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Pheromone cues released from hosts or prey are of crucial importance to natural
enemies for prey and habitat location. The use of herbivorous insect sex
pheromones has long been considered as a potential pest control alternative
that is non-toxic and harmless to beneficials. We hypothesized that Harmonia
axyridis (Pallas) (Coleoptera: Coccinellidae), a major predatory coccinellid beetle
of the devastating migratory pest Spodoptera frugiperda (Smith) (Lepidoptera:
Noctuidae), could perceive and use the sex pheromone of S. frugiperda to locate
its habitat. Here we tested the electrophysiological and behavioral responses ofH.
axyridis to the two components Z7-12:Ac and Z9-14:Ac of S. frugiperda sex
pheromone by using electroantennography (EAG) and Y-tube bioassay. The 3D
modeling of H. axyridis odorant-binding proteins (HaxyOBPs) and molecular
docking were also performed. The results showed that both female and male
H. axyridis exhibited significantly higher electrophysiological and behavioral
responses to Z9-14:Ac at the concentrations of 0.001, 0.01, and 0.1 μg/μL,
while no significant electrophysiological and behavioral responses of H. axyridis
were observed to Z7-12:Ac. The blend of Z7-12:Ac and Z9-14:Ac at the ratio of 1:
100 had a significant attraction to both male and female H. axyridis at the
concentrations of 0.01 and 0.1 μg/μL based on electrophysiological and
behavioral assays, but no significant behavioral responses were observed at the
ratios of 1:9. According to the 3D modeling of HaxyOBPs and molecular docking,
HaxyOBP12 has a good affinity with Z9-14:Ac. Z9-14:Ac is bound to the
HaxyOBP12 by hydrogen bonding and hydrophobic interactions. However,
there were no credible docking results between HaxyOBPs and Z7-12:Ac. Our
findings revealed that H. axyridis can perceive Z9-14:Ac and could use it as a
chemical cue to locate prey habitat. We speculated that Z7-12:Ac, which showed
some antagonistic effect toward the response of H. axyridis to Z9-14:Ac, could
improve the adaptability of S. frugiperda in the presence of predators. This study
provides new insights into the application of pheromones to manipulate natural
enemy behavior for pest control.
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1 Introduction

Foraging behavior is a process in which insect natural enemies
search for food resources or oviposition sites for survival, growth and
reproduction (Kramer, 2001). Natural enemies of herbivores base their
foraging decision on chemical cues from plant or herbivorous insects
(Kaiser et al., 2017; Peñaflor, 2019). Pheromones released by hosts or
prey may serve as kairomonal cues for parasitoids or predators, which
can be used as kairomones for natural enemies to locate and control
pests (Vaello et al., 2017). Common chemical signals released by the
host or prey mainly include sex pheromones (Boo and Yang, 2000;
Aukema and Raffa, 2005; Branco et al., 2006; Pekas et al., 2015; Shapira
et al., 2018; Wang et al., 2018), alarm pheromones (Pickett et al., 2013;
Wang et al., 2019; Liu et al., 2021; Qin et al., 2022), and aggregation
pheromones (Kpongbe et al., 2019). To date, pheromone use is a
promising way not only to monitor insect pests but to suppress their
population growth by improving natural control function in agro-
ecosystem.

Insects rely on sensitive olfactory systems to perceive chemical
cues. Odorant-binding proteins (OBPs) are responsible for
connecting the external environment and odorant receptors
(ORs) (Brito et al., 2016). The interaction between OBPs and
odor molecules is the first step in insect recognition of chemicals
(Leal, 2012). The recognition mechanism of chemical signals of
hosts or prey in natural enemies has been investigated within insect
olfactory system. For example, aphid alarm pheromone E-β-
Farnesene (EβF) was used as a foraging cue for many predators,
such as hoverflies (Harmel et al., 2007; Wang et al., 2019), ground
beetles (Kielty et al., 1996), green lacewings (Li et al., 2017; Li et al.,
2018) and lady beetles (Liu et al., 2014).

Environmentally friendly pest management strategies including
the use of natural enemies and pheromones are advocated. For
example, slow release of aphid alarm pheromone EβF in wheat fields
increases the abundance of mummified aphids by attracting
parasitic wasps (Liu et al., 2021). However, the simultaneous use
of these two methods may cause synergistic or antagonistic effects.
The attraction of natural enemies to pheromones may enhance or
interfere with biological control function when the natural enemies
are able to generate kairomonal activity towards the pest
pheromones (Shapira et al., 2018). Sex pheromone cues may
arrest natural enemies to the source and enhance their foraging
in the vicinity, thus contributing to the efficiency of pest control
(Shapira et al., 2018). Alternatively, sex pheromone may attract
natural enemies to the dispensers and reduce their densities in the
field, thereby affecting the effectiveness of biological control (Pekas
et al., 2015). Knowledge of the kairomonal effects of pheromones on
enemies can help to improve lures that recruit and retain natural
enemies and to improve the efficiency of biological control of crop
pests (Ayelo et al., 2021; Ayelo et al., 2022).

The fall armyworm Spodoptera frugiperda (Smith) (Lepidoptera:
Noctuidae) is a devastating agricultural pest, spreading rapidly in
China and causing substantial economic losses (Wang et al., 2020;
Wu et al., 2021). Management of S. frugiperda relies on the use of
chemical insecticides, extracts and metabolites from plants,
entomopathogenic bacterium, natural enemies, and sex
pheromone traps (Paredes-Sánchez et al., 2021). Harmonia
axyridis (Pallas) (Coleoptera: Coccinellidae) is a dominant
predator that contributes to the suppression of many pests,

including various hemipterans, and the larvae and pupae of
Coleoptera, Hymenoptera, Diptera, and Lepidoptera (Cheng
et al., 2020; Di et al., 2021). H. axyridis is a highly voracious
predator of the eggs and young larvae of S. frugiperda, and can
be used as biocontrol agent of this pest (Di et al., 2021). The use of
monitoring based on pheromone traps has been shown to be
effective to predict the infestation of S. frugiperda (Paredes-
Sánchez et al., 2021). To date, Z9-14:Ac and Z7-12:Ac are
identified as the two principal sex pheromone components of the
Yunnan population of S. frugiperda (Jiang et al., 2022). However, the
functions of these two components on natural enemies remain
elusive. So we hypothesized that H. axyridis could recognize and
detect S. frugiperda sex pheromone cues and recruit these cues for
prey habitat location and prey location.

Here, we tested the electrophysiological and behavioral
responses of H. axyridis to the two components Z7-12:Ac and
Z9-14:Ac of S. frugiperda sex pheromone by using
electroantennography (EAG) and Y-tube bioassay. Further tests
were performed on the blend of Z7-12:Ac and Z9-14:Ac at the
ratios of 1:9 and 1:100 to determine the response ofH. axyridis to the
binary mixture. Subsequently, the binding mechanism between the
two pheromone components and H. axyridis odorant-binding
protein (HaxyOBPs) has been clarified. The potential use of sex
pheromone to manipulate the foraging behavior ofH. axyridis for S.
frugiperda control in the crops was discussed.

2 Materials and methods

2.1 Insects

Colonies of H. axyridis were collected from corn fields at the
experimental station of Shandong Agricultural University (Tai’an,
Shandong Province, China). Sex determination of H. axyridis was
based on the labrum pigmentation (female: dark; male: light) and the
distal margin of the 5th visible abdominal sternite (female: convex;
male: concave) (McCornack et al., 2007). The lady beetles were
reared with the wheat aphid Sitobion miscanthi (Takahashi) in the
laboratory and maintained at 25°C ± 2°C and 65% ± 5% r. h under
12:12 L:D photoperiod. AllH. axyridis used in this study were naive,
and used only once. Before each trial,H. axyridis adults were starved
for 48 h to enhance their sensitivity to odors.

2.2 Chemicals

(Z)-9-tetradecenal acetate (Z9-14:Ac) and (Z)-7-dodecenyl
acetate (Z7-12:Ac) with minimum purity >90% were purchased
from Shanghai Yuanye Biotechnology Co., Ltd. n-hexane (≥98%)
was purchased from Kaitong Chemical Reagents Co., Ltd., Tianjin,
China.

2.3 Comparative EAG responses to the sex
pheromone of S. frugiperda

The dose-dependent EAG responses of male and female
antennae to synthetic standard chemical compounds, Z7-12:Ac,
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Z9-14:Ac were investigated. According to AndoLab-
PheromoneDatabase, the ratios of the pheromone components of
S. frugiperda population that broke out in mainland China and east
Asia were identified and determined as 1:9 or 1:100, so the blends of
Z7-12:Ac and Z9-14:Ac at the ratios of 1:9 and 1:100 were also
tested. Five concentrations of each component and the blends (each
compound/blend was diluted with n-hexane into solutions of
different gradient concentrations at 0.00001 μg/μL, 0.0001 μg/μL,
0.001 μg/μL, 0.01 μg/μL, and 0.1 μg/μL) were tested. Six different
antennae were tested as replications for each concentration. Each
antenna was stimulated 3 times. The antennae of H. axyridis were
removed from the base, and the distal tips were also removed. Each
dissected antenna was immediately fastened with electrode gel
(Spectra 360 Electrode Gel) onto two metal electrodes. Ten
microliter of each chemical solution was applied to a piece of
filter paper strip (0.8 × 1 cm). The solvent was allowed to
evaporate for 1 min, then the paper strip was placed inside a
glass Pasteur pipette (5 cm in length, 0.5 cm in internal diameter)
in the EAG system directed at the antennal preparation.

The stimuli were provided as 0.5 s puffs of air into a humidified
air flow at 0.4 mL/s generated by a stimulus controller. A 15 s
interval between successive stimulations was allowed for antennal
recovery. EAG response to 10 μL n-hexane was tested as control.
Signals were stored and analyzed by using EAG ver. 2.5 software
(Synthech, Hilversum, Netherlands).

2.4 Y-tube olfactometer bioassay

The attractiveness of the sex pheromone of S. frugiperda to H.
axyridis was assessed in dual choice assays using a Y-tube
olfactometer (common arm, 20.0 cm; arms, 15 cm at 75°angle;
internal diameter, 1.5 cm). Air was pumped through an active
charcoal filter and re-humidified by passing it through a bottle
with distill water before being directed into the two arms of the
olfactometer. Chemicals and the blends were prepared in different
concentrations (0.00001, 0.0001, 0.001, 0.01 and 0.1 μg/μL) and
n-hexane was used as control. An aliquot (10 μL) of each test
solution was applied to a filter paper strip (2 × 1 cm2), and the
solvent was allowed to evaporate for 1 min before inserting the strip
into an odor-source glass bottle connected to one arm of the
olfactometer. The control glass bottle connected to the other arm
of the olfactometer contained a filter paper strip treated with 10 μL
of hexane. Adult H. axyridis was recorded as having made a choice
that crossed half of the arm within 5 min. Twenty-five females or
males that made a choice were tested for each treatment, individuals
making no response to either arm for 5 min were recorded but
discarded. The olfactometer was rotated by 90° after each test to
avoid any directional bias. The olfactometer was thoroughly washed
and rinsed with acetone after five replicates.

2.5 3D modeling and molecular docking

The OBPs sequences of H. axyridis were identified by Qu et al.
(2021). Two strategies were employed to predict the 3D structure of
OBPs. The online program SWISS MODEL (Waterhouse et al., 2018)
was used for predicting the OBPs that have >30% homology with the

templates in the ProteinData Bank (http://www.rcsb.org/pdb).While the
OBPs that have less than 30% homology were generated using a deep
residual neural network trRosetta (https://yanglab.nankai.edu.cn/
trRosetta; Yang et al., 2020). The final 3D models were assessed by
Procheck, Verify_3D andERRAT (http://services.mbi.ucla.edu/SAVES/).

The binding mode between HaxyOBPs and S. frugiperda sex
pheromone was performed using Surflex-Dock suit SYBYL X 2.1.1.
The results of binding mode were evaluated according to the total
score. The PyMOL and LigPlot+ (Laskowski and Swindells, 2011)
were used to visualize conformations and interactions.

2.6 Data analysis

Data on EAG responses to each concentration of the sex
pheromone components were analyzed using analysis of variance
(ANOVA followed by LSD test). Preference numbers of Y-tube
olfactory bioassay were evaluated by χ2 test. Individuals that did not
make a choice were excluded from the statistical analysis.

3 Results

3.1 EAG response of H. axyridis to S.
frugiperda pheromone

The dose-EAG responses ofmale and female antennae ofH. axyridis
to Z7-12:Ac and Z9-14:Acweremeasured. Z9-14:Ac elicited higher EAG
responses in both females and males than those of Z7-12:Ac (Figure 1).
The concentration of 0.0001–0.01 μg/μL Z9-14:Ac caused significantly
higher EAG responses in themales than those of Z7-12:Ac and n-hexane
(0.0001 μg/μL: F = 7.072, df = 2, p = 0.007; 0.001 μg/μL: F = 9.884, df = 2,
p = 0.002; 0.01 μg/μL: F = 4.971, df = 2, p = 0.022; 0.1 μg/μL: F = 14.782,
df = 2, p < 0.001) (Figure 1A). Females showed significantly higher EAG
responses to Z9-14:Ac at the concentrations of 0.0001 and 0.1 μg/μL
than those of Z7-12:Ac and n-hexane (0.0001 μg/μL: F = 6.956, df = 2,
p = 0.007; 0.1 μg/μL: F = 4.682, df = 2, p = 0.026) (Figure 1B).

The EAG response of H. axyridis to the blend of Z7-12:Ac and
Z9-14:Ac at the ratio of 1:100 was higher than that to 1:9 (Figure 2).
The responses of male to the ratio of 1:100 were significantly higher
than those to 1:9 at the concentration of 0.0001–0.1 μg/μL
(0.0001 μg/μL: F = 5.793, df = 2, p = 0.012; 0.001 μg/μL: F =
6.975, df = 2, p = 0.007; 0.01 μg/μL: F = 7.426, df = 2, p = 0.006;
0.1 μg/μL: F = 9.564, df = 2, p = 0.002) (Figure 2A). The female
responses to 1:100 were significantly higher than those to 1:9 at the
concentrations of 0.001 and 0.1 μg/μL (0.001 μg/μL: F = 12.157, df =
2, p = 0.022; 0.1 μg/μL: F = 8.472, df = 2, p = 0.002) (Figure 2B).

3.2 Olfactory response of H. axyridis to S.
frugiperda pheromone

Behavioral response tests showed that Z7-12:Ac elicited no
significant responses of the male and female H. axyridis
(Figure 3), while H. axyridis exhibited strongly attractive
response to Z9-14:Ac (Figure 4). At the concentrations ranging
from 0.0001 to 0.1 μg/μL, Z9-14:Ac attracted significantly more
males than that of n-hexane (Figure 4A), while females showed a
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significant tendency to Z9-14:Ac at the concentrations ranging from
0.001 to 0.1 μg/μL (Figure 4B).

H. axyridis showed completely different olfactory responses to
the blends of Z7-12:Ac and Z9-14:Ac at the ratios of 1:9 and 1:100.
Neither male nor female showed a preference for a ratio of 1:9
(Figures 5A, B). Males displayed significant preferences for 0.01 and
0.1 μg/μL at the ratio of 1:100 (Figure 5C), and females did for 0.001,
0.01 and 0.1 μg/μL (Figure 5D).

3.3 3D modeling and molecular docking

In order to take insight into the mechanism of the responses of
H. axyridis to the two components of S. frugiperda sex pheromone,
3D modeling of H. axyridis odorant-binding protein (HaxyOBPs)
and molecular docking were performed. Sequence alignments
showed that HaxyOBP12, HaxyOBP13 and HaxyOBP14 shared
more than 30% similarity with template proteins

FIGURE 1
Electroantennogram (EAG) responses of male (A) and female (B) Harmonia axyridis to Z7-12:Ac and Z9-14:Ac with various doses (0.00001–0.1 μg/
μL). Six different antennae were tested as replications for each concentration. Different letters indicate significant differences between different
compounds (p < 0.05) at each concentration.

FIGURE 2
Electroantennogram (EAG) responses of male (A) and female (B)Harmonia axyridis to the blend of Z7-12:Ac and Z9-14:Ac at the ratios of 1:100 and
1:9. Six different antennae were tested as replications for each concentration. Different letters indicate significant differences at each concentration
(p < 0.05).

FIGURE 3
Olfactory responses of male (A) and female (B) Harmonia axyridis to Z7-12:Ac in a Y-tube olfactometer. Twenty-five females or males that made a
choice were tested for each treatment. N: the number of non-responses.
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(Supplementary Table S1). In addition to these three OBPs, the other
16 OBPs used trRosetta for 3D structure prediction. The predicted
results all matched very high (Supplementary Table S2). In order to
provide evidence on whether H. axyridis could sense and detect S.
frugiperda sex pheromone Z7-12: Ac and Z9-14: Ac, SYBYL was
used to analyze the molecular interactions between identified
HaxyOBPs and Z7-12:Ac or Z9-14:Ac respectively. The results
revealed that HaxyOBP12 has a good affinity with Z9-14:Ac
(Total score = 8.261, C-score = 4). However, there were no
credible docking results between HaxyOBPs and Z7-12:Ac
(Table 1). Z9-14:Ac bound to HaxyOBP12 by hydrogen bonding
interactions and hydrophobic interactions (Figure 6). The Z9-14:Ac
was stabilized by a hydrogen bond with Ala119 of HaxyOBP12
(3.00 Å). Additionally, Z9-14:Ac was also buried in tight

hydrophobic cavities formed by residues including Thr83,
Tyr120, Leu88, Phe121, Ser87, Ala84, Ile72, Gln75, Thr71, Gly68,
Leu56, Leu112, Tyr54, Ile80, and Gly68.

4 Discussion

Chemical cues play a key role in mediating the interactions between
natural enemies and their hosts or prey. The host or prey can release
kairomones that differs from the plant background odors, thus providing
the most reliable source of chemical information for natural enemies to
detect host and prey in the natural environment (Rodriguez-Saona and
Stelinski, 2009; Ayelo et al., 2022). In this study, we examined and
determined the kairomonal effect of S. frugiperda sex pheromone on the

FIGURE 4
Olfactory responses of male (A) and female (B) Harmonia axyridis to Z9-14:Ac in a Y-tube olfactometer. Twenty-five females or males that made a
choice were tested for each treatment. N: the number of non-responses. The asterisks indicate significance differences at p < 0.05 (*) and p < 0.01 (**).

FIGURE 5
Olfactory responses ofmale and femaleHarmonia axyridis to the blend of Z7-12: Ac and Z9-14: Ac at the ratios of 1:9 ((A): male; (B) female) and 1:100
((C): male; (D) female) in a Y-tube olfactometer. Twenty-five females ormales that made a choice were tested for each treatment. N: the number of non-
responses. The asterisks indicate significance differences at p < 0.05 (*) and p < 0.01 (**).
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TABLE 1 SYBYL docking results.

OBPs Pheromone Total score Crash Polar D_score PMF_score G_score Chemscore C-score

1 Z7 7.4984 −1.3607 0.9609 −113.8115 −6.4901 −213.263 −19.3919 1

Z9 7.3268 −0.8049 0.8704 −105.3687 26.9388 −222.5839 −18.2059 2

2 Z7 7.5051 −1.3151 0 −108.9621 2.8327 −194.4206 −22.3429 2

Z9 7.2375 −1.213 1.1738 −102.3625 1.3023 −182.1999 −24.8529 0

3 Z7 5.7676 −2.0033 1.1022 −108.926 7.6937 −186.9444 −18.2901 1

Z9 6.2581 −2.0055 2.2794 −96.7706 −13.1954 −202.9398 −20.9771 2

4 Z7 4.3342 −0.7624 0 −409.2545 13.2906 −133.6434 −24.8884 3

Z9 5.0932 −0.5818 1.1844 −425.9345 10.2439 −141.6286 −20.2537 2

5 Z7 7.5756 −0.6529 1.0606 −106.1743 −26.0215 −180.9041 −18.0114 1

Z9 7.2651 −1.7046 0.6805 −119.396 −1.9989 −227.8684 −23.2066 2

6 Z7 3.5491 −0.7891 1.1178 −77.9468 45.792 −120.6242 −7.3713 2

Z9 4.4798 −1.1393 2.0942 −73.4433 43.5507 −115.8393 −11.2191 2

7 Z7 7.4842 −0.6505 2.0904 −103.6945 −69.1741 −194.3866 −24.1644 1

Z9 6.9391 −0.8437 1.3879 −101.1283 −43.8382 −174.9243 −27.272 3

8 Z7 3.339 −1.1489 1.4246 −65.5465 −3.9523 −133.2273 −14.7797 1

Z9 6.5332 −0.5552 2.5324 −72.0579 −10.2369 −133.3388 −15.2353 1

9 Z7 8.3355 −1.6168 1.3211 −111.1679 −30.8611 −228.47 −20.4871 3

Z9 8.7695 −1.4592 1.4936 −101.8224 −8.3198 −184.291 −25.9148 1

10 Z7 5.6784 −0.74 1.1019 −90.4941 −33.8735 −162.3957 −19.1104 1

Z9 5.1383 −1.0542 0 −87.6996 −45.977 −168.931 −23.5797 4

11 Z7 9.2743 −1.0351 0 −121.3123 −54.2514 −227.9555 −27.5486 2

Z9 8.4632 −2.2112 0 −127.8641 −41.3831 −243.0555 −30.4844 0

12 Z7 7.8721 −3.5849 0 −141.6934 −0.3747 −265.4919 −24.683 3

Z9 8.261 −2.8121 0.8586 −132.7201 −12.5932 −283.4571 −30.5738 4

13 Z7 7.3845- −1.8577 2.5499 −94.8605 −7.4795 −184.6 −20.9695 4

Z9 7.1707 −1.4493 3.4835 −97.4874 −45.7917 −211.037 −29.6366 2

14 Z7 6.9463 −1.2832 0 −96.0042 −22.8851 −203.0978 −17.8821 1

Z9 5.648 −1.0494 1.0287 −83.3187 −45.7147 −193.2538 −22.8586 2

15 Z7 3.2736 −0.6834 0 −284.6613 −3.0613 −139.3636 −18.6232 2

Z9 4.8112 −0.8832 1.4739 −304.3181 27.2172 −155.7341 −24.0912 2

16 Z7 7.3746 −1.5197 1.0328 −113.9439 −41.5512 −212.1562 −24.3665 2

Z9 6.871 −1.563 1.2432 −116.9874 −32.7259 −218.7278 −26.9907 3

17 Z7 6.0605 −1.256 1.171 −97.6921 9.5303 −178.554 −17.05 4

Z9 5.8333 −0.9551 0.9593 −92.552 7.787 −170.0882 −17.3433 0

18 Z7 5.7515 −2.4271 0 −102.0482 25.0117 −215.5874 −15.5994 0

Z9 6.2869 −1.1689 1.7872 −91.0506 −5.9071 −154.5452 −21.8616 1

19 Z7 8.0585 −2.0295 0.7858 −118.7177 −24.6058 −232.5992 −23.1932 3

Z9 7.0481 −1.8582 0 −110.9702 −31.4045 −203.4581 −25.354 3
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coccinellid predatorH. axyridis, and the binding properties ofH. axyridis
OBPs to the components of the sex pheromone. Our findings could
provide new strategies for the combined application of sex pheromone
and natural enemies for S. frugiperda control.

The pheromone composition of S. frugiperda was inconsistent
among different geographic populations (Jiang et al., 2022). To sum
up, Z9-14:Ac, Z7-12:Ac, Z9-12:Ac, Z11-16:Ac and E7-12:Ac were
employed by different geographic populations (Sekul and Sparks,
1967; Sekul and Sparks, 1976; Tumlinson et al., 1986; Groot et al.,
2008; Jiang et al., 2022). The sex pheromone components of the Yunnan
population C-strain of S. frugiperda are confirmed as Z7-12:Ac and Z9-
14:Ac (Jiang et al., 2022). Based on the pre-test of the EAG responses of
S. frugiperda to the five identified sex pheromone components, we
found that Z9-14:Ac and Z7-12:Ac elicited strong electrophysiological
responses (Supplementary Figure S1). Therefore, these two components
were as the putative candidates for the experiments.

Electrophysiological and olfactory response assays of H. axyridis
demonstrated that both female and male H. axyridis were strongly
attracted to Z9-14:Ac. Molecular docking showed that OBP12 and
Z9-14:Ac could be closely bonded through hydrogen bonding and
hydrophobic interaction, while there was no good docking effect
between OBP and Z7-12:Ac. The transcript of HaxyOBP12 is mainly
restricted to adult antennae, implying a potential role in olfactory
chemoreception (Qu et al., 2021). These results revealed that H.
axyridis can sense the stimulation of Z9-14:Ac and transfer the
stimulus to its central nervous system. It was suggested that the sex
pheromone component Z9-14:Ac of S. frugiperda could be recognized by
H. axyridis and was acted as an important kairomonal signal when H.
axyridis prey on the eggs and larvae of S. frugiperda. Moreover,
HaxyOBP12 is abundant in the larval stage (Qu et al., 2022),
indicating that it is also involved in the recognition of Z9-14:Ac by
H. axyridis in the larval stage to locate prey.

AlthoughH. axyridis showed a higher kairomonal response to Z9-14:
Ac, further research is needed to determine whether it could be efficient to
be used as a pheromone bait to attract and assemble local population ofH.
axyridis in the fields. Several enemies, such asH. axyridis (Verheggen et al.,
2007), Coccinella septempunctata (Ninkovic et al., 2001), the hoverfly

Episyrphus balteatus (Verheggen et al., 2008), and aphid parasitoids (Liu
et al., 2021), are able to perceive the aphid alarmpheromoneEβF and show
attractant behavior. But in the field, EβF had no effect on the number of
predator (Araneae, Opilionidae, Carabidae, Coccinellidae, Staphilinidae,
Forficulidae, Syrphidae, Formicidae, Polistinae, Parasitiod, and
Chrysopidae) visits to aphid colony or on predator patch residence
times (Joachim & Weisser, 2015). Thus, while sex pheromones may
have potential for application in agricultural pest management strategies,
their ecological role as kairomone in natural settings is worth pondering.
The dose-dependent response tests showed that H. axyridis seemed to
respond tohigher concentrations of Z9-14:Ac, suggesting that the potential
effect of concentration on natural enemy populations must be taken into
consideration when determining the most effective dose to use (Branco
et al., 2006).

In addition,H. axyridis had a significantly higher response to the
mixture of Z7-12:Ac and Z9-14:Ac at the ratio of 1:100 than to 1:9. It
suggested that Z7-12:Ac might increase the avoidance effect of Z9-
14:Ac on H. axyridis. We speculated that insect pest populations
have probably evolved in producing a variety of components of sex
pheromones with various ratios, thus not only forming reproductive
isolation, but also avoiding natural enemy predation or parasite.
Therefore, the ratio effect of the two components of S. frugiperda sex
pheromone on natural enemies should be considered when it is
applied for monitoring and control of S. frugiperda.
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