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Editorial on the Research Topic
Noncanonical functions of aminoacyl-tRNA synthetases

Aminoacyl-tRNA synthetases (aaRS) catalyze the first step of protein synthesis by
attaching amino acids to tRNAs. During this key step, aminoacyl-tRNA synthetases further
ensure the correct interpretation of the genetic code by providing the ribosome with the
building blocks for proteins (Woese et al., 2000). However, this well-studied and strictly
conserved “canonical” function of aaRS does not encompass the whole complexity of this
ancient protein family. During evolution, aaRS have been co-opted, copied, extended, and
mutated to fulfill additional functions (Guo and Schimmel, 2013; Sun et al., 2016; Zhang
et al., 2021). In addition, alternatives to aaRS have also been found, as prokaryotes often do
not contain a full set of aaRS for all the 20 proteinogenic amino acids that are shared between
all living beings.

In this issue, the non-canonical functions of aaRS are discussed and showcased across
different kingdoms. In addition to the non-canonical use of aaRS, alternative pathways of
tRNA aminoacylation are also discussed. Together, they paint a picture of the versatility of
aaRS and the creativity of nature in making use of them.

Mukai et al. demonstrate alternative pathways to encode cysteine in prokaryotes and find
that they are far more widespread than previously assumed. Cysteine incorporation can
occur as a two-step mechanism, which has also been described for other amino acids.
However, the aminoacylation of tRNAs with, for example, glutamine, relies on the relaxed
specificity of the aaRSs which recognizes a chemically very similar amino acid, glutamate.
The prokaryote thereby effectively “saves” the addition of a designated aaRS. Cysteine
incorporation on the other hand requires a specialized aaRSs, which attaches a
phosphoserine to tRNA, which is then modified to a cysteine (Mukai et al., 2021).
Mukai et al. explore how common this mode is by using bioinformatical techniques and
gain surprising insights into the creativity of interpreting a shared genetic code across
species.

In contrast, Krahn et al. take the opposite direction. Instead of looking into different ways
in which the same amino acid can be attached to a tRNA, they explore how to get the most
use out of aaRS, which is by copying them (Krahn et al., 2022). Discussing the most extreme
form of co-opting, which is to make a copy and use it for an alternative function, they explore
the potential of aaRS-like proteins in alternative functions (or even in the same). AaRS are
mostly thought of as single-copy genes to keep evolutionary pressure high, as misacylation
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could have fatal consequences due to protein misfolding and a loss of
function if key residues are exchanged. Despite this, gene
duplications have been found, and in an excellent summary,
Krahn et al. discuss why they persist: while some have increased
functionality under extreme conditions, enabling accurate tRNA
aminoacylation where the primary enzyme fails, others lose or adapt
their aminoacylation activity and instead confer cell-signaling
functions or modifications of other biomolecules (Krahn et al.,
2022). The appearance of these duplicated and co-opted aaRS
across all kingdoms impressively demonstrates the potential role
of aaRS in a variety of functions.

In humans, this diversity of function especially comes into focus
during disease states. Viral infections have tremendous societal impact,
as demonstrated by the COVID-19 pandemic. Interestingly, Feng et al.
found that several aaRS interact with SARS-CoV-2 proteins and
showcase their distinct regulation and post-translational modification
upon infection, supporting the hypothesis that theymight play key roles
during viral infections (Feng et al., 2021). Exploring this angle of aaRS
biology holds tremendous therapeutic potential, as individual aaRS
domains can hold the key to modulate disease progression, as
demonstrated in recent clinical studies. By taking a deep dive into
the interplay with virus-derived biomolecules, the stage is set for a
reimagining of the roles that aaRS hold.

Another consideration regarding aaRS and human health is that
genetic mutations in aaRS can cause disease in patients. Turvey et al.
discuss mono and biallelic mutations that lead to
neurodevelopmental and degenerative diseases in both
cytoplasmic and mitochondrial aaRS as well as autoimmune
disorders caused by antibodies raised against endogenous aaRS
(Turvey et al., 2022). This impressive overview contains a list of
known disease-causing mutations in humans, which will surely be a
resource for future studies. Thanks to the hard work and critical

review by the authors, this article provides a wealth of reference
material and summarizes and contextualizes recent findings in the
field.
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