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Introduction: Recent evidence has emerged suggesting that a non-contact
anterior cruciate ligament (ACL) tear can result from repetitive submaximal
loading of the ligament. In other words, when the intensity of ACL-straining
athletic activities is increased too rapidly, microdamage can accumulate in the
ligament beyond the rate at which it can be repaired, thereby leading to material
fatigue in the ligament and its eventual failure. The objective of this survey-based
exploratory study was to retrospectively determine whether the levels of various
athletic activities performed by ACL-injured patients significantly changed during
the 6 months before injury.

Methods: Forty-eight ACL-injured patients completed a survey to characterize
their participation in various activities (weightlifting, sport-specific drills, running,
jumping, cutting, pivoting/twisting, and decelerating) at three timepoints (1 week,
3 months, 6 months) prior to ACL injury. Activity scores, which summarized the
frequency and intensity of each activity, were calculated for each patient at each
time interval. A series of linear mixed-effects regression models was used to test
whether there was a significant change in levels of the various activities in the 6-
month period leading up to ACL injury.

Results: Patients who sustained a non-contact ACL injury markedly increased
their sport-specific drills activity levels in the time leading up to injury (p = 0.098),
while those patients who sustained a contact ACL injury exhibited no change in
this activity during the same time period (p = 0.829). Levels of running, jumping,
cutting, pivoting/twisting, and decelerating increased for non-contact ACL-
injured patients but decreased for contact ACL-injured patients, though not
significantly (p values > 0.10). Weightlifting activity significantly decreased
leading up to injury among contact ACL-injured patients (p = 0.002).

Discussion: We conclude that levels of ACL-straining athletic activities or
maneuvers in non-contact ACL-injured patients markedly increased in the
6 months leading up to their injury, providing evidence that changing levels of
certain activities or maneuvers may play a role in ACL injury risk. This warrants
further investigation of the hypothesis that too rapid an increase in activities or
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maneuvers known to place large loads on the ACL can cause microdamage to
accumulate in the ligament, thereby leading to failure.
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1 Introduction

Recently, the prevailing dogma that non-contact anterior
cruciate ligament (ACL) injuries are the result of a single
catastrophic maneuver that overloads the healthy ACL has been
challenged. While this can happen on occasion, evidence is
mounting for a second injury mechanism: namely, that of “tissue
fatigue”, by which repetitive submaximal loading of the ACL can
cause microdamage to accumulate in the ligament, thereby
weakening it until it causes the ACL to fail (Lipps et al., 2013;
Woijtys et al., 2016; Chen et al., 2019; Kim et al., 2022). For instance,
in an in vitro simulation of repetitive pivot-landings known to place
the ACL under marked strain, the ACLs of cadaveric knees failed
after fewer than 100 of those submaximal loading cycles (Lipps et al.,
2013). Additionally, ACL tissue microdamage found in another
group of cadaveric knees subjected to these repetitive pivot-landings
(Kim et al., 2022) proved to be similar to that found to have
accumulated in ex vivo ACL collagen fibrils and fibers of non-
contact ACL injury patients at the time of surgery (Chen et al., 2019).
Therefore, the ACL may fail when the accumulation of
microdamage outpaces repair (i.e., catabolic state), similar to
ulnar collateral ligament (UCL) injuries in baseball pitchers. In
these athletes, it has long been established that repetitive throwing at
high velocities without proper recovery can lead to an UCL tear
(Mirowitz and London, 1992). For this reason, the total volume and
frequency of pitches are monitored and limited in baseball. With
regard to the ACL, however, there is as yet no such in vivo evidence
that it can fail via repetitive sub-maximal loading. The focus of this
study, therefore, is to address this knowledge gap by testing our
overall hypothesis that if the ACL can fail via a ‘tissue fatigue’ injury
mechanism, we would expect the frequency and/or intensity of
activities/maneuvers that significantly strain the ACL (hereafter
referred to as “ACL-straining athletic activities or maneuvers”) to
have increased substantially prior to a patient’s ACL non-contact
injury, before the ACL has had adequate time to adapt. In such cases,
natural repair homeostasis would be replaced by a catabolic state
where the rate of ACL tissue degradation exceeds that of synthesis,
leading to an eventual ligament failure.

The purpose of this exploratory study was to determine whether
the frequency and/or intensity at which ACL-injured patients
performed various athletic activities or maneuvers known to
markedly strain the ACL changed in the 6-month period leading
up to their ACL injury. We selected a 6-month period because we
estimated that given the ACL’s relatively slow repair rate (Rucklidge
etal.,, 1992), it would not be able to adapt to a substantial increase in
ACL-straining athletic activities or maneuvers within this
timeframe. Although the exact repair rate of the ACL is
unknown, we do know that ligaments heal more slowly than
other tissues (Panjabi, 2006; Jung et al, 2009) given that
ligaments have lower metabolic activity rates than muscle, bone,
or cartilage (Robi et al.,, 2013; Nyland et al., 2022). In the present
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study, ACL reconstruction patients completed a questionnaire to
retrospectively quantify the frequency and intensity of their athletic
activity/maneuver leading up to injury. The questionnaire was
designed to collect data on various athletic activities and
maneuvers, in particular those that are known to significantly
strain the ACL and have been associated with ACL injuries.
Through video analysis for instance, non-contact ACL injuries
have been found to occur while cutting/changing direction,
pivoting/twisting, decelerating, and landing from a jump (Olsen
et al.,, 2004; Krosshaug et al., 2007; Boden et al., 2009; Walden et al.,
2015; Della Villa et al., 2020). We hypothesized that the frequency/
intensity of ACL-straining athletic activities or maneuvers
(i.e, decelerating, jumping, cutting, pivoting/twisting, sport-
specific drills) would markedly increase in the 6-month period
leading up to ACL injury, especially among those patients that
sustained a non-contact injury.

2 Materials and methods

This study was a retrospective case series survey study. Patients
having suffered an ACL injury were asked to complete one
questionnaire post-injury to quantify the frequency and intensity
at which they performed various athletic activities/maneuvers in the
6-month period leading up to their injury. In particular, it
retrospectively quantified these data for the 6-month, 3-month,
and 1-week pre-injury timepoints.

2.1 Participants

We recruited a convenience sample of 48 ACL-injured
patients (12 males/36 females; age: 19.1 + 6.5 years; height':
1.7 £ 0.1 m; body mass'™: 67.3 + 12.7 kg; BMI™: 23.6 + 4.0 kg/m?*;
data based on 47 patients due to missing data) who voluntarily
completed a questionnaire at their initial post-injury visit (on
average’, 56.8 + 118.7 days post-injury) to determine their
activity patterns leading up to their ACL injury. Most of the
patients were athletes (46/48, 96%; playing experience: 11.4 +
7.7 years), with most athletes participating in sports deemed
risky for ACL injury, such as soccer and basketball. Many
participants were also multi-sport athletes (Table 1). All ACL
injuries were confirmed by physician examination and magnetic
resonance imaging (MRI) evaluation. Fifteen (6 male/9 female)
patients suffered a contact ACL injury, meanwhile 33 (6 male/
27 female) patients suffered a non-contact injury. We excluded
patients with a previous injury to the ACL and/or meniscus of
their ipsilateral knee. All qualifying patients of the senior author
at MedSport, the sport medicine clinic of the University of
Michigan who sustained a primary ACL injury from 2016 to
2019 were invited to participate in this study. This study

frontiersin.org


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1166980

Grodman et al.

TABLE 1 Frequency of Sports in which Patients Participated Prior to ACL Injury.

10.3389/fphys.2023.1166980

Frequency total # (M/F) % of total patients (% of M/F)

Multi-sport

18 (6/12) 37.5% (50.0/33.3)

Ball sports

Soccer
Basketball
Volleyball
Lacrosse
Football
Softball
Baseball
Rugby
Golf

Combined discipline/running/cycling

17 (3/14) 35.4% (25.0/38.9)
12 (5/7) 25.0% (41.7/19.4)
6 (0/6) 12.5% (0/16.7)

7 (0/7) 14.6% (0/19.4)

5 (5/0) 10.4% (41.7/0)

4 (0/4) 8.3% (0/11.1)

1 (1/0) 2.1% (8.3/0)
1(0/1) 2.1% (0/2.8)

1 (0/1) 2.1% (0/2.8)

Track & field
Dance

Cross country/running

4 (2/2) 8.3% (16.7/5.6)
3 (0/3) 6.3% (0/8.3)
2 (0/2) 4.2% (0/5.6)

Biking 1 (1/0) 2.1% (8.3/0)
Snow Sports

Skiing 3 (0/3) 6.3% (0/8.3)

Snowboarding 2 (1/1) 4.2% (8.3/2.8)

Combat sports

Wrestling

Mixed martial arts/Brazilian jiu-jitsu

2 (2/0) 4.2% (16.7/0)
1 (0/1) 2.1% (0/2.8)

Water Sports

Swimming 1 (0/1) 2.1% (0/2.8)
Water polo 1 (1/0) 2.1% (8.3/0)
Rowing 1 (0/1) 2.1% (0/2.8)
No Sport 2 (0/2) 4.2% (0/5.6)

M: male patients; F: female patients.

(HUMO00109196) was approved by the Institutional Review
Board of the University of Michigan Medical School
(IRB00001996).

2.2 Sport and Physical Activity Questionnaire

Each participant completed a “Sport & Physical Activity
Questionnaire” we developed, which retrospectively assessed
the level of various athletic activities and maneuvers of the
participant in the 6-month period prior to their ACL injury (see
Supplemental Material file). We divided the questionnaire into
three identical sections, each corresponding to a different time
point prior to injury: 6 months, 3 months, and 1 week. Within
each section, we asked patients questions about their activity
patterns for seven different activities: weightlifting, sport-
specific drills, running, jumping, cutting, pivoting/twisting,
and decelerating. They described the nature of their
participation relating to each activity by three measures: 1)
indicating (Yes or No) whether they participated in the
activity; 2) providing the frequency (minutes per day and
days per week) at which they participated in the activity; and
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3) rating the intensity at which they participated in the activity
on a 0-10 scale (0 = Not intense; 10 = Most intense).
in the

questionnaire were not mutually exclusive. In other words, it was

The athletic activities or maneuvers of interest

possible for a participant to simultaneously engage in several of the
activities or maneuvers during a single sporting/exercise session.
This is especially true for the many patients that participated in
sports that utilize several of the activities of interest. For example, a
patient that participated in two 90-min soccer practices and one 30-
min running bout per week could have a total frequency of 210 min/
week for the “running” activity and could have a total frequency of
180 min/week for the “sport-specific drills”, “jumping,” “cutting,”
“pivoting/twisting,” and “decelerating” activities (i.e., soccer
typically includes the activities of running, sport-specific drills,
jumping, cutting, pivoting/twisting, and decelerating).

2.3 Quantitative analysis
For analysis purposes, we categorized ACL-straining athletic

activities or maneuvers (cutting, jumping, pivoting/twisting,
decelerating, and sport-specific drills) as ‘risky’. Sports-specific
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Score = (Frequency Value) x (Categorized Intensity Value)

How it is calculated:
® one score per activity
(including ‘risky’ and ‘non
risky’ summative scores) per
timepoint (1 week, 3 months,
6 months) per participant

Units: hours/week

How it is calculated:
e from questionnaire
e ‘frequency’ response
minutes/day multiplied by
‘frequency’ response
days/week, divided by 60
minutes/hour

Units: hours/week

How it is calculated:

e from questionnaire

e ‘intensity’ response on a scale
of 0-10 categorized as ‘light’,
‘moderate’, and ‘vigorous’
intensity, where:
0-3 =1 (light)
4-6 = 2 (moderate)
7-10= 3 (vigorous)

FIGURE 1

Units: none

Activity score calculation. Diagram illustrating the calculation of activity scores. Diagram describes each component of the score calculation: the
score, frequency value, and categorized intensity value. We retrieved the frequency value and categorized intensity value from patient questionnaires.

drills were categorized as “risky” because nearly all the participants
practiced a sport that included a considerable amount of cutting,
jumping, pivoting/twisting, or decelerating in the sports’ basic
maneuvers. We categorized activities or maneuvers not deemed
risky for ACL injury (weightlifting and running) as “non-risky”. We
summarized the frequency and intensity at which the participants
partook in each activity or maneuver by a single score for each
timepoint for each participant. We calculated this score using a
custom formula that was created in consultation with an
experienced statistician with our institution’s statistical consulting
services. The formula multiplies the participants’ responses for
frequency (calculated in ‘hours per week’) and a categorized
intensity value based on their intensity response (Figure 1). The
intensity values were categorized as ‘light’, ‘moderate’, and ‘vigorous’
intensity. The categorization was as follows: 1 for “light” intensity
(patient response values 0-3); 2 for ‘moderate’ intensity (values 4-6);
and 3 for “vigorous” intensity (values 7-10). The grouping of
questionnaire intensity values was selected to parallel those of the
Physical Activity Guidelines for Americans (Olson et al., 2018),
which categorizes intensity values of 5-6 (on a 1-10 scale) as
moderate intensity and 7-8 as the minimum for vigorous
intensity. Additionally, we created summative “risky” and “non-
risky” scores—the sum of the scores of all activities or maneuvers
deemed “risky” and “non-risky”, respectively, in terms of ACL injury
risk as listed above—for each participant at each timepoint.

2.4 Statistical analysis

We used a series of linear mixed-effects regression models to
test whether there was a significant change in the levels of the
aforementioned activities or maneuvers in the 6-month period
leading up to ACL injury. The outcome variable for each model
was the activity score for each activity or maneuver type
(i.e., weightlifting, sport-specific drills, running, jumping,
cutting, pivoting/twisting, decelerating, all “risky” activities
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or maneuvers, and all “non-risky” activities or maneuvers).
The predictor variables for all models were time, injury type,
the interaction of time x injury type and patient. The variables
time and injury type were treated as fixed effects, where time was
a continuous variable representing the number of days relative
to injury (6 months = —182.5 days; 3 months = —91.25 days;
1 week = -7 days; injury = 0days) and injury type was a
categorical variable (coded as 0 = non-contact and 1 =
contact ACL injury). We treated patient as a random effect.
In addition, post hoc analyses were performed using data
obtained from the regression models. First, we statistically
compared the “time vs. score” slope of each injury type
group to zero to test whether there was a significant change
in levels of certain activities or maneuvers in the 6-month
period leading up to ACL injury in each group. Second, we
calculated the estimated marginal means of the activity scores
for the three times points for each activity or maneuver type.
These data were used for graphical purposes. Data were
analyzed in R version 3.6.3 (R Core Team, 2020). The linear
mixed-effects models were created with the Imer() function of
the Ime4 package (Bates et al., 2015). The statistical significance
of the slopes were tested using the emtrends() functions of the
emmeans package (Lenth et al., 2020). Lastly, the estimated
marginal means were calculated with the emmeans() function
also of the emmeans package. We set the alpha level for
statistical significance at 0.10.

3 Results

In those patients that identified themselves as athletes, most
ACL injuries occurred during their season (33/46; 72%), with
fewer injuries occurring in the preseason (7/46;15%) and
offseason (5/46;11%); one patient did not provide this
information. Of all the patients (female/male patients), 66.7%
(F: 61.1%/M: 83.3%), 89.1% (F: 88.2%/M: 91.7%), 91.1% (F:
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TABLE 2 Statistics of the Linear Mixed-Effects Regression Models.

Variable EMS/pB¢ p value® L_95%Cl? U_95%C|*
Weightlifting
Time—all patients —-0.016 0.005 0.003 —-0.026 —-0.005
Time—noncontact injuries —-0.003 0.006 0.542 —-0.015 0.008
Time—contact injuries —-0.028 0.009 0.002 —-0.046 —-0.011
Time*injury type —-0.025 0.010 0.020 —0.045 —-0.004
‘ Sport-specific drills
Time—all patients 0.016 0.016 0.316 —-0.016 0.048
Time—noncontact injuries 0.026 0.016 0.098 —0.005 0.057
Time—contact injuries 0.006 0.028 0.829 —-0.049 0.061
Time*injury type —-0.020 0.032 0.529 —0.082 0.042
‘ Running
Time—all patients —-0.007 0.011 0.540 —-0.029 0.016
Time—noncontact injuries 0.011 0.012 0.378 —-0.013 0.034
Time—contact injuries —-0.024 0.019 0.208 —-0.062 0.014
Time*injury type —-0.035 0.023 0.126 —-0.079 0.009
‘ Jumping
Time—all patients —-0.010 0.011 0.375 —0.033 0.013
Time—noncontact injuries 0.011 0.011 0.347 —-0.012 0.034
Time—contact injuries -0.031 0.020 0.119 -0.070 0.008
Time*injury type —-0.042 0.023 0.070 —0.087 0.003
‘ Cutting
Time—all patients -0.005 0.011 0.652 -0.026 0.017
Time—noncontact injuries 0.001 0.012 0.929 -0.022 0.024
Time—contact injuries —-0.011 0.018 0.552 —-0.047 0.025
Time*injury type —-0.012 0.021 0.583 —0.054 0.030
‘ Pivoting/Twisting
Time—all patients —-0.007 0.010 0.478 —-0.026 0.012
Time—noncontact injuries 0.012 0.010 0.237 —-0.008 0.033
Time—contact injuries —-0.026 0.016 0.115 —-0.059 0.007
Time*injury type —0.038 0.019 0.051 —-0.076 —0.000
‘ Decelerating
Time—all patients —0.004 0.010 0.693 —-0.024 0.016
Time—noncontact injuries 0.008 0.011 0.471 —-0.014 0.029
Time—contact injuries -0.016 0.017 0.349 —0.049 0.018
Time*injury type —-0.024 0.020 0.239 —0.063 0.015

Non-risky activities

Time—all patients —-0.024 0.014 0.093 —0.051 0.004
Time—noncontact injuries 0.011 0.014 0.441 —-0.017 0.040
Time—contact injuries —-0.058 0.024 0.016 —-0.105 —-0.011
Time*injury type —-0.069 0.028 0.014 —-0.123 -0.014

Risky activities

Time—all patients 0.017 0.063 0.784 -0.108 0.143
Time—noncontact injuries 0.073 0.061 0.236 -0.049 0.194
Time—contact injuries —-0.038 0.110 0.732 —-0.258 0.182
Time*injury type -0.111 0.125 0.381 -0.354 0.138

Abbreviations: EMS, estimated marginal slope; SE, standard error; L_95%CI: lower limit of 95% confidence interval; U_95%CI: upper limit of 95% confidence interval; units of “time” are days;
bold values indicate statistical significance (p < 0.10).” refers to the estimated marginal slope data for the “time” variables and to the regression coefficient () data for the “time*injury type”
interaction.
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88.2%/M: 100%), 86.4% (F: 87.9%/M: 81.8%), 76.6% (F: 77.1%/
M: 75.0%), 95.6% (F: 94.1%/M: 100%), and 82.2% (F: 79.4%/M:
90.9%) participated in weightlifting, sport-specific drills,
running, jumping, cutting, pivoting/twisting, and decelerating
activities, respectively.

The statistics of the linear mixed-effects regression models
for all athletic activities or maneuvers of all patients are
presented in Table 2. A graphical representation of the
change in each activity or maneuver’s score over the 6-
month period leading up to ACL injury, for each injury
group, can be found in Figure 2. Interestingly, patients who
sustained a non-contact ACL injury significantly increased their
sport-specific drills activity (i.e., score) in the 6-month period
leading up to injury; meanwhile no change was observed in the
sport-specific drills activity in the patients who sustained a
contact injury (Table 2; Figure 2). In addition, the linear
mixed-effects regression model for weightlifting revealed that
patients engaged in significantly decreasing weightlifting
activity over the 6-month period leading up to injury
(Table 2; Figure 2). When breaking down the results by
injury type, ACL injury patients
decreased their weightlifting activity leading up to injury;
meanwhile no change was noted in weightlifting activity in
the non-contact injury patients (Table 2; Figure 2). Similarly,
contact ACL-injured patients also significantly decreased their
combined non-risky activities or maneuvers, which includes
weightlifting, leading up to injury (Table 2; Figure 2).

contact significantly
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The change in the frequency/intensity of the running,
jumping, cutting, pivoting/twisting, and decelerating
activities or maneuvers, as well as the summative risky and
non-risky activities or maneuvers in the 6 months leading up to
ACL injury exhibited an interesting trend. Levels tended to
increase in the non-contact ACL injury participants but tended
to decrease in the contact injury participants (Figure 2). In fact,
the change leading up to injury in levels of weightlifting,
jumping, pivoting/twisting, and the summative non-risky
activities/maneuvers between
patients who sustained a contact ACL injury and those who

sustained a non-contact ACL injury (Table 2; Figure 2).

was significantly different

4 Discussion

This retrospective study investigated whether the frequency
and/or intensity at which ACL-injured patients performed
various athletic activities or maneuvers significantly changed
in the 6-month period leading up to their ACL injury. Our
results indicate that indeed there was a change in the
frequency/intensity of several activities or maneuvers in the
months leading up to injury. There was a significant increase
in the frequency/intensity of sport-specific drills in patients who
sustained a non-contact ACL injury; and there was a significant
decrease in the frequency/intensity of weightlifting and
summative non-risky activities or maneuvers in those who
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sustained a contact ACL injury. In general, this study illustrated a
trend for levels of athletic activities or maneuvers deemed “risky”
in terms of ACL injury to increase leading up to a non-contact
ACL injury and for levels of ‘non-risky’ activities/maneuvers to
decrease leading up to a contact injury. The rate at which the
levels of various athletic activities or maneuvers changed in the 6-
month period leading up to injury was significantly different
between non-contact and contact ACL injury patients. In
particular, this rate of change was significantly different
between injury mechanism groups for jumping, pivoting/
twisting, and weightlifting.

The significant increase in the frequency and/or intensity of
sport-specific drills activity leading up to a non-contact ACL injury
is consistent with the notion that the ACL can fail due to the
accumulation of microdamage when subjected to submaximal
repetitive loading (i.e., ‘tissue fatigue’ injury). The general trend
of increasing levels of athletic activities and maneuvers deemed
‘risky” in terms of ACL injury risk amongst non-contact ACL injury
patients prior to injury is also in line with this notion. This is because
a marked increase in the intensity and/or frequency of ACL-
straining athletic activities and maneuvers, without allowing
enough time for the ACL to adapt, may cause the ligament to
transition from a state of homeostasis where its repair rate matches
its rate of microdamage to a catabolic state, leading to progressive
weakening and then the eventual failure of the ACL under normal
conditions. A good example of this tissue homeostasis, or lack
thereof, in the sports world is the UCL injury in baseball
pitchers. It has been established that the UCL can sustain a
“tissue fatigue” injury whereby microdamage accumulates in the
ligament of pitchers who repetitively throw at high velocities without
scheduling enough rest to allow for adequate ligament repair
(Mirowitz and London, 1992). This careful balancing act between
catabolic and anabolic processes exists in other tissues. For example,
in skeletal muscle and bone remodeling, there is a coordinated
process that balances protein degradation vs. protein synthesis and
bone resorption vs. bone formation, respectively (McCarthy and
Esser, 2010; Raggatt and Partridge, 2010). As for the ACL, evidence
of such a “tissue fatigue” injury mechanism comes from ex vivo ACL
tissue, retrieved from non-contact ACL injured patients during their
reconstruction surgery, when compared to ACL tissue from
repeatedly-loaded cadaveric knees (Chen et al., 2019; Kim et al,
2022). These cadaveric knees had undergone repeated loading that
simulated pivot-landings (i.e., knee compression, flexion, and
internal tibial rotation) and were investigated for damage to the
ACL. Interestingly, the cadaveric ligaments exhibited disruptions of
the collagen in the form of unraveling and voids following repetitive
loading (Kim et al., 2022), the same pattern of structural damage that
was found in the ACL explants from non-contact ACL injury
patients undergoing reconstruction (Chen et al., 2019). In short,
results of the present study represent the first in vivo evidence that
significant increases in sports training dosage, in particular ACL-
straining athletic activities and maneuvers, are associated with non-
contact ACL injury. This provides indirect support for the “tissue
fatigue” injury mechanism for which the ACL does not have enough
time to fully repair, thereby leading to the accumulation of
microdamage, weakening of the ligament and eventual failure.

Demonstrating that the ACL can fail via a “tissue fatigue” injury
mechanism, whereby a rapid increase in the intensity of ACL-straining
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athletic activities and maneuvers can affect the balance between ACL
degradation and recovery, has several implications for injury
prevention. For instance, monitoring and limiting athletes” levels of
ACL-straining activities and maneuvers, similar to the use of the pitch
count for baseball players in UCL injury prevention, may help prevent
some non-contact ACL injuries (Wojtys et al,, 2016). Doing so would
give the ACL enough time to recover between bouts of large strain and
thus ligament homeostasis could be maintained. This does not preclude
training activities and maneuvers known to not significantly load the
ACL such as running without sharp turns, for example,. For ACL ‘tissue
fatigue’ injury prevention efforts to be successful, many factors that are
currently poorly characterized need to be investigated and taken into
consideration. First, the healing rate of the ACL is poorly understood
although we know that it is relatively slow compared to other tissues
such as bone, cartilage, and muscle (Panjabi, 2006; Jung et al., 2009;
Nyland et al,, 2022), thus making the ACL particularly susceptible to the
accumulation of microdamage from repetitive submaximal loading
cycles. Second, the location of the microdamage within the ligament
should also be considered because the ligament insertion sites take
longer to remodel than other regions (Arnoczky, 1983; Toy et al., 1995).
Third, sex differences in ACL healing rate should be investigated. For
example, female athletes experience ACL injuries 2-10 times more
frequently than males due to several established physiological and
anatomical factors (Sturnick et al., 2015; Shultz et al.,, 2019; Barnum
etal,, 2021). Perhaps a sex difference in ligament healing rate is another
contributing factor. If such a sex difference exists, it could have affected
our results since the majority of the ACL-injured patients were females.
Fourth, nutrition and sleep should be considered as well given that these
factors can contribute to the integrity of the ACL’s extracellular matrix
(Dodt et al., 1997; Kjaer et al., 2009; Nyland et al., 2022). Lastly, age
differences exist in the turnover rate of collagen and should be taken
into consideration (Sivan et al,, 2008). Additionally, with the hamstrings
and quadriceps known as agonists and antagonists, respectively, to the
ACL, athletes can train to perform their respective sport maneuvers in a
way that minimizes ACL strain but without compromising
performance (Withrow et al,, 2006; 2008; Wojtys et al., 2016). This
concept of optimizing maneuvers is important given the known inverse
relationship between ACL load and number of loading cycles to
ligament failure (Lipps et al., 2013). In vitro repetitive loading of
human knees revealed that when the magnitude of the repetitive
load applied to the knee decreased, the number of loading cycles
needed to fail the ACL increased. Therefore, if athletes are able to
optimize their maneuvers to consistently keep the strain placed on the
ACL below a certain threshold by using a monitoring system, for
example, it is possible that many ACL fatigue injuries could be
prevented effectively.

The significant decrease in weightlifting and summative non-risky
athletic activities and maneuvers in contact ACL-injured patients is an
interesting result. Given that the summative non-risky activity score
combined the scores of only the weightlifting and running activities, this
significant decrease in non-risky activity levels was most likely due to
the significant decrease in weightlifting activity level. Accordingly, this
decrease in weightlifting activity might have resulted in the patients’
muscle strength not being maintained during the 6-month period
leading up to injury. Although most contact injuries are probably a
result of a single event that places the healthy ACL under excessively
large strain, where the accumulation of microdamage in the ligament
plays a minimal role, a decrease in muscle strength may cause the knee
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to become more susceptible to injury for a variety of reasons. Muscle
strength is important for controlling lower limb dynamic stability and
aids in resisting muscle fatigue, which is associated with decreased
performance (Schipplein and Andriacchi, 1991; Besier et al, 2003;
Hunter et al., 2004). In fact, loss of lower extremity muscle strength has
been associated with greater risk of sustaining a traumatic knee injury in
females (Ryman Augustsson and Ageberg, 2017). Therefore, the
reduction in weightlifting activity may have placed the knee and its
ACL at an increased risk of injury.

Some limitations of our study should be noted. First, since this
was a retrospective survey, it is subject to recall bias. We relied on the
patients to accurately recall their activity levels up to 6 months before
their ACL injury. It probably helped that the majority (57%) of the
patients completed the questionnaire within 1 month of injury, with
85% completing it within 2 months, and 89% within 3 months,
thereby limiting the recall period and potentially reducing recall
bias. In addition, many athletes have set schedules for their
extracurricular activities, which can ease recall. Second, the
questionnaire only assessed levels of athletic activities and
maneuvers at three time points (6 months, 3 months, and 1 week)
prior to injury. This was implemented by design in order to balance
the collection of detailed data with the questionnaire’s time burden on
the patients and their willingness and ability to complete it adequately.
Thus, it did not capture any changes in activities or maneuvers that
may have occurred during the 3-month intervals between these time
points. Nevertheless, we are confident that this 3-month interval
captured any significant changes that would affect ACL integrity given
the slow turnover rate of the ACL collagen (Rucklidge et al., 1992).
Third, our sample size was modest, especially when assessing non-
contact and contact ACL injury groups separately; nevertheless, we
found statistically significant changes in activity levels in the 6-month
period leading up to ACL injury. Building on our finding that sport-
specific drills activity significantly increased in non-contact injury
patients, future research should increase the sample size with a focus
on non-contact injury patients. This could uncover other athletic
activities or maneuvers that exhibit a similar pattern. Fourth, there
were missing data for several patients. However, our statistical
approach—the linear mixed-effects regression model—allowed for
the retention of all data from all patients as opposed to alternate
approaches (e.g., analysis of variance), which removes cases with
missing data from the analysis. Lastly, we did not account for other
contributing factors to injury risk such as the patients’ nutrition, sleep,
and use of a knee brace. However, given that the athletes were largely
amateurs (school-aged or recreational adult athletes), we suspect that
such factors confounded our study’s results minimally, if at all.

Ultimately, the levels of several athletic activities/maneuvers of ACL-
injured patients changed in the 6 months leading up to their injury,
including a significant increase in levels of sport-specific drills among
patients who sustained a non-contact injury and a significant decrease in
weightlifting activity among those who sustained a contact injury. These
results provide evidence that a rapid increase in levels of activities/
maneuvers known to apply large forces on the ACL may be a risk factor
for injuries to this ligament, especially for non-contact ACL injuries,
which has implications for training and injury prevention. Future
research should aim to provide direct in vivo evidence of
microdamage accumulation in the ACL, for instance by means of
serum biomarkers (Svoboda et al, 2016) or magnetic resonance
imaging (Barnes et al,, 2023).
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