
search (ver 1.9.6) was employed to align the obtained sequences into
operational taxonomic units (OTUs) against the Silva 123 database,
at a pre-clustered sequence identity of 97%. Venn diagrams were
constructed using R (version 3.1.1) in order to highlight the shared
and distinct OTUs across the four groups. QIIME (version 1.7.0) was
employed to investigate the rarefaction curve, alpha diversity, and
beta diversity. The Chao1, Shannon, and Simpson indices revealed
the alpha diversity, while principal coordinate analysis (PCoA) was
utilized to demonstrate the beta diversity. The non-parametric
ANOSIM test was employed to evaluate the differences between
groups. The ribosomal database program classifier was applied to
assign taxonomic levels down to the genus level, including the
kingdom, phylum, class, order, and family, with 80% certainty.
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The sequence data from our investigation were deposited in the
NCBI SRA database (Acc. No. PRJNA916381).

2.8 Statistical analysis

The data were analyzed for adherence to a normal distribution
using the SPSS statistical package (ver. 20.0 for Windows, SPSS Inc.,
Chicago, IL, United States). A one-way ANOVA was conducted to

compare the data between groups, and Tukey’s multiple comparison
procedure was applied when the differences were deemed
statistically significant. This statistical analysis only allows for the
four treatments to be compared on the same day of the experiment.
No discrepancies were observed in the data from different days. The
SEMwas used to express the results, with p < 0.05 being indicative of
a significant difference and 0.05 ≤ p < 0.1 showing a notable
distinction. The figures were created using GraphPad Prism 9
(GraphPad Software Inc., San Diego, CA, UnitedStates).

TABLE 2 Primer sequences of target genes.

Genesa Forward primer (5′-3′) Reverse primer (5′-3′) Length TMb°C Accession No

OCLN ACGGCAGCACCTACCTCAA GGGCGAAGAAGCAGATGAG 123 51.7 XM_025144247.2

CLDN1 CATACTCCTGGGTCTGGTTGGT GACAGCCA TCCGCA TCTTCT 100 51.3 NM_001013611.2

CLDN2 CCTACATTGGTTCAAGCATCGTGA GATGTCGGGAGGCAGGTTGA 131 50.3 NM_001277622.1

ZO-1 CTTCAGGTGTTTCTCTTCCTCCTC CTGTGGTTTCA TGGCTGGATC 144 51.5 XM_021098886.1

TNF-α GAGCGTTGACTTGGCTGTC AAGCAACAACCAGCTA TGCAC 176 55.4 NM_214022.1

IL-1β ACTGGGCA TCAAGGGCTA GGTAGAAGA TGAAGCGGGTC 154 55.6 NM_214005.1

IL-6 GCTGCGCTTCTACACAGA TCCCGTTCTCA TCCA TCTTCTC 203 55.4 NM_204628.1

IL-10 AGAAATCCCTCCTCGCCAAT AAATAGCGAACGGCCCTCA 121 51.2 NM_001004414.2

GAPDH TGCTGCCCAGAACATCATCC ACGGCAGGTCAGGTCAACAA 142 50-60 NM_204305

aPrimer sequences of OCLN, CLDN1, CLDN2, ZO-1, TNF-α, IL-1β, IL-6, IL-10, and GAPDH.
bTM, melting temperature.

FIGURE 1
Effects of CGA on ileummorphology of broilers under HD stress. ND group, normal stocking density + basal diet; ND +CGA group, normal stocking
density + basal diet +0.15% CGA; HD group, high stocking density + basal diet; HD + CGA group, high stocking density + basal diet +0.15% CGA. Scale
bar = 100 µm.
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3 Results

3.1 Effect of CGA on intestinal morphology
of HD chickens

The height of the villi, the crypt depth, and the V to C ratio are
shown in Figure 1 and Table 3. On days 28, 35, and 42, the HD

broilers had a significantly lower villus height than the NDs (p < 0.01),
and the ND CGA birds had a higher villus height than the NDs (p <
0.01). On days 35 and 42, the HD CGA birds had a higher villus
height than the HDs (p < 0.01). On days 35 and 42, the V/C was
higher in the ND CGA group than in NDs (p < 0.01), and on day
42, the V/C was higher in the HD CGA broilers than in the HDs
(p < 0.01).

TABLE 3 Effects of CGA on Ileac morphology of Broilers under HD stress.

Parameter Days Dietary treatmenta SEM p-value

ND ND + CGA HD HD + CGA

VH (µm) 28 747.83b 874.31a 680.47c 725.17bc 19.09 <0.01

35 841.75b 942.93a 731.68c 804.60b 19.42 <0.01

42 893.57b 986.23a 761.88c 881.35b 18.09 <0.01

CD (µm) 28 73.90 70.17 84.42 80.88 2.96 0.321

35 91.18 82.42 96.80 97.98 3.68 0.113

42 101.38 96.03 111.88 103.17 3.01 0.202

VH/CD 28 7.48 11.50 8.00 8.38 0.59 0.551

35 9.37b 12.22a 6.80b 8.21b 0.59 <0.01

42 8.98b 10.65a 6.38c 8.40b 0.41 <0.01
aND, group, normal stocking density + basal diet; ND + CGA, group, normal stocking density + basal diet +0.15% CGA; HD, group, high stocking density + basal diet; HD + CGA, group, high

stocking density group + basal diet+ 0.15% CGA, group. Values with different letters within the same row are indicative of statistically significant differences (p < 0.05, Tukey’s HSD, test after

one-way ANOVA). The statistical model used does not allow for a comparison between different days’ data.

FIGURE 2
Effects of CGA on ileum mRNA expression of tight junction genes in broilers under HD stress. ND group, normal stocking density + basal diet;
ND +CGA group, normal stocking density + basal diet +0.15% CGA; HD group, high stocking density + basal diet; HD +CGA group, high stocking density
+ basal diet +0.15% CGA. (A) Relative mRNA expression at day 28. (B) Relative mRNA expression at day 35. (C) Relative mRNA expression at day 42. Each
vertical bar represents the mean ± SEM (n = 10). Values with different letters within the same row are indicative of statistically significant differences
(p < 0.05, Tukey’s HSD test after one-way ANOVA).
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3.2 Effect of CGA on tight junction gene
expression in ileum from HD chickens

The relative mRNA levels in the ileum of the different groups are
shown in Figure 2. The expression ofCLDN-2was lower (p < 0.05) in
the HD broilers compared to the ND birds on day 28. The HDs
showed a reduced (p < 0.05) expression of OCLN and ZO-1 on day
42 when compared to the NDs. On day 28, the NDCGA group had a
higher (p < 0.05) expression of CLDN-2 than the ND group. The ND
CGA group had a greater OCLN expression (p < 0.05) than the ND
birds on day 42. OCLN expression was upregulated (p < 0.05) in the
HD CGAs compared to the HDs on day 42.

3.3 Effect of CGA on inflammatory factors in
ileum from HD chickens

The mRNA expression of ileal inflammatory cytokines in each
group is shown in Figure 3. The expression of TNF-α, IL-1β, IL-6,
and IL-10 was upregulated (p < 0.05) in HD broilers compared to
NDs at day 28, and decreased (p < 0.05) in the HD CGA birds
compared to the HDs. The mRNA levels of the inflammatory factor
genes, IL-1β, IL-6, and IL-10 were significantly upregulated (p <
0.05) in HD broilers compared to NDs on day 35, and the expression
of IL-6 was lower (p < 0.05) in HD CGA than in HD. IL-1β was
upregulated (p < 0.05) in the HD broilers relative to the NDs on day
42, and the expression of IL-10 was higher in the HD CGAs
(p < 0.05) compared to HD chickens without CGA.

3.4 Effect of CGA on microbial composition
in ileum from HD chickens

Distinctive populations of ileal microorganisms were seen
among the four groups (Figure 4). The Venn diagram shows
239 OTUs that were common to all four groups, while the ND,
ND CGA, HD, and HD CGA groups were found to contain 1,009,
1,149, 967, and 922 distinct OTUs, respectively. In the ileum of ND,
ND CGA, HD, and HD CGA groups, 492, 611, 459, and 397 distinct
OTUs were counted, respectively in Figure 4A.

The samples’ species reduction rates are depicted in Figure 4B.
The dilution curve can be used to evaluate the accuracy of
sequencing data and give an indication of the diversity of species
present in the samples. When the sample size from each group
exceeds 35,000, the graph tends to level off. The data indicate that
the sequencing level is nearly maximized, the greatest diversity is
present, and additional data will only yield a few additional species
(OTUs). The sequences demonstrate the capacity to accurately
portray the microbial population of a natural habitat and can be
utilized for data analysis.

The PCoA (Figure 4C) showed that the community composition
of the ND group was significantly different from the HD and ND
CGA groups, and the difference was quite substantial. In addition, the
ND CGA group had a more concentrated distribution than the other
two groups. It is evident from Figures 4D–F that the α-diversity index
in each group is close to 1, indicating that the data of each group
accurately reflect the true ileal microflora composition. The Simpson
and Chao bacterial richness and α-diversity indices of HD birds were

FIGURE 3
Effects of CGA on ileummRNA expression of immune factors in broilers under HD stress. ND group, normal stocking density + basal diet; ND +CGA
group, normal stocking density + basal diet +0.15%CGA; HDgroup, high stocking density + basal diet; HD+CGA group, high stocking density + basal diet
+0.15% CGA. (A) Relative mRNA expression at day 28. (B) Relative mRNA expression at day 35. (C) Relative mRNA expression at day 42. Each vertical bar
represents the mean ± SEM (n = 10). Values with different letters within the same row are indicative of statistically significant differences (p < 0.05,
Tukey’s HSD test after one-way ANOVA).
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significantly reduced (p < 0.05) compared to ND, as indicated by the
decline in single species indices.

Analysis of the taxonomic units indicated that Firmicutes was
the dominant phylum among the four groups (Figure 4G; Table 4),

making up 99.06%, 98.68%, 97.63%, and 99.00% of the populations,
respectively, while Proteobacteria and Bacteroidetes accounted for
0.33%, 0.70%, 1.77%, and 0.55%, and 0.28%, 0.32%, 0.21%, and
0.24%, respectively. The Proteobacteria count for the HD group was

FIGURE 4
The impact of CGA consumption on the bacterial population in the ileum of chickens from the ND, HD, ND CGA, and HD CGA groups. (A) Venn
diagram showing unique and shared numbers of genera predicted. (B) Rarefaction Curve. (C) Two-dimensional OTU abundance based principal
coordinate analysis (PCoA) of ileac microbiota. D-F. CGA was found to increase caecal microbial alpha diversity as measured by Simpson and
Chao1 indicators. (G) Microbial composition at the phylum level. (H) Microbial composition at the genus level. (I-J) Leaf and bar plots obtained by
linear discriminant analysis effect size (LEfSe) analysis showed differences in the abundance of broiler fecal microbes. (K) A graphical representation of the
range of species present in the top twenty genera in each sample. Pink represents positive correlation and blue indicates negative correlation. (L-M)COG
functional classification and differences in COG abundance.
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significantly higher and the Bacteroidetes count was significantly
lower than in NDs (p < 0.05). The numbers of Proteobacteria and
Bacteroidetes in the ileum of broilers in the HD CGA group was
significantly higher than in the HDs (p < 0.05). Cyanobacterial
abundance was likely affected by CGA, but the difference was
statistically non-significant (p = 0.057). The predominant genera
in the ileum of the four groups as shown in Figure 4H and Table 5
were Lactobacillus (97.62%, 96.48%, 90.84%, 86.02%), with minor
amounts of Ralstonia (0.17%, 0.47%, 1.12%, 0.32%), Turicibacter

(0.02%, 0.03%, 0.45%, 0.32%), Streptococcus (0.12%, 0.11%, 0.28%,
0.16%), Faecalibacterium (0.15%, 0.15%, 0.17%, 0.10%), Shigella
(0.02%, 0.06%, 0.35%, 0.03%), Bacillaceae Bacillus (0.02%, 0.20%,
0.18%, 0.05%), Candidatus arthromitus (0.02%, 0.07%, 0.30%,
0.06%), Bifidobacterium (0.13%, 0.09%, 0.04%, 0.08%), and
Blautia (0.08%, 0.10%, 0.08%, 0.09%). The ileac Lactobacillus and
Bifidobacterium count in HD birds was significantly lower than
those of ND (p < 0.05). The HD birds had a significantly larger
number of Turicibacter, Streptococcus, and Shigella than the ND (p <

FIGURE 5
Systematic analysis of the effects of dietary chlorogenic acid on inflammatory index, intestinal barrier function and intestinal microflora in broilers
under high stocking density stress.

TABLE 4 Composition of ileum microbiota of broilers at phylum level.

Microorganism Dietary treatmenta SEM p-value

ND ND + CGA HD HD + CGA

Firmicutes 99.06% 98.68% 97.63% 99.00% 0.012 0.160

Proteobacteria 0.33%c 0.70%b 1.77%a 0.55%b 0.011 0.039

Bacteroidetes 0.28%b 0.32%a 0.21%b 0.24%b 0.008 0.042

Actinobacteria 0.12% 0.11% 0.17% 0.12% 0.006 0.091

Fusobacteria 0.11% 0.14% 0.13% 0.06% 0.004 0.327

Cyanobacteria 0.01% 0.02% 0.01% 0.01% 0.001 0.057

aND, group, normal stocking density + basal diet; ND + CGA, group, normal stocking density + basal diet +0.15% CGA; HD, group, high stocking density + basal diet; HD + CGA, group, high

stocking density group + basal diet+ 0.15% CGA, group. Values with different letters within the same row are indicative of statistically significant differences (p < 0.05, Tukey’s HSD, test after

one-way ANOVA).
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0.05). The HD CGA broilers had fewer Turicibacter, Streptococcus,
and Shigella compared to the HD group (p < 0.05), however, the
other dominant bacterial genera were not distinguishable among the
four groups.

The LEfSe results (Figures 4I, J) indicated that Burkholderiales,
Oxalobacteraceae, Ralstonia, and Betaproteobacteria were the major
bacterial groups present in HD chickens compared to ND. The HD
CGA broilers featured S24-7 and Allobaculum as their primary
colony members and biomarkers, which was different from the
HD group. To illustrate the variation in species and their abundance
trends among the groups, the top twenty genera in terms of relative
abundance were grouped according to genus and visualized in a heat
map (Figure 4K). The ND group was significantly populated with
Bifidobacterium, Lactobacillus, and Coprococcus, while Allobaculum,
Prevotella, Blautia, and Coprococcus were highly represented in ND
CGA. The HD birds were populated with Shigella, Ruminococcus, C.
arthromitus, and Sphingomonas; Streptococcus, Turicibacter, and
Blautia were present in increased numbers in HD CGA birds. A
comparison between the ND and ND CGA groups revealed that the
ND CGA dataset possessed a higher level of annotation richness
than the ND (p < 0.05), with tRNA charging, fermentation, and
degradation of carboxylate, secondary metabolites, and polymeric
compounds, being the most common annotations (Figures 4L, M).
Comparison between the HD and HD CGA datasets, showed that
the HD CGA group had a notably higher number of annotations
(p < 0.05) than the HD. The most common annotations were
aromatic compound degradation, lipid degradation, degradation/
utilization/assimilation, methyl ketone biosynthesis, and methanol
oxidation to carbon dioxide.

4 Discussion

Our previous research has verified that HD stress can significantly
hinder the growth and development of broilers, causing physical

damage to the jejunum and increasing the level of inflammation, and
altering the microbial composition of the jejunum. Nevertheless,
supplementing feed with CGA can mitigate the oxidative stress
caused by HD stress, thus promoting the growth and development
of broilers (Liu et al., 2023). Consequently, the HD stress could lead to
damage in other parts of the digestive tract. The structure of the
intestines is pivotal in preserving intestinal health (Pourabedin et al.,
2014). The small intestine’s digestive and absorptive capabilities can
be gauged by looking at the intestinal villus height, crypt depth, and
the ratio of villus height to crypt depth (Farahat et al., 2021), which
provide a comprehensive evaluation of the organ’s functioning.
Therefore, we studied the effects of CGA supplementation on
chickens dealing with HD stress by looking at the morphological
changes in their intestines over the course of their growth. The results
indicated that HDhad amore detrimental effect on the villus height of
the ileum; nevertheless, CGA was able to lessen the detrimental
impact. This suggests that CGA can preserve the healthy
development of intestinal villi and avert HD stress. The work of
Zhang et al. (2018) demonstrated that inclusion of CGA in the diet of
piglets had a beneficial impact on the intestine structure of weaned
piglets, leading to a significant increase in small intestinal villus height
as well as the V/C ratio of the jejunum and ileum. The study found
that CGA supplementation significantly increased the ileum villus
height and V/C ratio, and strengthened the intestinal barrier of
weaned rats exposed to lipopolysaccharide (Ruan et al., 2014).

The poultry intestine is a complex structure comprised of four
distinct parts: physical, chemical, immune, and microbial, that act as
a barrier between the animal body and the outside environment
(Xiao et al., 2017). The physical barrier acts as a protective shield
between the intestinal lumen and the internal environment. When
chickens are subjected to stress from crowding, the connections
between intestinal jejunal epithelial cells can be weaken, thus
allowing a greater number of molecular pathogens and
pathogenic bacteria to pass through and stimulate the intestinal
immune system (Matricon et al., 2012). Our findings demonstrated

TABLE 5 Composition of ileum microbiota of broilers at genus level.

Microorganism Dietary treatmenta SEM p-value

ND ND + CGA HD HD + CGA

Lactobacillus 97.62%a 96.48%a 86.02%b 90.84%b 0.156 0.046

Ralstonia 0.17% 0.47% 1.12% 0.32% 0.008 0.251

Turicibacter 0.02%c 0.03%c 0.45%a 0.32%b 0.007 0.026

Streptococcus 0.12%b 0.11%b 0.28%a 0.16%b 0.002 0.047

Faecalibacterium 0.15% 0.15% 0.17% 0.10% 0.001 0.256

Shigella 0.02%b 0.06%b 0.35%a 0.03%b 0.004 0.031

Bacillaceae_Bacillus 0.02% 0.20% 0.18% 0.05% 0.001 0.086

Candidatus_Arthromitus 0.02% 0.07% 0.30% 0.06% 0.003 0.301

Bifidobacterium 0.13%a 0.09%a 0.04%b 0.08%ab 0.003 0.035

Blautia 0.08% 0.10% 0.08% 0.09% 0.001 0.353

aND, group, normal stocking density + basal diet; ND + CGA, group, normal stocking density + basal diet +0.15% CGA; HD, group, high stocking density + basal diet; HD + CGA, group, high

stocking density group + basal diet+ 0.15% CGA, group. Values with different letters within the same row are indicative of statistically significant differences (p < 0.05, Tukey’s HSD, test after

one-way ANOVA).
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that exposure to HD stress caused a considerable decline in the
Occludin and ZO-1 mRNA levels in the ileum of broilers, thus
disrupting the intestine’s ability to act as a barrier. Many
investigations have determined that stress has a detrimental effect
on Occludin and ZO-1 in the intestinal mucosa of poultry (Varasteh
et al., 2015; Zhang et al., 2017). CGA in the diet of broilers led to a
marked increase in Occludin and ZO-1 mRNA levels in the ileum,
and successfully averted the disruption of the barrier’s integrity; this
shows that CGA has a beneficial effect in reinforcing the mechanical
barrier of the intestine. The immune system of the intestinal mucosa
is integral to the onset and progression of intestinal inflammation.
Cytokines play key roles in an animal’s immune response and
defensive mechanisms (Li et al., 2014). An imbalance in the
levels of pro-inflammatory and anti-infective cytokines, such as
IL-6, IL-1β, and TNF-α in the intestinal mucosal immune system
can lead to an impaired immune response and the development of
intestinal inflammation (Delgado et al., 2015). Our research has
revealed that HD stress can increase intestinal inflammation by
altering the expression of inflammatory factors like IL-6, IL-1β, and
TNF-α. Another investigation confirmed that HD stress resulted in
the induction of the pro-inflammatory cytokines, IL-1β and TNF-α
(Bai et al., 2022). Our research indicated that HD stress could alter
the intestinal immune balance from an anti-inflammatory to a pro-
inflammatory state after 28, 35, and 42 days. Despite this, the
incorporation of CGA in the diet was successful in diminishing
the presence of inflammatory elements. It appears that CGA has the
potential to alleviate inflammation and reduce the pressure of HD.

The intestine not only serves as the site for digestion and
nutrient uptake, but is also the body’s most extensive immune
organ (Adedokun and Oloejede, 2019). It is essential to sustain a
healthy gut for the successful breeding of poultry (Hafez and Attia,
2020). Current research has shown that the composition of the gut
microbiome can significantly affect the wellbeing of poultry as well
as their productivity (Tan et al., 2010). The intestinal microbial
population is an indispensable part of the body, instrumental in
maintaining homeostasis not only by facilitating metabolic
processes like digestion, nutrient uptake, and energy regulation,
but also by preserving the intestinal barrier, and regulating the
nervous, endocrine, and immune systems (Ruan et al., 2014).

The present study revealed that CGA supplementation led to a
significant increase in microbial diversity in ileac samples from HD-
stressed chickens, as demonstrated by the Simpson and Chao1 indices,
as well as the PCoA analyses that indicated that the ND CGA group
had a dense and uniform bacterial population structure. This type of
diversity, referred to as alpha diversity, encompasses the richness,
variety, and evenness of species found in a single habitat. Research has
demonstrated that CGA has the capability to alter the intestinal
microbiota of animals leading to a greater variety of microbial
species (Chen et al., 2021). A study found that CGA could
counteract the dextran sodium sulfate (DSS)-caused decline in gut
microbial diversity in mouse feces, as well as boost the number of
Lactobacillus, implying that CGAmight be able to safeguard the colon
from DSS-induced damage by raising the variety of microbes in the
gut (Zhang et al., 2019). Research has indicated that Bacteroidetes and
Sclerenchyma bacteria located in the digestive system of animals are
essential for metabolizing various substances (Ruan et al., 2014).
Schreuder et al. (2019) found that the majority of phyla present in
the feces of laying hens were Firmicutes and Bacteroidetes. The results

of this research demonstrated that, on a phylum level, the gut bacteria
were primarily Firmicutes and Proteobacteria. The numbers of
Bacteroidetes and Firmicutes fluctuated in response to how
effectively energy was acquired from the food consumed, causing
an increase in the proportion of Bacteroidetes relative to
Sclerenchyma, which could enhance the growth of animals
(Turnbaugh et al., 2006). The ND CGA group exhibited a greater
prevalence of Bacteroidetes at the phylum level relative to the ND
group. Some studies revealed that the inclusion of CGA in the diet of
chicken increased Bacteroidetes and decreased Firmicutes in the gut,
suggesting that CGA may be able to combat intestinal inflammation
(Wang et al., 2019). These conclusions are similar to those found in a
previous study (Liu et al., 2023) providing evidence that dietary CGA
lessened the impact of HD stress on the gut microbiota of broilers,
ultimately leading to better intestinal health.

The presence of Lactobacillus in the intestine at the genus level
can diminish the adhesiveness of bacterial pathogens like Escherichia
coli and Salmonella to the intestinal wall and improve an animal’s
immunity (Wang et al., 2021). Song and others determined that
levels of Lactobacillus in the digestive tract of chickens were reduced
when the birds were stressed (Song et al., 2013). In the current study,
HD stress was also seen to reduce the numbers of Lactobacillus in the
gastrointestinal tract of broilers. The bacterium Shigella is the
primary cause of bacillary dysentery. A major indication of
Shigella infection in chickens is the presence of diarrheal stools,
as well as ulceration and inflammation of the intestinal lining.
Infants and juveniles are particularly vulnerable to Shigella
infection (Ashkenaz, 2004). Our results demonstrated a large
decrease in the prevalence of Shigella in HD chickens fed CGA,
from 0.35% with no CGA to 0.03% in the HD CGA group,
suggesting that CGA can impede the escalation of detrimental
bacteria due to HD and boost intestinal health. Bifidobacteria
generate a significantly greater amount of lactic and acetic acid
than lactobacilli, and bifidobacteria also have a part to play in
keeping the gastrointestinal barrier stable, influencing local and
systemic immune responses, hindering the penetration of
pathogens, and aiding the conversion of indigestible dietary
components into beneficial molecules (Cisek and Binek, 2014).
Some studies revealed that stress caused a decrease in the
numbers of viable lactobacilli and bifidobacteria in the small
intestine of broilers (Song et al., 2014). Our research showed that
when broilers were subjected to HD, the populations of Lactobacillus
and Bifidobacterium in the ileal digest decreased, while Streptococcus
and Shigella populations increased. The damaging alterations to
intestinal microbiota could be a factor in the stress-induced damage
to intestinal morphology and permeability associated with raising
chickens under HD conditions. Blautia may be beneficial in
reducing the negative effects of HD stress on the gut microbe
populations in chickens because of its capacity for producing
short chain fatty acids (SCFAs) (Delgado et al., 2015). In our
work, the ND group was found to have a higher prevalence of
Allobaculum than the HD group, according to LEfse analysis.
Allobaculum is a genus of Firmicutes that produces high levels of
butyrate and efficiently utilizes glucose in the digestive tract. Our
data also showed that increased Allobaculum levels were associated
with higher yields of SCFAs, particularly butyrate (Balakrishnan
et al., 2021). In comparison to HD chickens, the HD CGA group was
populated with a greater abundance of S24-7 and Allobaculum, and
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these two bacterial species have been linked to the promotion of
health (Kumar et al., 2019; Cheng et al., 2021).

The results of PICRUSt’s predictive analysis indicated that the
inclusion of CGA in feed can bolster the ability of resident bacteria to
ferment or break down carboxylates, degrade secondary metabolites
and polymeric compounds, and charge tRNAs. The microorganisms
within the digestive tract are essential for carrying out variousmetabolic
processes. Most creatures, including chickens, do not possess enzymes
for carbohydrate metabolism, such as glycoside hydrolase,
polysaccharide lyase, and carbohydrate esterase (Yeoman et al.,
2012). The inability of chickens to process fiber, starch, cellulose,
and pectin would require the addition of enzymes to provide
adequate nutrition (Jha and Mishra, 2021), but a better way to solve
this problem is through the use of gut microbiota. Microorganisms in
the intestines aid the animal body in breaking down and assimilating
substances that are difficult to digest, creating nutrients that can be
utilized (Krajmalnik-Brown et al., 2012). As already noted, some
bacteria can ferment carbohydrates to produce short-chain fatty
acids, which inhibit pathogens and serve as sources of nourishment
and energy for host organisms (den Besten et al., 2013). Many research
studies have demonstrated that the host’s capacity to take up ions such
as calcium, magnesium and iron is largely enabled by the presence of
SCFAs such as acetate, propionate, and butyrate (Yeoman et al., 2012).
Consequently, incorporating CGA into broiler feed could enhance the
capacity of HD broilers to overcome stress and absorb nutrients to
produce energy for growth. Dietary CGA promotes the breakdown of
aromatic compounds, fatty acids, and lipids, the production of methyl
ketones, and the oxidation of methanol to carbon dioxide as well as
other types of degradation, utilization, and assimilation (Upadhyay and
Mohan Rao, 2013).The presence of certain bacteria, such as lactobacilli,
enterococci, bifidobacteria, Clostridium spp. and Bacteroides spp. in the
gut, can lead to the degradation of bile acids, making it more difficult for
fats to be broken down, absorbed, and stored (Begley et al., 2006). In
addition, intestinal bacteria also synthesize fatty acids including
conjugated linoleic acid (CLA), which is essential for maintaining
the health of humans and animals. Research has shown that
supplementation with CLA can lead to a heightened level of catalase
activity in the liver of chickens, whichmay be correlated with a decrease
in the fat content of the animals (Rahman et al., 2001). To summarize,
administering chlorogenic acid to HD-stressed broilers can help
optimize fat metabolism and decrease the amount of fat in their bodies.

5 Conclusion

As depicted in Figure 5, our findings demonstrate that HD stress
can result in a reduction of villi size and the V/C ratio in the ileum,
decreased expression of tight junction mRNAs, increased expression
of pro-inflammatory cytokines, reduced gut microbial diversity, and
an increase in the presence of potentially harmful bacteria such as
Turicibacter and Shigella. The supplementation of broiler feed with
CGA has been found to enhance the morphology of the ileal
intestinal tissue of HD broilers, upregulate the mRNA of tight
junction, and reduce the expression of pro-inflammatory
cytokines, as well as improve the microbiome composition in the
ileum which the phylum-level analysis revealed a decrease in
Proteobacteria, and a higher Firmicutes/Bacteroidetes ratio. The
presence of Bacillus and Blautia could be augmented at the genus

level, thus allowing for effective regulation of the gut microbiome
and improvement in the intestinal health of broilers.
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