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The present review considers the putative hormonal opioid peptides in birds. In birds
and all other vertebrates, there are four opioid related genes encoding a series of
peptides. These genes are, respectively, proenkephalin (PENK), prodynorphin (PDYN),
pronociceptin (PNOC) and proopiomelanocortin (POMC). Proenkephalin (PENK)
encodes Met- and Leu-enkephalin together with peptides containing met
enkephalin motifs in birds, mammals and reptiles. Proopiomelanocortin (POMC)
encodes β endorphin together with adrenocorticotropic hormone (ACTH), and
melanocyte stimulating hormone (MSH). Prodynorphin (PDYN) encoding
dynorphins A and B with α- and β-neoendorphins together intermediate
polypeptides across the vertebrates. Pronociceptin (PNOC) encodes nociceptin
together with possibly putative avian nocistatin and a non-opioid peptide derived
from the C terminal of pronociceptin. There is a high degree of identity in the
sequences of enkephalin peptides, dynorphin-A and B and nociceptin in birds and, to
a less extent, across vertebrates. The opioid peptides exert effects related to pain
together with other biological actions such as growth/development acting via a series
of opioid receptors. What is unclear, particularly in birds, is the biological roles and
interactions (additivity, antagonistic and synergistic) for the individual opioid peptides,
the processing of the prohormones in different tissues and the physiological
relevance of the different peptides and, particularly, of the circulating forms.
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1 Introduction

This review will consider the neuropeptides from PENK, PDYN, and PNOC focusing on
these in birds. With one exception, these peptides contain an enkephalin motif; this being an
tetrapeptide with tyrosine–glycine—glycine–phenylalanine residues (YGGF). Moreover, a
series of questions will be asked. It is noted that we have previous reviewed the peptides from
POMC and, hence, these will not be discussed in the present discussion (Scanes and
Pierzchała -Koziec, 2018; Scanes and Pierzchała -Koziec, 2021).

Four genes have been identified that encode opioid peptides. These are the following:

• Proenkephalin (PENK) encoding Met- and Leu-enkephalin,
• Proopiomelanocortin (POMC) encoding β-endorphin, adrenocorticotropic hormone
(ACTH), and melanocyte stimulating hormone (MSH),
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• Prodynorphin (PDYN) encoding Dynorphin-A and B
together with α-Neoendorphin and β-Neoendorphin,

• Pronociceptin (PNOC) encoding Nociceptin/Orphanin FQ
together with a putative avian nocistatin and a possibly
biologically active C terminal peptide (reviewed: Bu et al.,
2020; Dhaliwal and Gupta, 2022).

There is some evidence for other opioid like peptides. For
example, Zadina and colleagues (1997) reported two peptides
with opioid activity, namely, endomorphin-1 (YPWF-NH2) and
endomorphin-2 (YPFF-NH2). However, a gene(s) encoding
endomorphin-1 and endomorphin-2 has not been yet identified.
Other endomorphin-like peptides have been reported, specifically
mexneurin 1 (Mx 1), Mx 2, and Mx 3. These are encoded by
prepromexneurin (Matus-Ortega et al., 2017).

There are four major types of opioid receptors. These G protein-
coupled receptors include the following:

• Delta opioid receptors (DOR) binding Met- and Leu-
enkephalin,

o Sub-types
⁃ Delta 1
⁃ Delta 2

• Mu opioid receptors (MOR) binding β endorphin together
with both endomorphin 1 and 2,

o Sub-types
⁃ Mu 1
⁃ Mu 2
⁃ Mu 3

• Kappa opioid receptors (KOR) binding dynorphin-A and B,
o Sub-types

⁃ Kappa 1
⁃ Kappa 2
⁃ Kappa 3

• Nociceptin receptors (NOR) (naloxone insensitive) binding
nociceptin

(reviewed: Bu et al., 2020; Dhaliwal and Gupta, 2022). In
addition, there is a zeta opioid receptor (reviewed Dhaliwal and
Gupta, 2022).

1.1 Evolution of PENK, PDYN, PNOC, and
POMC genes

Proenkephalin, prodynorphin, pronociceptin, and
proopiomelanocortin (POMC) not only share enkephalin motifs
but also cysteine residues at similar points in their sequences
(reviewed: Fricker et al., 2022). The basis for four opioid genes
and, also, the four receptors are two separate gene duplication early
in vertebrate evolution (Sundström et al., 2010).

1.2 Converting enzymes

Proenkephalin, prodynorphin, and pronociceptin can be cleaved by
a series of cysteine proteases/thiol proteases/convertases acting at both
monobasic and dibasic sites. This generates a series of neuropeptides

depending on the presence and specificity of the convertases. Different
tissues can have different expression levels of proenkephalin and/or
prodynorphin and/or pronociceptin and different convertases
generating a series of neuropeptides (Day et al., 1998).

2 Proenkephalin (PENK) and the derived
enkephalin neuropeptides

2.1 Structures and processing of
proenkephalin and enkephalin
neuropeptides derived from proenkephalin

Met-enkephalin is a pentapeptide with the following sequence
of amino-acid residues: tyrosine–glycine-glycine- phenylalanine–
methionine (YGGFM). Similarly, Leu-enkephalin is a pentapeptide
with the following sequence of amino-acid residues:
tyrosine–glycine-glycine- phenylalanine–leucine (YGGFL).

There are seven enkephalin motifs (YGGFM/L with two basic
amino-acid residues adjacent to the ends of the motif) in avian
proenkephalin (see Figure 1; Supplementary Figure S1).
Proenkephalin can processed into the following:

• YGGFM x 4 [sites 1, 2, and 4 (Figure 1)]
• YGGFL [Site 5 (Figure 1)]
• YGGFMRF or YGGFMR [Site 6 (Figure 1)].

The possibility of additional biologically active products of
proenkephalin are discussed below under “Biological activity of
Met-enkephalin and other proenkephalin derived peptides”.

There are also both glycosylation and phosphorylation sites
within proenkephalin (reviewed: Fricker et al., 2022).

2.2 Evolution of enkephalin peptides

Four enkephalin peptides (YGGFM x 4, YGGFL, and YGGFMRF/
YGGFMR), have identical sequences in birds, mammals and reptiles.
Moreover, there are the same flanking basic amino acid pairs (Table 1).
In contrast, the peptide (YGGFMRSI or YGGFMRSV) in birds and
reptiles differs from that in mammals (Supplementary Figure S1). The
regions of proenkephalin that are not part of enkephalin peptides show
little variation across the class Aves and in reptiles (see Supplementary
Figure S1).

It is noted that there are degenerate enkephalin motifs and/or the
absence of flanking pairs of basic amino acid residues in both boney and
cartilaginous fish (see Table 2; Supplementary Figure S1). Leu-
enkephalin is not present in non-tetrapod sarcopterygians,
actinopterygian fish or cartilaginous (Chondrichthyes) fish with
Met-enkephalin replacing it (Table 2).

2.3 Converting enzymes and proenkephalin

There are multiple converting enzymes generating
neuropeptides from proenkephalin (see Figure 1). For instance,
cathepsin L in secretory vesicles in chromaffin granules converts
proenkephalin to enkephalins (Yasothornsrikul et al., 2003).
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FIGURE 1
Structure of chicken preproenkephalin (deduced from mRNA Genbank XM_040664746). Key: PC prohormone convertase Pink highlighted
indicates pairs of basic amino acid residues Green highlighted indicates enkephalin motifs Black highlighted indicates signal peptide Blue highlight other
amino acid residues.

TABLE 1 Enkephalin peptides with flanking pairs of basic amino acid residues.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Enkephalin

Aves YGGFM x 2 YGGFM YGGFMRSI YGGFM YGGFL YGGFMRF

Mammalia YGGFMRGL or
YGGFMKSA

Reptilia YGGFMRSI

Amphibia YGGFMRDY or
YGGFMRGS

YGGFM

Non-tetrapod
Sarcopterygii

YGGFMRSL

Actinopterygii YGGFM & YGGFT or YGGFMI YGGFI or
absent

e.g., YGGFM Absent YGGFMGY or
YGGFMD

Chondrichthyes YGGFM x 2 YGGFM YGGFMNGF YGGFM YGGFMRI

Pairs of flanking basic amino acid residues

Aves KK & KK with KR between
2 motifs

KR & KK KR & KR KR & RR KR & KR KR

Mammalia

Reptilia

Amphibia KR & RR

Non-tetrapod
Sarcopterygii

KR & KK with KR between
2 motifs

Actinopterygii KK & KK with KR between
2 motifs

Not
applicable

Chondrichthyes KR & KK KR & KR
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2.4 Biological activity of Met-enkephalin and
other proenkephalin derived peptides

It is reasonable to assume that Met- and Leu-enkephalin play a
role in reducing pain and associated responses in mammals (Cullen
and Cascella, 2022; Dhaliwal and Gupta, 2022) and birds (Scanes
and Pierzchała-Koziec, 2018).

There are also negative effects of Met-enkephalin on growth and
development. For instance, Met-enkephalin inhibits angiogenesis in the
chorioallantoic membrane of chick embryo with the effect reduced in
the presence of naltrexone (Blebea et al., 2000). Moreover, Met-
enkephalin exerts an anti-proliferative effect on cultured
adrenocortical cells (rat: Malendowicz et al., 2005). Furthermore,
Met-enkephalin depresses proliferation of peripheral blood T cells
based in the elevated proliferation following application of anti-sense
oligonucleotide (humans: Kamphuis et al., 1998). In contrast, Met-
enkephalin stimulated proliferation by human peripheral lymphocytes
(Hucklebridge et al., 1989).

It is assumed that proenkephalin derived peptides act via δ opioid
receptors; withmet- and leu-enkephalin having similar activities in both
a cortical acetylcholine release assay in rats (Jhamandas and Sutak,
1980) and evoking a response with chicken δ opioid receptors (Bu et al.,
2020). While this is probably the case with Met-and Leu-enkephalin,
there is evidence that other proenkephalin derived peptides act via κ or

μ opioid receptors. Fragments of proenkephalin have been isolated from
bovine adrenal medullary tissue; these containing at least one
enkephalin motif (Mizuno et al., 1980a; Mizuno et al., 1980b;
Kilpatrick et al., 1981) (Table 3). Superficially, it would be thought
that these endogenous fragments that are smaller and closer to the
enkephalin would have greater biological activity. However, that is not
the case. In fact, the longer the fragments, the greater their activities are
in a guinea pig ileum assay (Table 3) (Kilpatrick et al., 1981). These
might be dismissed as irrelevant to a discussion of avian opioids. What
suggests that these peptides are important to avian physiology is that the
sequences of these putative fragments in chickens as an exemplar bird,
the chicken, are identical to those in cattle (Table 3; Figure 3;
Supplementary Figure S1). Were these not to be functional, random
mutations would have been expected in 315 million years since the last
common ancestor of birds and mammals (Irisarri et al., 2017). Without
selective pressure, these would be incorporated to proenkephalin.

2.5 Circulating and tissue concentrations of
Met-enkephalin

Table 4 summarizes plasma and tissue concentrations of Met-
enkephalin in chickens. Plasma concentrations of native Met-
enkephalin (free, five amino acids peptide) were similar in male

TABLE 2 Comparison of enkephalin motifs in proenkephalin and prodynorphin in vertebrate classes.

Enkephalin motifsa Met-enkephalin Motifsb Leu-enkephalin Motifsc Degenerate motifsd

Proenkephalin

Mammalia 7 6 1 0

Aves 7 6 1 0

Reptilia 7 6 1 0

Amphibia 7 6 1 0

Non-tetrapod sarcopterygians 7 7 0 0

Actinopterygii 5 5 0 2

Chondrichthyes 7 7 0 0

Prodynorphin

Mammalia 3 0 3 0

Aves 4 2 1 1

Reptilia 5 35 1 0

Amphibia 4 2 2 0

Non-tetrapod sarcopterygians 4 05 3 0

Actinopterygii 5 16 2–3 1–2

Chondrichthyes 5 1–3 1 1–2

aYGGFM/L.
bK/RK/RYGGFMK/RK/R.
cK/RK/RYGGFLK/RK/R.
dGGFM, or YGGF, or GGF, with or without flanking pairs of basic amino-acid residues.
ePlus YGGFF.
fPlus YGGFI.
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and female chickens (Table 4). Plasma concentrations of cryptic
Met-enkephalin (total, Met-enkephalin released from
proenkephalin by enzymatic hydrolysis) were 15.7 fold higher
than those of native Met-enkephalin (Table 4).

What are the possibilities? It may be a proenkephalin, or
fragments of proenkephalin (as in Table 1) or intermediate forms
in the processing of proenkephalin as is seen with dynorphin (see
section below—Converting Enzymes and Prodynorphin).

The highest concentrations of Met-enkephalin in chickens are in
the hypothalamus, adrenal gland and anterior pituitary gland (see
Table 4) (Pierzchała-Koziec and Mazurkiewicz-Karasińska, 2016).

2.6 Stress and circulating concentrations of
Met-enkephalin

In mammals, there is strong evidence that plasma concentration
of immunoreactive Met-enkephalin are elevated by stresses such as
insulin induced hypoglycemia in sheep (Owens et al., 1988),
induction of diabetes in rats (Kolta et al., 1992), acute induction
of hypotension in anesthetized dogs (Mason et al., 1987) and
restraint stressed rats (Barron et al., 1990).

Similarly, both plasma concentrations of native Met-enkephalin
and adrenal expression of PENK (proopiomelanocortin) were elevated
in female chickens subjected to restraint. Water deprivation did not
affect either native or cryptic Met-enkephalin but depressed adrenal
concentrations of Met-enkephalin. Plasma concentrations of native but
not cryptic Met-enkephalin were increased in feed deprived immature
female chickens.Morphine challenge was followed by depressed plasma
and adrenal concentrations of both native and cryptic Met-enkephalin
together with decrease adrenal expression of PENK in female chickens
(Pierzchała-Koziec and Mazurkiewicz-Karasińska, 2016). Plasma
concentrations of native Met-enkephalin were increased in young
chickens stressed by crowding while adrenal concentrations of Met-
enkephalin were depressed by crowding.

It is generally assumed that plasma is the compartment of
blood in which hormones are found. However, in mammals, Met

enkephalin is reported to be produced by leukocytes (human:
Kraemer et al., 2013). Similarly, Met-enkephalin is reported to
be synthesized by peripheral blood T cells and monocytes
(humans: Kamphuis et al., 1998). Production of Met-
enkephalin by monocytes was increased in the presence of
lipopolysaccharide (humans: Kamphuis et al., 1998). An
additional possibility is that fragments of proenkephalin and/
or Met- or Leu-enkephalin are generated at the target tissue
level.

2.7 Differential processing and release of
proenkephalin derived neuropeptides

There is strong evidence that basal and stressed induced
circulating concentrations of proenkephalin derived
neuropeptides can be and, often are, different. The late fetal
increases in circulating concentrations of Met-enkephalin were
smaller than those for Met-enkephalin-arginine-phenylalanine
(MERF) (Simonetta et al., 1993). Moreover, induction of
hypotension in fetal sheep was accompanied by markedly
greater increase in circulating concentrations of MERF than
those of Met-enkephalin (Mateo et al., 1995). Similarly,
asphyxia is followed by increases in circulating concentrations
of MERF in fetal sheep (Coulter et al., 1990). Furthermore, there
were increases circulating concentrations of MERF but not Met-
enkephalin in hypoxic fetal sheep (Simonetta et al., 1996). There
is not information on the differential release of different
enkephalin peptides in birds.

2.8 Questions

What is not known are the following:

1. The extent to which different enkephalin peptides are released
and whether this varies with different tissues.

TABLE 3 Biological activity of a series of cattle opioid peptides in the guinea pig ileum assay (data calculated from Kilpatrick et al., 1981).

Opioid peptides Mammalian peptide Potency in guinea pig ileum assaya

Met-enkephalin YGGFM 1.0

Leu-enkephalin YGGFL 0.071

β-endorphin YGGFMTSEKSQTPLVTLFKNAIIKNAHKKGQb 1.16

Dynorphin A 1–13 YGGFLRRIRPKLK 69.2

Extended enkephalin containing peptides (mammalian)

BAM12c YGGFMRRVGRPE 2.3

BAM20c YGGFMRRVGRPEWWMDYEKR 16.4

BAM22c YGGFMRRVGRPEWWMDYEKRYG 27.7

Peptide E YGGFMRRVGRPEWWMDYEKRYGGFL 37.5

aActing via κ opioid receptors.
bGeneBank accession XM_019970607.
cMizuno et al., 1980a; Mizuno et al., 1980b
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2. The biological activities of different proenkephalin peptides to
avian opioid receptors and exert agonist or even antagonist
effects on different derived neuropeptides in avian tissues. In
particular, are any of the peptides derived from proenkephalin
capable of activating avian μ opioid receptors.

2. Whether cryptic Met-enkephalin represents intermediates in the
proteolytic cleavage and/or proenkephalin.

3. Whether circulating concentration of enkephalin reflects
hormonal mode of action or do they reflect “spill over” from
neural, paracrine or autocrine effects?

4. The physiological control of the release of enkephalin and other
products of cleavage of proenkephalin in birds.

5. Whether avian leukocytes or, for that matter, erythrocytes and
thrombocytes, produce Met-enkephalin or other products of
cleavage of proenkephalin and contribute to plasma
concentrations of enkephalin neuropeptides.

3 Prodynorphin (PDYN) and the derived
neuropeptides

3.1 Structure of neuropeptides derived from
prodynorphin

There are three enkephalin motifs together with one putative or
degenerate enkephalin motif in prodynorphin in chickens (Figure 2)
and other birds (Supplementary Figure S2). Similarly, there are four
enkephalin motifs/degenerate enkephalin motifs in birds
(Supplementary Figure S2). There are five enkephalin motifs in
prodynorphin in reptiles and the lungfish (Supplementary Figure
S2). Moreover, there are five enkephalin motifs/degenerate
enkephalin motifs in boney fish (Supplementary Figure S2). In
contrast, there are only three enkephalin motifs in mammals
(Supplementary Figure S2). It is suggested that in five enkephalin
motifs represents the ancestral form with motifs and/or the flanking
basic amino acid residue pairs lost during tetrapod evolution. In

contrast, there are seven enkephalin motifs in proenkephalin
(Figure 1; Supplementary Figure S1).

Figure 3 summarizes the processing of prodynorphin. In
mammals, there are three enkephalin motifs with flanking basic
amino acid residues. These are processed into opioid neuropeptides:
α- and β - neoendorphins and dynorphins A and B (Figures 3, 4;
Supplementary Figure S2).

In chickens, other avian species, and cold-blooded vertebrates,
there are sequences of amino acid residues with flanking pairs of
basic amino-acid residues that could generate both dynorphin A and
dynorphin B (see Figures 4; Supplementary Figure S2).

Despite the degree of identity between dynorphin A and B in
their homologues across tetrapods, the regions of prodynorphin that
are not part of dynorphin neuropeptides exhibit considerable
variation even across the class Aves (Figure 4; Supplementary
Figure S2).

3.2 Evolution of dynorphin

The sequences of the neuropeptides dynorphin A and
dynorphin B, are remarkably conservative across vertebrate
classes (see Figure 3; Supplementary Figure S2). The enkephalin
motifs in proenkephalin and dynorphin across the vertebrates are
compared in Table 2. In contrast, there are marked differences in the
sequences between avian α- (or β-) neoendorphin and mammalian
or reptilian α- (or β-) neoendorphin (Figure 4).

Dynorphin A has an identical structure in eutherian and
placental mammals, reptiles, birds and amphibians (see Figure 3;
Supplementary Figure S2). There are single substitutions in
monotremes and lungfish (see Figure 3; Supplementary Figure S2).

Dynorphin B, there is an identical structure in some avian
species including chickens, ducks and pigeons together with
reptiles and amphibians (see Figures 3, 4; Supplementary Figure
S2). This suggested that this is the ancestral form of dynorphin B in
tetrapods. Compared to the structure of dynorphin B in many

TABLE 4 Plasma and tissue concentrations of Met-enkephalin in 14 weeks old chickens (based on data in Pierzchala- Koziec and Mazurkiewicz-Karasińska, 2016).

Tissue Mean ± SEM

Female Male

Plasma (pmoles L−1)

Native Met-enkephalin 50 ± 7.9 50 ± 8.4

Cryptic Met-enkephalin 813 ± 98 758 ± 61

Tissue native Met enkephalin concentrations (pmoles g−1)

Anterior pituitary gland 797 ± 119d 986 ± 128c

Hypothalamus 329 ± 49c 101 ± 11b**

Adrenal gland 135 ± 15b 144 ± 20.0b

Heart atria 3.6 ± 0.1a 5.2 ± 1.1a

Heart ventricles 2.4 ± 0.6a 3.6 ± 0.1a

Kidney 1.7 ± 0.2a 2.9 ± 0.6a

a,b,c,d Different superscript letter indicates difference *p < 0.05 between tissues by one way ANOVA, and Tukey’s test.

Sex difference **p < 0.01.
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neognath birds, there are only single amino-acid residue
substitutions (but not the same one) with those in eutherian and
placental mammals and also in birds of the Infra-class Paleognathae,

(see Figure 4; Supplementary Figure S2). There are three differences
of the 13 amino-acid residues between lungfish
(YGGFLRRHFKITV) compared to those of tetrapods.

FIGURE 2
Structure of chicken preprodynorphin (deduced frommRNAGenbank XM_040650978). Key: PC prohormone convertase Green highlight indicates
enkephalin motif Light blue highlight indicates peptide sequences found in neuropeptides along with enkephalin motif Pink highlight indicates flanking
basic amino-acid residues pairs Yellow highlight indicates degenerate enkephalin motif e.g., lacking two basic amino-acid residue pairs on either N or C
sides of the enkephalin motif or lacking enkephalin motif Blue highlight other amino acid residues.

FIGURE 3
Processing of chicken prodynorphin. Key: Green highlight indicates enkephalin motif Pink highlight indicates amino-acid residue pairs Black
highlight indicates signal peptide Blue highlight other amino acid residues.
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Monotremes do not appear to have dynorphin B with the
reported sequence exhibiting marked degeneracy compared to
dynorphin B in other tetrapods.

• YGASRPRPFKPVT Platypus,
• YGAVRPRPYKLVA Australian echidna.

Moreover, in at least one amphibian species (Microcaecilia
unicolor), dynorphin B may not be present based on the absence
of dibasic cleavage site in prodynorphin (see Supplementary
Figure S2).

Despite the degree of identity between dynorphin A and B in
their homologues across tetrapods, the regions of prodynorphin that
are not part of dynorphin neuropeptides exhibit considerable
variation even across the class Aves (see Supplementary Figure S2).

3.3 Converting Enzymes and Prodynorphin

Prodynorphin is subject to proteolysis by convertase(s)
generating neoendorphins and dynorphins together with
potentially Leu-enkephalin in mammals (Berman et al., 1999;
reviewed Ner and Silberring, 2013) and both Met- and Leu-
enkephalins in birds. In mammals, there is evidence that
prodynorphin is cleaved in a disparate manner in different
regions of the brain and pituitary gland (Cone et al., 1983;
Seizinger et al., 1994a; Seizinger et al., 1994b).

In mammals, the principal cleavage products of prodynorphin
are the following:

• α-Neo-endorphin (YGGFLRKYPK).
• β-Neo-endorphin (YGGFLRKYP).
• Dynorphin A 1–17 (YGGFLRRIRPKLKWDNQ).
• Dynorphin A 1–8 (YGGFLRRIR.

• Dynorphin B 1–29 (YGGFLRRQFKVVTRSQEDPSAYYEEL
FDV)

(e.g., Seizinger et al., 1984b). Other putative neuropeptides
include dynorphin B 1–13 (YGGFLRRQFKVVT), dynorphin B
1–9 (YGGFLRRQF), 8 and 10 KDa prodynorphin intermediates
(see Figure 4) and, potentially, Leu-enkephalin (Day et al., 1998).
The predicted structures of avian neuropeptides cleavage products
of avian prodynorphin are shown in Figure 3. There are differences
between avian and mammalian prodynorphin, comparing
prodynorphin products in chickens and cattle. For instance, there
are Met-enkephalin motifs in both the putative avian α-/β-
neoendophin and dynorphin A neuropeptides instead of Leu-
enkephalin motifs in mammals.

3.4 Biological activity of dynorphin

Dynorphin B had a potency of 700 compared to Leu-enkephalin
in a guinea pig ileum longitudinal muscle assay; the effects of
dynorphin B being blocked by naloxone (Goldstein et al., 1979.
The chicken κ opioid receptor is activated by dynorphin A and B (Bu
et al., 2020).

3.5 Release of dynorphin

There is limited information on the release of dynorphin in
mammals and none in birds. There is release of both
immunoreactive dynorphin and α-neoendorphin from the perfused
rat duodenum in vitro (Corbett et al., 1988). Release of α-neoendorphin
and dynorphin were increased in the presence of nicotine in cultured
human phaeochromocytoma cells (Yanase et al., 1987); this action
presumably acting via nicotinic cholinergic receptors.

FIGURE 4
Comparison of the structures of dynorphin A and dynorphin B in vertebrates. Key: Green highlight indicates enkephalinmotif Pink highlights indicate
basic amino acid pair (putative site for proteolysis) Red highlight indicates different amino acid residue from that in chickens, many other birds, reptiles and
amphibians; this being the presumptive ancestral form Light blue highlight indicates additional amino acid residues in dynorphin A or B.
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3.6 Circulating concentrations of dynorphin

There are limited reports on plasma concentrations of
dynorphin or neoendorphin in mammals (humans: Shen and
Wang, 1998; Moniaga et al., 2019; Shahkarami et al., 2019) with
basal concentrations of 13.1 pmol L−1 (Moniaga et al., 2019). The
plasma concentrations of dynorphin A were increased in pilots
subjected to hypoxia (Shen and Wang, 1998). To the best of our
knowledge, there are no reports of plasma concentrations of
dynorphin in either poultry or wild birds. Plasma concentrations
of IR-dynorphin have been reported in human volunteers as 40.3 ±
6.4 pmol L−1 (calculated from Margioris et al., 1990) but markedly
lower in control subjects being compared to heart transplant
patients [3.3 ± 0.2 pmol L−1] (calculated from Ationu et al.,
1993). Plasma concentrations of IR-dynorphin were elevated in
human subjects receiving administration of hypertonic saline
(Margioris et al., 1990).

Another compartment of blood, leukocytes, have been
demonstrated to synthesize dynorphin in mammals. For instance,
preprodynorphin expression is reported in peripheral blood cells
(Shahkarami et al., 2019). There are no reports of leukocytic
expression of preprodynorphin in leukocytes or for that matter
in erythrocytes or thrombocytes in birds.

3.7 Stress and circulating concentrations of
prodynorphin derived neuropeptides in
birds

Plasma concentrations of an immune-reactive α-neoendorphin
have been reported in an abstract:

• Adult female chickens 11.5 ± 0.86 pmol L−1.
• Adult male chickens 15.9 ± 0.57 pmol L−1 (calculated from
Pierzchala and Przewlocki, 1989).

Plasma concentrations of α-neoendorphin in pullets were
increased following crowding stress. This effect is blocked by the
prior administration of naltrexone (Pierzchała-Koziec et al.,
1996).

3.8 Neoendorphin and dynorphin:
expression, tissue concentrations and
release

There is no information on the expression of the prodynorphin
together with tissue distribution and release outside of the brain or
on circulating concentrations of either dynorphin A and B in birds.
There is some information on these in mammals. High
concentrations of IR-dynorphin are detected in the mammalian
posterior pituitary gland (reviewed: Margioris et al., 1990) with
marked expression in magnocellular neurons in the hypothalamus
that project into the posterior pituitary gland (Sherman et al.,
1986a). Moreover, expression of pro-dynorphin shifts in a
manner similar to that of vasopressin in supraoptic and
paraventricular nuclei (Sherman et al., 1986b). Also, there is
increased expression of the prodynorphin gene in the

hypothalamus of dehydrated or salt loaded rats (Sherman et al.,
1986a).

Both dynorphin and α-neoendorphin are released from rat
duodenal tissue in vitro (Majeed et al., 1987). Moreover, release
of IR-dynorphin and IR α-neoendorphin is increased by serotonin
(rat: Majeed et al., 1987). There is no information on the distribution
in tissues or the control of the release of dynorphin A or B in any
avian species.

3.9 Questions

What is not known are the following:

1. The forms of dynorphin A and B together with neoendorphin
that are produced by various avian tissues.

2. The biological activities of different prodynorphin derived
peptides in birds.

3. Are circulating concentration of prodynorphin derived
neuropeptides exerting hormonal effects or do they reflect
“spill over” from neural, paracrine or autocrine effects?

4. The physiological control of dynorphin A and B together with
neoendorphin release.

5. Whether avian leukocytes or, for that matter, erythrocytes and
thrombocytes, produce prodynorphin derived neuropeptides and
contribute to their concentrations in the plasma.

6. The extent to which different neuropeptides are released and
whether this varies with different tissues.

4 Pronociceptin (PNOC) and the
derived neuropeptide nociceptin
(orphanin FQ)

4.1 Introduction to nociceptin

The structure of pronociceptin is shown in Figure 5. There is
peptide containing an enkephalin motif generated from the
prepronociceptin mRNA in mammals, birds and reptiles. In
contrast, there are two peptides with enkephalin motifs
encoded by prepronociceptin mRNA in boney and
cartilaginous fish, amphibians and lungfish. Nociceptin is the
ligand for the nociceptin opioid receptor; this being insensitive to
naloxone.

4.2 Structure and evolution of nociceptin

Nociceptin is a neuropeptide with 17 amino-acids (see Figure 4;
Supplementary Figures S3, S4). There is an identical structure for
nociceptin across mammalian species (see Figure 6; Supplementary
Figures S3, S4). This differs from other tetrapods with five
substitutions of amino acid residues (see Figure 4). The last
common ancestor for mammals and reptiles/birds is estimated as
living 315 million years ago (during the Carboniferous period)
(Irisarri et al., 2017). In contrast, there are identical structures for
nociceptin in non-mammalian tetrapods together with non-
tetrapod Sarcopterygii (lungfish and coelacanths) (see Figure 6;
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Supplementary Figures S3, S4). The last common ancestor for
tetrapods and non-tetrapod Sarcopterygii is estimated as living
428 million years ago (in the Silurian period) (Irisarri et al., 2017).

What is particularly surprising is the substitution of tyrosine to
phenylalanine residues in mammalian nociceptin (Figure 4;
Supplementary Figure S3). This is an unique case of such a
substitution and is not found with any other neuropeptides that
include enkephalin motifs.

4.3 Nomenclature

Nociceptin/orphanin FQ (N/OFQ) is a reasonable name in
mammals due to the presence of phenylalanine (F) at the N
terminal and a glutamine (Q) at the C terminal. However, in
other tetrapods together with lungfish, this is not appropriate.
Instead, it is more accurate to refer the avian neuropeptide as
nociceptin/orphanin YQ [due to the N terminal being tyrosine
(Y) and glutamine being the C terminal] or simply as nociceptin.

4.4 Biological role of nociceptin

Both the chicken nociceptin and κ opioid receptors are activated
by nociceptin (Bu et al., 2020). It might be assumed that nociceptin is

exerting an analgesic effect in birds. In addition, nociceptin plays a
role in embryonic development. Ectodermal expression of
nociceptin is increased by somatostatin with nociceptin playing a
role in the formation of placode progenitors in chick embryos
(Lleras-Forero et al., 2013). However, there are no studies on the
effects of avian nociceptin on either avian physiology or pathology.
There are, however, reports of the effect of mammalian nocicentin in
birds (see below). If nociceptin was not important, it is difficult to
envision why an identical structure is found across the tetrapods
together with non-tetrapod Sarcopterygians. Thus, the structure was
retained in its entirety through at least 428 million years since the
last common ancestor of tetrapods and non-tetrapod
Sarcopterygians (Irisarri et al., 2017). In addition, an identical
structure is found in some boney fish (Figure 6; Supplementary
Figures S3, S4).

4.5 Nociceptin and the hypothalamic
control of feeding in birds

In young meat line chickens, intracerebroventricular injection of
mammalian nociceptin was followed by increased consumption of
feed (Abbasnejad et al., 2005; Zendehdel et al., 2013; Zendehdel
et al., 2015; Zendehdel et al., 2017; Zendehdel et al., 2019). There is
evidence for beta-adrenergic, serotoninergic, dopaminergic and

FIGURE 5
Structure of chicken prepronociceptin (Genbank XM_040697232). Key: PC prohormone convertase Green highlight indicates enkephalinmotif Pink
highlights indicate basic amino acid pair (putative site for proteolysis) Yellow highlight indicates degenerate enkephalin motif e.g., lacking two basic
amino-acid residue pairs on C flanking of the partial enkephalin motif. Light blue highlight indicates additional amino acid residues in nociceptin Blue
highlight other amino acid residues.

FIGURE 6
Structure of nociceptin in vertebrates. Key Green highlight indicates enkephalin motif (YGGF) or partial motif with flanking pairs of basic amino acids
residues both N and C terminals. Pink highlight indicates a pair of basic amino acid residues. Red highlight indicates differences with the sequence of
amino acid residues relative to that in birds, reptiles, amphibians and non-tetrapod sarcopterygians Light blue highlights indicate other amino-acid
residues.
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histaminergic involvement in feeding in chickens induced by
mammalian nociceptin. Nociceptin induced feed intake was
increased after prior administration of a β2 adrenergic antagonist
(Zendehdel et al., 2017). However, there was no evidence for α- or β1
or β3 adrenergic involvement in mammalian nociceptin induced
feed consumption (Zendehdel et al., 2017). Nociceptin induced feed
consumption was increased by either pharmacological blocking
serotonin (5-HT) synthesis or a 5-HT receptor 2 antagonist
(Zendehdel et al., 2013). In addition, prior administration of the
dopamine precursor, L-DOPA depressed mammalian nociceptin
induced feeding while a D2 dopamine antagonist increase the
response to N/OFQ (Zendehdel et al., 2019). Moreover, the effect
of mammalian nociceptin was increased by prior administration of
an H1 histamine antagonist but not a H2 antagonist (Zendehdel
et al., 2015). In contrast, the effect of mammalian nociceptin on feed
consumption was decreased by prior administration of an H3

histamine antagonist (Zendehdel et al., 2015). It is cautioned that
mammalian nociceptin differs by five amino-acid residues out of a
total of 17 compared to that in other tetrapods (Figure 6). Studies
employing avian nociceptin are needed. If nociceptin was not
important, it is difficult to envision why an identical structure is
found across the tetrapods except for mammals (Figure 6;
Supplementary Figures S3, S4).

4.6 Circulating concentrations of nociceptin

There are reports of plasma concentrations of nociceptin in
humans but not in other mammals or birds. Post operative plasma
concentrations of nociceptin have been reported as 39 pmol L−1 in
individuals with intravenous patient-controlled analgesia (Lee and
Jeon, 2013). In contrast, plasma concentrations of nociceptin were
0.55 pmol L−1 in patients with sepsis and 1.7 pmol L−1 in patients
with sepsis who subsequently died (Williams et al., 2008). There is a
need for examination of plasma concentrations of nociceptin in
birds under both a series of physiological and pathological
situations.

4.7 Nociceptin tissue concentrations and
release

There is no information on the distribution in tissues or the
control of the release of nociceptin in any avian species.

4.8 A putative avian nocistatin

In mammals, pronociceptin also encodes a second biologically
active peptide, nocistatin (Okuda-Ashitaka et al., 1998; reviewed;
Fricker et al., 2022). This is generated by proteolytic cleavage at basic
amino-acid residue pairs (Okuda-Ashitaka et al., 1998; reviewed;
Fricker et al., 2022) (see Figure 5). The length of nocistatin exhibiting
marked variability (bovine: 17; human: 31 amino-acid residues). The
C–terminal for nocistatin in humans and cattle consists of the
following hexapeptide: EQKQLQ (Meunier et al., 1995;
Nothacker et al., 1996; Okuda-Ashitaka and Ito, 2000). Based on
a PubMed search, there are no reports of nocistatin in birds.

However, there are predicted sequences of a putative avian
nocistatin in a series of birds (see Figures 5, 6 also see
Supplementary Figure S5). These are separated by basic amino-
acid residue pairs. In birds, these are characterized by having an
identical or very similar C terminal hexapeptide, AARGVQ; this
being found in, for instance, in Okarito brown kiwi (XM_
026067016), chicken (XM_040697232) and Hawaiian crow (XM_
048298403) together with similar hexapeptides as AAKGVQ
(common canary—XM_050971908) and TARGVQ (California
condor—XM_050895080).

4.9 A putative avian non-opioid
neuropeptide derived from pronociceptin

Fricker et al. (2022) included non-opioid peptide(s) derived
from pronociceptin when nocicentin was cleaved (Figures 5, 6). This
viewed these likely to be biologically active (Fricker et al., 2022). This
was presumably a neuropeptide as are all the peptides derived from
proenkephalin, prodynorphin, and pronociceptin (Fricker et al.,
2022).

It was questioned whether such a putative biologically active
peptide might exist in birds and, also, in reptiles. The deduced
sequence for nociceptin has a pair of basic amino-acid residues
(lysine-arginine) at both its N and C terminal in birds and reptiles
(Figure 5; Supplementary Figure S3) together with mammals
(Fricker et al., 2022). Proteolytic cleavage would be expected to
occur at these sites generating nociceptin and a second peptide(s)
again in birds, reptiles and mammals (Fricker et al., 2022).

There is strong similarity between the N terminal of the putative
peptide with identical residues at positions 1, 2, 3, 4, 7, 8, and 9 in
mammals (e.g., human and Tasmanian devil) compared to birds
(e.g., chicken and kiwi) (Supplementary Figure S6). This would have
30 or 31 amino-acid residues (also see Supplementary Figure S6).
This putative C terminal neuropeptide would be considered as non-
opioid as it lacks the YGGF motif (Figure 6).

Comparison of the putative peptide from deduced structures of
pronociceptin in birds suggested that there are two structures of the
nociceptin C terminal non-opioid peptide in birds:

• FSEFLKQYLGMSPRSTFRHRVPAPSARHRQN in chickens
(with the V replaced by an I in some species).

• FSEFLKQYLGMSPRSSEYDIAGGISEHNEI (Supplementary
Figure S6).

They share a 15 amino-acid residue peptide
(FSEFLKQYLGMSPRS). The C terminal of each in different
species have multiple cases of identical amino-acid residues
(Supplementary Figure S6).

What was unexpected that both forms were found in avian
species in the Infra-order Paleognathae and Neognathae, in the
Clade Neoaves, in the Clade Australaves (e.g., members of the orders
Passeriformes, and Falconiformes), in the Clade Afroaves
(Strigiformes and Accipitriformes) and within both the orders
Piciformes and Passeriformes (avian classification and evolution
based on Brusatte et al., 2015). This is not consistent with a simplistic
evolutionary interpretation. The explanation for this is not readily
apparent.
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4.10 Questions

What is not known includes the following:

1. Which forms of nociceptin and other putative neuropeptides
derived from pronociceptin are produced by various avian
tissues.

2. What are the biological activities of peptides derived from
pronociceptin are produced by various avian tissues.

3. Are circulating concentration of nociceptin exerting hormonal
effects or do they reflect “spill over” from neural, paracrine or
autocrine roles?

4. The physiological control of the release of nociceptin and other
peptides derived from pronociceptin.

5. Whether avian leukocytes or, for that matter, erythrocytes and
thrombocytes, produce nociceptin and other peptides derived
from pronociceptin contribute to plasma concentrations of
nociceptin.

5 Conclusion

What is almost completely missing in avian species is
information on cleavage pattern of proenkephalin, prodynophin
and pronociceptin in different tissues and the relative activities of the
multiple endogenous opioids/peptides via the δ-opioid, κ-opioid
and μ-opioid receptors in chickens or other birds. Moreover, given
the multiplicity of opioid peptides and their roles, it is questioned
whether at least some are released in response to the welfare
challenges such as stress or injury. It is assumed that the
biologically active peptides derived from proenkephalin are Met-
enkephalin and Leu-enkephalin. However, other peptides are
derived from proenkephalin and, based on mammalian studies,
they have markedly different biological activities. The sequence of
amino-acid residues in these peptides is identical in birds and
mammals arguing for their importance. Avian prodynorphin is
likely to be subject to proteolytic cleavage generating dynorphin

A and B and, probably also an avian neoendorphin with the first two
exhibiting marked similarity in sequence. Avian pronociceptin is
cleaved to produce nociceptin, nocistatin and a non-opioid C
terminal peptide with the first and third having close homology
with their mammalian counterparts. (Pierzchala and Van Loon,
1990; Chen et al., 2007; Thompson et al., 2014; Avenali et al., 2017).
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