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Introduction: The 30–50% non-response rate to cardiac resynchronization
therapy (CRT) calls for improved patient selection and optimized pacing lead
placement. The study aimed to develop a novel technique using patient-specific
cardiac models and machine learning (ML) to predict an optimal left ventricular
(LV) pacing site (ML-PS) that maximizes the likelihood of LV ejection fraction
(LVEF) improvement in a given CRT candidate. To validate the approach, we
evaluated whether the distance DPS between the clinical LV pacing site (ref-PS)
and ML-PS is associated with improved response rate and magnitude.

Materials and methods: We reviewed retrospective data for 57 CRT recipients.
A positive response was defined as a more than 10% LVEF improvement.
Personalized models of ventricular activation and ECG were created from MRI
and CT images. The characteristics of ventricular activation during intrinsic
rhythm and biventricular (BiV) pacing with ref-PS were derived from the models
and used in combination with clinical data to train supervised ML classifiers. The
best logistic regression model classified CRT responders with a high accuracy
of 0.77 (ROC AUC = 0.84). The LR classifier, model simulations and Bayesian
optimization with Gaussian process regression were combined to identify an
optimal ML-PS that maximizes the ML-score of CRT response over the LV surface
in each patient.

Results: The optimal ML-PS improved the ML-score by 17 ± 14% over the ref-
PS. Twenty percent of the non-responders were reclassified as positive at ML-
PS. Selection of positive patients with a max ML-score >0.5 demonstrated an
improved clinical response rate. The distance DPS was shorter in the responders.
The max ML-score and DPS were found to be strong predictors of CRT response
(ROC AUC = 0.85). In the group with max ML-score > 0.5 and DPS < 30 mm,
the response rate was 83% compared to 14% in the rest of the cohort. LVEF
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improvement in this group was higher than in the other patients (16 ± 8% vs. 7 ±
8%).

Conclusion: A new technique combining clinical data, personalized heart
modelling and supervised ML demonstrates the potential for use in clinical
practice to assist in optimizing patient selection and predicting optimal LV pacing
lead position in HF candidates for CRT.

KEYWORDS

cardiac resynchronization therapy, optimal design for pacing lead position, machine
learning, cardiacmodeling, electrophysiology, hybrid approach, prediction, heart failure

1 Introduction

In addition to being at optimal medical treatment, cardiac
resynchronization therapy (CRT) is an effective therapy for selected
patients with chronic heart failure (HF). In the conventional
configuration, CRT delivers biventricular (BiV) pacing to correct
electromechanical dyssynchrony of the ventricles in order to
increase cardiac output.

Despite the well-documented CRT benefits for improving
patient outcomes and reducing hospitalizations and mortality in
CRT recipients, it still remains ineffective in 30–50% of cases
(Daubert et al., 2017). Therefore, stronger predictive indications
for patient selection need to be further elucidated and justified
(Mullens et al., 2020; Butter et al., 2021; Wouters et al., 2021).

Pacing lead configuration for CRT has been shown to be an
essential determinant of patient improvement (Sieniewicz et al.,
2018; Butter et al., 2021). Several approaches have been proposed to
guide left ventricular (LV) lead placement for BiV pacing using new
imaging techniques compared to routine fluoroscopy. Pre-operative
assessment of myocardial fibrosis and scar area has been proposed
to avoid this area when implanting the LV lead (Chalil et al.,
2007; Nguyên et al., 2018; Pezel et al., 2021). Suggestions have been
made to individualize LV lead placement using characteristics
of ventricular electrical activation dyssynchrony derived from
standard 12-lead ECG or from novel electrocardiographic imaging
(ECGi), such as QRS duration (QRSd) andQRS area, Q-LV (RV-LV)
delay, total biventricular activation, inter-ventricular uncoupling,
activation delay vector, and late activation time (LAT) area.
However, conflicting data have been obtained on the potential utility
of these characteristics for predicting the acute and chronic clinical
CRT response (Gold et al., 2017; Sommer et al., 2018; Strik et al.,
2018; Varma et al., 2018; Fyenbo et al., 2022; Haqqani et al., 2022).

This highlights the need for further development and validation
of useful multimodality imaging-guided strategies for CRT
optimization.

Predictive models have been developed using modern
machine learning (ML) approaches to estimate CRT mortality
or hospitalization risks from baseline clinical parameters
(Kalscheur et al., 2018; Tokodi et al., 2020; Tokodi et al., 2021), to
stratify candidates, and to assess postimplant outcomes (Cikes et al.,
2019; Hu et al., 2019; Feeny et al., 2020). Recently, an ML calculator
of CRT response based on a minimal set of conventional
preoperative clinical data was developed and tested on a large patient
population, showing a high accuracy in predicting postimplant
improvement in the LV ejection fraction (LVEF) (Feeny et al., 2019).

Modelling studies have used detailed anatomical models of the
heart to identify ventricular activation features predictive of CRT
improvement (Villongco et al., 2016a; Lee et al., 2019). A recent
article by Rodero et al. (Rodero et al., 2022) proposed a model-
based approach to selecting an optimal LV pacing site for a
quadripolar LV lead by minimising the total ventricular activation
time in personalised cardiac electrophysiology models. Using
personalized computational cardiac models and machine learning
(ML) techniques, the RV-LV electrical delay and mechanical
regional time to peak contraction were shown as predictors of an
acute hemodynamic response to BiV pacing (Lee et al., 2021).

In all the studies mentioned, the question of pacing
configuration is considered independently of and after the patient
selection decision. In the current article, we develop a novel
technique using a combination of clinical data, computational
modelling and ML that may help to solve both problems
simultaneously during preoperative patient evaluation: to assess
the probability of CRT response for a given patient and to suggest
an optimal pacing lead configuration to guide implantation
if the patient is selected. We hypothesised that characteristics
of ventricular activation during BiV pacing, derived from
simulations in validated personalised cardiac models, can be used
in combination with baseline clinical data to classify a patient as
a potential responder/non-responder to pacing. In parallel, the
technique identifies an optimal LV pacing site position for the
individual patient that maximises the probability of a positive
response.

In our recent paper (Khamzin et al., 2021), we developed
supervised classifiers of CRT response using ML algorithms, trained
on a combination of clinical data and model-derived features
(Figure 1). The best classifier generated an ML-score predicting
the probability of CRT response, defined as more than 10% LVEF
improvement during chronic BiV pacing, with a high accuracy
(ROC AUC = 0.82), outperforming classifiers based on pre-implant
clinical data alone. As input data, the ML classifier used selected
model-derived indices depending on the LV pacing site position,
such as the distance from the LV pacing site to the scar area and
the RV-LV activation delay during BiV pacing. Since the ML-score
is dependent on the LV pacing site, we decided to use it to assess
the probability of CRT response at any available position across the
LV surface and to find an optimal pacing site that maximises the
probability of response.

Here, we aimed to further develop a general concept of using
a combination of clinical data, patient-specific model simulations
and ML techniques to improve patient stratification and guide
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FIGURE 1
Schematic outline of ML model development. (I) Building and calculation of a personalized electrophysiological ventricular model: (1) Processing of
the CT imaging data. (2) Segmentation of the finite element meshes of the torso, lungs and ventricles; (2*) Personalization of the ventricular model: (A)
Rule-based generation of myocardial fibers. (B) Assignment of the scar/fibrosis area in the ventricles (shown in back) and computing of the ventricular
activation map at the baseline LBBB pattern and BiV pacing with clinical lead position. (3) Calculation of ECG signals from the ventricular activation
map. (II) Development of a supervised machine learning classifier: creation of a dataset contacting combination of the clinical data and simulated
features from the electrophysiological model from each of the 57 patients labeled into responders and non-responders, supervised training of a ML
classifier and calculation of the ML-scores of CRT response.

optimised clinical interventions. The concept is based on the idea
of using personalised cardiac mechanistic models for preoperative
testing of any clinically relevant conditions of cardiac activity
(e.g., excitation patterns, mechanical loading, haemodynamic
conditions) or interventions (e.g., pacing, radiofrequency ablation,
pharmacology) to predict adverse events or assess the effects of
therapy from the simulation results combined with ML predictive
models. Comprehensive model testing can reveal a solution that
predicts the consequences of interventions, which can aid decision
making and/or assist in treatment planning and optimisation.
Several exciting examples of the application of this concept were
presented by N. Trayanova’s laboratory, which developed a model-
based and ML technique for predicting arrhythmia inducibility in

post-infarction patients (Arevalo et al., 2016), predicting the risk of
arrhythmic sudden cardiac death in patients with ischaemic heart
disease (Popescu et al., 2022) and cardiac sarcoidosis (Shade et al.,
2021), assessing the likelihood of atrial fibrillation recurrence after
pulmonary vein isolation (Shade et al., 2020), and other clinical
applications.

To the best of our knowledge, we are the first to apply such a
concept to develop an ML-based technique for CRT optimisation
aimed at the preoperative identification of an optimal LV pacing
site that predicts the maximum probability of CRT response during
BiV pacing. A novel feature of our proposed methodology is the
use of a multivariate ML classifier trained on the combination of
clinical and model-derived data to predict LVEF improvement in
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chronic CRT recipients, to optimise the probability of CRT response
(ML score generated by the ML prediction model) for a given
patient by varying the available LV pacing site location across the
LV surface, and to identify and visualize the optimal LV pacing site
location. If the maximumML score predicts a negative response, the
patient should probably not be recommended for CRT. Conversely,
a patient classified as positive could be proposed as a candidate
for CRT implantation and the area of the LV surface with the
maximum ML score could be considered as the target for lead
implantation. The design of our methodology allows it to be further
improved and extended using available and emerging clinical and
simulation data, comparing different CRT response criteria and
alternative pacing strategies to predict the best way to treat the
patient.

To validate our approach, we found a higher rate of the clinical
CRT response in patients classified as positive by themaximumML-
score prediction. We also showed that a short distance from the site
of the implanted LV pacing lead to the optimal position suggested
by our algorithm was a strong predictor of the chronic response in
our patient cohort.

Thus, the contribution of our proof-of-concept study is to
demonstrate the potential of an ML technique using simulations of
personalised computational models to improve patient selection for
CRT implantation and to suggest a pacing optimisation strategy in
selected candidates.

2 Methods

The pipeline for an ML technique using for BiV pacing
optimization is as follows (Figure 2). A personalized ventricular
model for a given patient is constructed using imaging data and is
then used to calculateML-scores generated by aML classifier of CRT
response for various LV pacing sites located on the epicardial surface
of different LV segments with the exception of labeled scarring
regions. Then Gaussian process regression is applied to the ML-
score array to find the locations of pacing sites at the LV surface
predicting positive/negative response to BiV pacing and to identify
an optimal pacing site thatmaximizes theML-score of CRT response
for the patient. The maximum ML-score is used to classify the
patient as a positive or negative CRT responder. In case of positive
prediction, the area of positive ML-scores on the LV surface is
visualized with the location of the pacing site with the maximum
ML-score indicated.TheML-scoremap can be used to target LV lead
implantation.

In what follows, we first describe methods used to develop a
ML classifier of CRT response. Next, we describe a technique we
developed for LV pacing site optimization. The ML classifier is
used as a key tool in the implementation of the CRT optimization
technique.

2.1 ML classifier of CRT response

In the present study, we used our hybrid data approach
to develop a supervised classifier of CRT response as
previously described (Khamzin et al., 2021) (Figure 1). The
ML classifier was trained and tested on a hybrid dataset

consisting of clinical data from CRT recipients and simulated
data from personalized computational models of cardiac
electrophysiology.

2.1.1 Clinical data
The study involved clinical data from 57 HF patients. The same

cohort of patients has been involved previously and described in
detail in our recent paper (Khamzin et al., 2021), so here we include
the summary of the group statistics in the Supplementary Material.
All patients were on optimal drug treatment following CRT
device implantation at Almazov National Medical Research Centre
between August 2016 and August 2019. The participants signed
approved informed consent forms.The study protocol was approved
by the Institutional Ethical Committee. The criteria for patient
inclusion in the study and the complete list of clinical data used to
perform feature importance analysis for ML classifier development
are presented in the Supplementary Material (sec. Clinical data
description).

In addition to the standard protocol of patient evaluation for
CRT implantation, we also acquired data from 12-lead ECG and
echocardiography recordings prior and after device implantation.
Computer tomography (CT) was performed to visualize the torso
and the heart. The series captured with a scanner (Somatom
Definition 128, Siemens Healthcare, Germany) were imported into
special Wave program version 2.14 (Amycard, EP Solutions SA)
to reconstruct the 3-dimensional geometry of the torso and heart.
Finally, epi/endo ventricular surface models were manually built
and active pacing sites for the RV and LV leads for BiV pacing
were derived from the CT scans and used as reference for model
simulations. RV electrodes were placed at a standard apical position
in all the patients. Supplementary Figure S1 (here after prefix S
denotes figures and tables in the Supplementary Material) shows
the distribution of the LV pacing sites between the segments
according to the 17 segment AHA LV model. In 50 (88%) out of
the 57 cases, the LV lead was placed in the lateral wall, mostly in
the mid- and basal segments. The LV lead was delivered to the
inferior segment in only one case, and to the anterior segments
in 5 cases. In 2 participants, an apical LV lead position was
observed.

Data from magnetic resonance imaging (MAGNETOM Trio
A Tim 3 T, Siemens AG or INGENIA 1.5 T, Philips) with
contrast (Gadovist or Magnevist) before CRT implantation were
used to detect scar/fibrosis areas in the myocardium and to
incorporate these data into personalized ventricular myocardial
models. Supplementary Figure S2 shows the distribution of the
segments with scar and fibrosis between the 17 AHA LV segments
in the patient cohort.

Patients were evaluated before CRT device implantation and
during the follow-up period of 12 months after implantation.
The clinical data in intrinsic sinus rhythm (baseline) and
during BiV pacing in the patient cohort are presented in
Supplementary Table S1.

Responders and non-responders: Patient data were annotated
into responder (n = 23/40%) and non-responder (n = 34/60%)
groups according to LVEF improvement by more than 10%.
Supplementary Table S2 shows clinical data in the groups, indicating
significant differences in the indices.
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FIGURE 2
The algorithm for finding the optimal LV pacing site involves three major steps: (1) To compute ventricular activation maps (color map shows activation
times of the ventricular regions with early activated regions shown in red and late activated areas shown in blue) from the personalized model at BiV
pacing with LV pacing site (white dot) located at every centre of the AHA LV model (excluding the septal and postinfarction scar segments marked as
dark gray on the left panel). (2) To apply an LR classifier of CRT response and iterative Bayesian optimization procedure with Gaussian process
regression to predict ML-scores on the LV surface. Model-derived features and patient clinical data for each LV pacing site are fed to an LR classifier
(shown schematically as a graph in the middle top. The plot shows the LR function calculated for each LV pacing site tested. The x-axis shows a linear
combination of the input features (logit(p)) used to calculate the LR value (ML-score). Red and blue dots show positive (red) and negative (blue)
predictions of CRT response based on ML-score ><0.51). The LR classifier generates an initial array of ML-scores for interpolation. A Gaussian process
regression model is then trained to estimate the GP acquisition function L (mu,sigma) and predict ML-score values on the entire LV surface (see two
color maps on the LV surface with shades of red for ML-score > 0.5 and shades of blue for ML-score < 0.5). The target point candidate is found by
approaching the maximum value of the acquisition function (black dot). A new ventricular activation map and simulated features are computed at BiV
pacing with the LV site located at the current candidate point. The simulated features in the next iteration step are fed again to the LR classifier to
generate an ML-score and retrain the GP regression with accounting for this value or further interpolation of ML-score on the LV surface. (3) The
algorithm converges if two iterations predict the same candidate point. The last point with the maximum ML-score value provides an optimal LV pacing
site (black dot). The resulting ML-score map is displayed on the LV surface of the personalized LV model and the LV AHA segment scheme.

2.1.2 Simulated data
Ventricular anatomy models: Based on the segmentation of

CT imaging data, finite element models were constructed for the
torso, lungs and RV-LV ventricles for each of the 57 patients
(Figure 1, panels I.1-2). A rule-based approach was used to simulate
myocardial fiber architecture (Bayer et al., 2012). MRI data on
scarring and fibrosis areas in the myocardium were accounted for
in the LV model using expert annotation of these areas within
the 17-segment American Heart Association (AHA) model of LV
(see (Khamzin et al., 2021) for more detail). Similar to many other
modelling studies (e.g., (Arevalo et al., 2013; Lopez-Perez et al.,
2019; Mangileva et al., 2021)), the scar regions were simulated as
non-conducting and non-excitable areas, and the conductivity of
the fibrosis regions was decreased by 50%. Limitations of these
assumptions and further directions for model improvement are
discussed in Section 5 below.

Models of myocardial electrical activation and ECG: Like
in the previous work (Khamzin et al., 2021), we used an Eikonal
model (Keener, 1991) to calculate electrical activation times at
each point on the ventricular mesh. Cardiac tissue was simulated
as an anisotropic medium with conductivities resulting in an
excitation velocity ratio of 4:1 along vs. across the myocardial
fibers. The Eikonal model is currently widely used; it allows

one to simulate the evolution of the cardiac excitation wavefront
(Franzone and Guerri, 1993; Pullan et al., 2006; Pezzuto et al.,
2017; Camps et al., 2021; Costa et al., 2022). To compute ECG
signals, we calculated a map of potentials in the heart, by
assigning a predefined cellular action potential to each model
element at corresponding activation time. The widely used human
ventricular action potential model TP06 (ten Tusscher and Panfilov,
2006) was taken as a model of cardiomyocyte action potential
generation. The TP06 provides a mathematical description of the
main ionic currents that are involved in AP genesis and has
been thoroughly validated in the literature. ECG calculation was
performed using the Lead Field method proposed by Pezzuto et al.
(Pezzuto et al., 2017; Costa et al., 2022). ECG signals were computed
according to the standard 12-lead ECG definition and the lead-field
approach allowed us to reduce calculation time more than 100x
times.

Pacing protocols:We simulated two pacing protocols—baseline
activation pattern at LBBB and BiV pacing. The model-derived
features of the ventricular electrical activation were then used for
developing an ML classifier of CRT response and for searching for
an optimal LV lead location.

To simulate the LBBB activation pattern, the RV endocardial
surface was annotated and a Purkinje network with excluding
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left bundle branch was generated using the model proposed by
Costabal et al. (Sahli Costabal et al., 2016). Note, that in this study
we assumed the total LBBB for all patients and thus excluded the
left branch from the Purkinje network in the models. The Purkinje
system was isolated from the working myocardium and connected
to it only at the ends of the Purkinje fibers. Activation started at
the His node and spread throughout the conduction system with
an excitation velocity of 3 mm/ms before approaching the Purkinje-
myocardial junction points. This activation map was then applied
to initiate activation within the ventricular myocardium according
to the Eikonal model. Furthermore, we used the simulated LBBB
ventricular activation map to define the area of late activation
time (LAT) in every patient model. The distance from the LAT
area to LV pacing site was determined and tested as an optional
measure to predict the optimal LV lead location (see next section
below).

For simulations of BiV pacing with no interventricular delay, we
used the locations of RV and LV pacing sites, manually segmented
from the CT images.

For both the LBBB and BiV protocols, clinically recorded
maximum QRSd were utilized to personalize the global myocardial
conductivity parameter in each model. In this study, we used
this rather quick to implement but representative approach to
fit simulations to physiological data. Here, we did not use more
detailed data on QRS morphology or other ECG features to
identify the electrophysiological parameters in our personalised
models. Our study design was focused on predicting the effects
of BiV pacing on several integrative features of the ventricular
activation and its dyssynchrony, reflected in the change in QRSd,
which was accurately fitted in the models. We employed the L-
BFGS-B algorithm to handle optimization in the model and the
method proposed in (43) for automatic QRS onset and offset
detection.

Consistency of the ventricular activation simulations with
clinical data: The personalized ventricular models yielded average
12-lead QRSd values very close to the clinical data (correlations
between simulated and clinical QRSd: r = 0.99 at baseline and
r = 0.99 at BiV pacing, p < 0.01, Supplementary Figures S6, S7).
Furthermore, the model simulations showed a congruence with
the clinical QRS morphology and realistic qualitative patterns
of ventricular activation with the typical U-shaped activation
at baseline LBBB and realistic patterns and synchronisation of
activation during BiV pacing (see Supplementary Figure S8). To
validate the electrophysiology model predictions we also used
data from non-invasive ventricular mapping (ECGi, Amicard
01, EPI-solutions) performed for several patients from our
cohort. In a majority of models (15 (75%) out of 20 models
with LAT segments available from ECGi), LAT area at baseline
LBBB defined from simulated activation map was concordant
or adjacent with that defined from ECGi. In addition, our
models yielded total activation time of the ventricles that
correlated with that predicted by ECGi (r = 0.96 for LBBB, r
= 0.80 for BiV, p < 0.001, see Supplementary Figures S9, S10).
The personalized models also clearly captured clinically seen
synchronisation of ventricular activation during BiV pacing as
revealed in the reduction in the individual and average simulated
indexes of the ventricular electrical dyssynchrony: total activation
time, inter- and intra-ventricular activation delay (see TAT95,

ADRVLV , and ADSTLV in Table 1; Supplementary Table S1). The
consistency of the model simulations with the clinical data at
baseline LBBB and during postoperative BiV pacing suggested the
possibility of using model-derived indices in combination with
clinical measures to develop ML classifiers for predicting CRT
response.

Simulated features used for developing ML classifiers:
The following model-derived indices were used as measures in
CRT response prediction (Supplementary Tables S1, S2). The first
group of model-derived indices was derived from the ventricular
anatomy models based on CT and MRI data, coupled with
electrophysiological model simulations.We estimated the volume of
postinfarction scar and non-ischemic fibrosis and their size relative
to the myocardial tissue volume. Knowing the exact locations of
the RV and LV pacing leads, we computed the time delay in the
activation of the LV electrode later than the RV electrode (RV-LV
delay) in baseline LBBB. We also calculated the spatial distances
between the RV and LV pacing sites (RV-LV distance), and the
distances from the LV pacing site to the scarring area (Scar-LVPS
distance) and to the area of LAT (LAT-LVPS distance), by solving
an isotropic Eikonal equation.

The second group of model-derived indices were derived from
simulated activation maps and 12-lead ECG signals in baseline
LBBB and during BiV pacing. The following ventricular activation
characteristics were considered: maximum QRSd; total activation
time of 95% myocardial tissue volume for the biventricular model
(TAT95); RV-LV activation delay (ADRVLV ) as the difference
between LV and RV total activation time characterizing inter-
ventricular electrical uncoupling; intra-ventricular dyssynchrony
index as the relative difference between the mean activation
time of the LV free wall and the septum (ADSTLV = (mean
ATLVlat—mean ATST)/TAT). Changes in the indices under BiV
pacing in comparison with baseline (delta), in either absolute values
or normalized to the baseline were also used for developing the ML
classifier of CRT response.

2.1.3 Machine learning model
In the previous paper (Khamzin et al., 2021), we performed

a comparative analysis of several ML supervised classification
algorithms applied to our relatively small dataset. Based on the
analysis, we chose here a logistic regression (LR) classifier as the
easiest to interpret and most robust in terms of overtraining, while
showing a high performance similar to more complex ML models.

The LR classifiers were trained on a hybrid dataset containing
the clinical and model-derived indices described above. At the
preprocessing step, non-categorical data were normalized by
substracting the mean and dividing by standard deviation. Highly
correlated features were also removed from the dataset by a
threshold >0.85.

To train the LR models, the dataset was labeled into responders
and non-responders according to the chronic clinical CRT response
defined from the post-operative data as an increase of more than
10% in LVEF (Khamzin et al., 2021). We developed the LR classifier
using Leave-One-Out cross-validation and three different feature
selection methods inside the cross-validation loop to train the
classifier. The full list of clinical and simulated features fed to the
ML algorithms is shown in Supplementary Figure S3, sorted by
automated feature importance scoring. Using the Leave-One-Out
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TABLE 1 Statistics of simulated total activation time 95% (TAT95), QRSd, theML-score and distance from LV pacing site to the scar area at baseline LBBB
activation and BiV pacing at ref-PS andML-PS in the total patient cohort and groups of responders and non-responders.

Simulated feature Total cohort (n = 57) Responders (n = 23) Non-responders (n = 34)

TAT95, ms LBBB 151 [137; 166] 153 [141; 164] 150 [133; 169]

ref-PS 99 [88; 111]* 96 [88; 106]* 102 [88; 112]*

ML-PS 100 [89; 114]* 99 [89; 113]* 102 [86; 114]*

QRSd, ms LBBB 190 [175; 205] 195 [180; 204] 189 [173; 210]

ref-PS 142 [132; 155]* 142 [132; 151]* 147 [131; 156]*

ML-PS 144 [132; 154]* 142 [136; 152]* 144 [129; 157]*

ML-score ref-PS 0.31 [0.14; 0.68] 0.73 [0.36; 0.95] 0.19 [0.07; 0.39]#

ML-PS 0.56 [0.33; 0.87]$ 0.82 [0.64; 0.98]$ 0.42 [0.20; 0.73]$, #

Scar-LVPS distance, mm ref-PS 34 [10; 49] 44 [19; 53] 25 [3; 43]#

ML-PS 58 [45; 71]$ 61 [51; 66]$ 55 [41; 72]$

DPS, mm ML-PS 50 [26; 78] 35 [21; 61] 64 [41; 92]#

Median [25th percentile; 75th percentile]. * - p<0.05, * - p<0.01 ML-PS vs. LBBB. $ - p<0.05, $ - p<0.01 ML-PS vs. ref-PS. Comparison of dependent groups was performed using Friedman’s
test, followed by a pairwise comparison adjusted for multiple comparisons. # - p<0.05, # - p<0.01 Responders vs. Non-responders. Comparison between two independent groups was carried
out using Mann-Whitney test.

cross-validation approach, we trained multiple LR classifiers on the
training datasets each containing all records from the full dataset,
but excluding one record for a given patient. The excluded patient
features were used to test the corresponding LR classifier and predict
the ML-score for that patient. Such LR classifiers were developed
for each leave-one-out dataset and tested on each patient from the
cohort to estimate the feature importance and accuracy of the final
LR classifier. We used feature selection within the cross-validation
loop to eliminate any bias factors. In addition, in this study we used
a simple LR model that does not tend to overfit on small datasets.
Also, we didn’t do any hyperparameter search, as a result of which
the models could be overfit. Moreover, during the development
of CRT response classifiers in our previous work (Khamzin et al.,
2021), we also tested standard 5-fold cross-validation with 1,000
iterations, which showed classifier performance similar to leave-
one-out cross-validation with almost equal ROC AUC and no
overfitting.

From the total set of input indices considered for classification,
seven most significant features with the highest LR weights were
selected as follows. The three pre-operational clinical features were:
LVEF (%), body mass index (BMI, dimensionless), and LV end-
diastolic diameter (EDD, mm). The four model-derived features
were: distance from LV pacing site to scarring area (Scar-LVPS
distance, mm), total biventricular activation time (TAT95, ms),
and RV-LV activation delay (ADRVLV , ms) at LBBB and during
BiV pacing. Note, that two out of the four model-derived indices,
Scar-LVPS distance and ADRVLV at BiV pacing, depend on the
LV pacing site position, and may change with LV pacing site
moving on the LV surface. These seven features were used to
train the final LR classification model (Supplementary Table S3).
The LR classifier generates an ML-score that provides an
estimate of the probability of a positive CRT response for the
patient.

The LR model accuracy was estimated using the area under the
receiver operating characteristic curve based on the results of Leave-
One-Out cross-validation (ROCAUC, Supplementary Figure S3). A

cut-off ML-score of 0.5, which maximizes the accuracy of the LR
model, was applied to predict either a positive or negative response
to CRT in our patient cohort. This LR classifier was then used for LV
pacing site optimization.

2.2 Optimization of LV pacing site position
based on the ML-score

We used our LR classifier to optimize the LV pacing site position
during BiV pacing for each personalised ventricular model. In the
current study, we focused on optimising conventional BiV pacing
according to the clinical data in patients we used. Therefore, we
did not simulate other pacing configurations potentially effective for
CRT, such as His-Purkinje conduction system pacing or multiple
site pacing, etc., as no clinical data were available to validate such
predictions. In our simulations, the RV pacing site was set to
a reference position manually segmented from the CT images,
as its position did not vary significantly between patients and
was typically located in the conventional RV apical region. The
position of the LV pacing site was varied over the entire LV
epicardial surface available for BiV pacing. Septal regions (as not
available for conventional transvenous or epicardial access) and
scarred areas (as ineffective) were excluded from consideration.
A problem of ML-score optimization across the LV surface was
solved. Figure 2 shows the pipeline employed for finding an optimal
LV lead position that would maximize the ML-score of CRT
response.

First, we varied the position of the LV pacing site between the
centers of LV AHA segments on the epicardial surface (Figure 2,
step 1). For each LV lead position (up to 12 positions, 10 per model
on average), we computed the personalized electrophysiological
model during BiV pacing and extracted model-derived features
from the simulations. The pacing site dependent indices along with
other input features were fed into the LR classifier to generate the
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ML-score. At the end of this step, an initial set of ML-score values
was collected, characterizing the distribution of theML-scores in the
AHA LV model.

The small number of points with computed ML-scores did
not allow us to accurately predict the optimal LV pacing site
with maximum ML-score at the LV surface. Therefore, we used
a Bayesian optimization method to predict the ML-score values
over the entire LV surface accessible for pacing. This method
involves building a regression model and its iterative refinement
before converging at the optimal solution (Frazier, 2018; Yin et al.,
2022).

Bayesian Optimization: The iterative process of the optimal
ML-score prediction was performed using Bayesian Optimization
with Gaussian process regression (GP regression) model (Williams
and Rasmussen, 2006). We used the current ML-score set (an initial
pre-calculated ML-score vector in the first iteration step) to train
GP regression and to predict the ML-score at every node of the
mesh on the LV epicardial surface. Then we calculated the so
called acquisition function: L(μ, σ) = μ+ 2σ, where μ is an expected
ML-score value predicted by GP regression and σ is the standard
deviation of GP at this point (GP uncertainty value) (Figure 2,
step 2). After that, maximum L(μ, σ) was found throughout the
LV nodes. This LV pacing site was further used to calculate the
electrophysiological model at BiV pacing. These model-derived
features were fed to the LR classifier to compute the corresponding
ML-score.

The Bayesian optimization method thus strikes a balance
between finding points that allow one to refine the GP regression
model (points with large uncertainty, i.e., large σ), and finding points
where the value of the regression function is maximum (points with
maximum μ).

In the next iteration step, GP regression was re-trained with the
addition of the ML-score from the new point on the LV surface and
the algorithm was repeated. The optimal solution was considered
to be found if the last two iterations of the Bayesian optimization
algorithm predicted the same point.

Thus, we predict ML-score values across the LR surface grid
without the need to compute the model in each grid node (which
is time-consuming), and use Bayesian optimisation to iteratively
improve a position of the LV pacing site that provides the maximum
ML-score across the surface using the GP apparatus and regression
model uncertainty information. Note that each iteration step of the
algorithm required an additional model calculation at the single
point of the current extreme candidate, and in our case the method
converged in about 5 iteration steps. Therefore, we consider this
approach as reasonable because it is fast, does not require grid
refinement, and not only identifies an LV location with maximum
ML score, but also predicts all other areas on the LV surface withML
score > 0.5 (Ml-score map) that can be considered for LV pacing as
positive for CRT response.

Finally, we obtained an LV epicardial surface map of ML-
score values (Figure 2, step 3), predicting areas of LV pacing
with either positive (ML-score > 0.5) or negative (ML-score <
0.5) expectation of CRT response and suggested the optimal
position of LV pacing site maximizing the ML-score among
all available LV surface positions. This map can be used to
guide LV lead placement during CRT implantation if the
patient is predicted to be a potential responder according to

the maximum ML-score > 0.5 and ultimately selected for CRT
procedure.

2.3 Alternative LV pacing sites

In addition to the ML-score based optimization of LV pacing
lead position in the personalizedmodels, we also used an alternative
LAT area identified in LBBB for LV pacing site location, as suggested
in several clinical studies (Sommer et al., 2016; Yagishita et al.,
2019). Another alternative approach to pace our models was based
on TAT95 minimization, which was frequently considered as a
potential target for LV lead positioning (Pereira et al., 2019). The
latter approach was implemented in our personalized models using
a similar iterative procedure suggested for ML-score optimization.
To this end, we generated an initial set of simulated TAT95 during
BiV pacing with LV pacing from the centers of LV segments and
then used Bayesian optimization of TAT95 over the available LV
surface. As a result, we found an LV pacing site position with a
minimal TAT95 for each personalized model of our cohort. The
effects of pacing from alternative LV pacing sites were compared
with the results obtained for the clinical and ML-based optimal LV
lead position.

2.4 Software

Cardiac electrophysiology was simulated using an in-house
software based on the FENICS library (for solving PDE problems)
(Logg and Wells, 2010) and VTK (for working with meshes).
The scikit-learn library was employed for the machine learning:
classifier development, statistical modelling, feature selection,
cross validation, and ROC-AUC calculation, and the Pyro
(Bingham et al., 2018) library was used for GP regression and
Bayesian optimization.

2.5 Statistics

Detailed analysis was performed using the IBM SPSS Statistics
23.0.0.0 software package (United States). For qualitative data, the
frequency and percentage of total patients in the cohort were
calculated. Quantitative data are median [25th–75th] quartiles
or mean ± standard deviation if the criteria for a normal
distribution are met. Comparisons between two dependent
groups for quantitative data were made using the paired sample
t-test for normal distribution and the Wilcoxon test for non-
normal distribution and McNemar’s test for qualitative data.
Comparisons between dependent groups were made using non-
parametric Friedman’s two-way ANOVA, followed by a pairwise
comparison adjusted for multiple comparisons. Comparison
between two independent groups (non-responders vs. responders)
was carried out using Mann-Whitney test for quantitative data and
Pearson’s chi-square test for qualitative data. Feature dependence
was assessed using the Pearson correlation test for normal
distribution and the Spearman rank correlation test for non-normal
distribution. The critical level of statistical significance was taken
equal to 0.05.
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3 Results

3.1 Study population: clinical data and
model simulations

We used retrospective data for fifty seven (Sedova et al.,
2021) CRT recipients. Clinical follow-up and echocardiographic
evaluation were undertaken in 1 year after implant. The same
patient cohort was involved and described in detail in our
previous study (Khamzin et al., 2021), which focused on the
development of ML classifiers of CRT response. Here, the clinical
data description, subject characteristics, CT/MRI derived data and
model-driven indices in the total patient cohort are presented in
the Supplementary Material, Supplementary Table S1. A summary
of the statistics in patients classified into responder or non-
responder groups, defined by more or less than 10% improvement
in LVEF during follow-up, is shown in Supplementary Table S2 in
the Supplementary Material.

Overall, LVEF increased from 26 ± 6% at baseline to 35 ±
8% (paired LVEF improvement (ΔLVEF) of 9 ± 8%, p < 0.001)
with 23 (40%) of the patients classified as responders defined by
more than 10% ΔLVEF during follow-up. In the responder group,
LVEF increased from 23 ± 5% at baseline to 40 ± 6% at followup
(paired improvement of 16 [14; 19]%, p < 0.001). In contrast, LVEF
improved much less in the non-responder group from 29 ± 6% to
32 ± 7% (paired improvement of 4 [1; 8]%, p = 0.002). The only two
clinical characteristics distinguished between responders and non-
responders at baseline: lower body mass index (27 ± 5 versus 30 ± 5,
p < 0.05) and lower LVEF (23 ± 5% versus 29 ± 6%, p < 0.01) were
found in responders compared to non-responders.

A personalized biventricular electrophysiology model
accounting for the scarring segments was built for every patient.
The clinical (referent) RV-LV pacing sites (ref-PS) were used to
simulate BiV pacing in the personalized models. In two (9%)
responders and in eight (24%) non-responders the LV segments
with implanted electrodes were concordant with scar area. A
larger distance from the LV pacing site to the scar/fibrosis zone
was revealed in the responders compared with non-responders
(44 [19; 53] mm vs. 25 (Plesinger et al., 2020; Butter et al., 2021)
mm, p < 0.01, respectively, see Scar-LVPS distance in Table 1). In
consistency with the clinical data, a reduction in the simulated
QRSd, total ventricular activation time (TAT95, defined as the
time of activation of 95% of the ventricular myocardium) and
in all computed indices of inter- and intraventricular electrical
dyssynchrony was found in the models at BiV pacing against
baseline (Table 1; Supplementary Table S2). None of the simulation-
based indices of the ventricular activation showed a significant
difference between the responders and non-responders at baseline
and during BiV pacing.

3.2 ML classifier of CRT response built on a
hybrid dataset

Using a combination of the pre-implant clinical data and indices
derived from personalized models of ventricular activation at the
LBBB and BiV pacing we built a supervised LR classifier of CRT
response (Supplementary Figure S3; Supplementary Table S3).

Seven most important features were selected for the final LR
classifier. There were three clinical features at baseline: LVEF,
BMI, EDD; and four model-derived features: Scar-LVPS distance,
TAT95LBBB, and ADRVLV at both LBBB and BiV pacing. Two model-
derived indices, Scar-LVPS distance and ADRVLV at BiV pacing
depend on the LV pacing site. The LR classifier features a high
ROC AUC of 0.84 with a total accuracy of 77%, sensitivity of 65%
and specificity of 85% (Supplementary Table S3). The LR model
generates an ML-score as a measure of the probability of CRT
response in a patient. The cut-off value of ML-score = 0.51 classified
patients as responders or non-responders with maximum accuracy.

The ML-score in the total cohort was 0.31 [0.14; 0.68], with
higher values in the responder compared with non-responder group
(0.73 [0.36; 0.95] vs. 0.19 [0.07; 0.39], p<.001, Table 1). Moreover,
theML-score values correlate with post-implant improvement in the
LVEF (r = 0.48, p<0.001).

3.3 ML-based technique for patient
selection and LV pacing site optimization

Utilizing the LR classifier, a novel technique has been developed
and implemented to identify an optimal LV pacing site position,
which maximizes the ML-score of CRT response for a given patient.
The technique combines the following steps (Figure 2):

1. Compute a patient personalized model at LBBB and during
BiV pacing with multiple LV pacing sites located at the centers
of the AHA LV model segments, excepting septal segments
as unavailable for the conventional transvenous approach and
scarring regions as being non-excitable.

2. Extract model-derived features from the simulations depending
on the LV pacing site location.

3. Calculate an initial set of ML-scores from the LR classifier fed
with input data depending on the pacing site location.

4. Interpolate the ML-score values on the LV surface available
for pacing using Gaussian process regression and Bayesian
optimization.

5. Find the maximum ML-score and corresponding optimal LV
pacing site.

6. Classify the maximal ML-score value into positive (ML-score
> 0.5) or negative (ML-score < 0.5) for CRT response. Suggest
selecting the patient as a CRT candidate according to the model
prediction.

7. In case the maximum ML-score is positive, visualize the LV
surface map of the ML-score with the labeling of areas of pacing
site location predictive of the positive response and indicating an
optimal area for LV pacing site.

Figure 3 shows three examples of an ML based optimal LV
pacing site (ML-PS) in personalized ventricular models. In each
case, a two-color map of the ML-score value is shown on the LV
epicardial surface of the personalized biventricular model and on
the LV AHA segment scheme. Red shades indicate ML-scores > 0.5
on the LV surface predicting a positive response to CRT. In contrast,
shades of blue label ML-scores < 0.5 unwanted for LV pacing. Blue
and red dots on themap show the locations of the clinical ref-PS and
optimal ML-PS, respectively.
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FIGURE 3
Examples of ML-score map with optimal LV pacing site location in personalized ventricular models. Two color maps of the ML-value are shown on the
LV surface of personalized models and on the LV AHA segment schemes. Dark gray at the AHA LV scheme marks segments containing postinfarction
scar, which are excluded from pacing. Shades of red show LV surface area with ML-scores > 0.5 and shades of blue show ML-scores < 0.5. Blue and red
dots show the locations of the clinical and optimal LV pacing sites. From left to right are shown examples of the ML-score map in a clinical responder
(patient #2), non-responder (patient #1), and non-responder (true negative at the ref-PS) predicted as positive to CRT response at the optimal
ML-based lead position (patient #7).

The left panel demonstrates the ML-score map in a clinical
responder (patient #2) with a 12% LVEF improvement. In this
patient, almost the entire ML-score map is red, predicting a positive
CRT response with any available LV site located at the lateral wall.
Here, the referent and optimal pacing sites are located in adjacent LV
segments and the maximum ML-score of 0.95 at ML-PS is slightly
above the referent value of 0.94. So, this patient is predicted as a
positive for CRT response (ML-score > 0.5) at both the ref-PS and
ML-PS. The LR prediction is in line with a considerable of LVEF
improvement in this patient.

The central panel shows the ML-score map of a clinical non-
responder (patient #1) with a 7% LVEF improvement. Here, the
ML-scores at both the referent and optimal LV pacing sites are
blue colored (0.14 and 0.27 < 0.5, respectively). Moreover, the
overall map of ML-scores on the entire available LV surface is
blue colored, predicting a low possible response to CRT in this
patient. Correspondingly, this patient has a large postinfarction scar
spreading over half of the LV segments (see the gray segments in LV
AHA model).

The right panel shows the ML-score map of a clinical non-
responder (patient #7) with a 6% LVEF. The patient was classified by
the LR predictive model as a true negative at the ref-PS (ML-score =
0.38, see the ref-PS located in the blue colour area on the ML-score
map). At the same time, our algorithm predicts a narrow red area
at the basal inferior LV segments where the patient is predicted

as positive for CRT response, particularly at the optimal ML-PS
position with maximum ML-score = 0.77 (see ML-PS located in the
red colour area on theML-scoremap).Thus, our simulations suggest
that this patient could possibly improve with the ML-based optimal
pacing lead placement.

3.3.1 Effects of pacing site position on ML-score
The first question we addressed in our study was the extent to

which a change in LVpacing positionhas an impact onML-score in a
particular patient and in the overall population. Figure 4 shows ML-
scores computed at multiple LV pacing sites tested for every patient.
Here, patients were sorted according to their ML-score at ref-PS.
In addition to the optimal ML-PS with maximum ML-score across
the LV surface, two more LV pacing sites under BiV pacing were
tested: LV pacing from the LAT area in baseline (LAT-PS) and an LV
pacing site minimizing the total biventricular activation time (TAT-
PS) as ameasure of ventricular activation dyssynchrony. Apparently,
variation in the ML-score was higher between the patients than
within them. At the same time, the coefficient of variation of the
ML-score within patient ranged from 0.1 to 1.31, indicating that
in a number of patients the ML-score varied significantly with the
position of the LV pacing site, which emphasizes the importance of
pacing optimization.

The next question was whether the optimal ML-PS significantly
raised theML-score over the ref-PS.ML-score at ref-PS ranged from
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FIGURE 4
Individual ML-score for each patient with multiple LV pacing sites: clinical (reference) Ref-PS; optimal ML-PS, pacing at LV LAT area defined in baseline;
pacing at the LV pacing site minimizing the total biventricular activation time—TAT-PS. Patients are sorted according to their ML-score at Ref-PS pacing.
Following individual patient characteristics are shown below: a clinical responder (+) or non-responder (-), a positive (+)/negative (-) prediction of CRT
response based on the ML-score value generated by the LR predictive model from the clinical data and simulations at Ref-PS and ML-PS, and a
presence (+) of the combination of a positive ML-score at ML-PS and a low distance DPS < 30 mm from the Ref-PS to optimal ML. Bold red circles
indicate patients with a positive prediction of CRT response at ML-PS for the clinical non-responders.

0.03 to 0.99 between patients with a median of 0.31 [0.14, 0.68]
(see also Figure 5). The ML-score at the optimal ML-PS ranged in
the same interval, while the median was significantly higher 0.56
[0.33, 0.87] (p < 0.001, Figure 5). The improvement in the optimal
ML-score over the referent value ranging from 0 to 0.47 with a
median of 0.16 [0.05, 0.25], and a high coefficient of variation of
1.64, demonstrate a substantial increase in ML-score in the majority
of the patients. In particular, the optimal ML-score exceeded the
reference value by 17 [5; 24]% in 89% of our patients (51 out of
57, 19 out of 23 responders and 32 out of 34 non-responders).
The average optimal ML-score is significantly higher as compared
to ref-PS in both the responder and non-responder groups (p <
0.01, Table 1). At the same time, our model predicts a much higher
relative increase (almost double) in ML-score at ML-PS in the non-
responder group (see Table 1) with an increase of 18 [8; 26]% in 32
out of 34 non-responders.

As defined above, the cut-off ML-score of 0.51 separates
potential responders from non-responders. Comparing the ML-
score at ML-PS and ref-PS, we found patients who were classified
as negative (potential non-responders) with ref-PS but reclassified
as positive (potential responders) with ML-PS. Figure 6 shows such

upward transitions from the group of ML-score < 0.5 at ref-PS to
the group of ML-score > 0.5 at ML-PS. There were eleven such
transitions, shown in Supplementary Table S7 in more detail. Here,
five responders classified by the LR classifier as false negative at
ref-PS move upward into the positive group at ML-PS (see +5 in
the top left cell coming up from the bottom left cell). Moreover,
6 of 29 (21%) non-responders truly classified as negative at ref-
PS are classified as positive at ML-PS (see +6 in the top right cell
coming up from the bottom right cell). In total, according to the
LR classifier the ratio of positive to negative for CRT response
with an optimized ML-based pacing site increased considerably
to 31-to-26 (54-to-46%) versus the ratio of 23-to-34 (40-to-60%)
between responders and non-responders at ref-PS. At the same time,
a few true clinical responders (3 out of 24) were still classified as
false negative for CRT response even at the optimal LV pacing
site ML-PS (Figure 6, see 3 red dots in the right column with
max ML-score < o.51 at ML-PS). Although it is difficult to identify
specific factors contributing to the negative ML score value in the
multifactorial LR model, we will discuss possible reasons for the
false negative predictions in these patients below in the Discussion
Section 4.4).
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FIGURE 5
ML-score at ref-PS and ML-PS. Comparison between Responders and
Non-responders (p)—two independent groups was carried out using
Mann-Whitney test.

FIGURE 6
Transitions from negative to positive prediction of CRT response and
reverse transitions when switching from ref-PS to ML-PS.

3.3.2 Effects of optimal LV pacing site position on
model-derived characteristics of ventricular
activation

To explain the difference in the distributions of ML-scores
depending on LV pacing site position, we compared the model-
derived features characterising ventricular activation at ML-PS and
ref-PS.

In a majority of models (52 (91%) out of the 57 models), BiV
pacing from ML-PS was associated with a considerable decrease
in all simulated indices characterizing ventricular activation
dyssynchrony as compared with the baseline LBBB activation. The
median TAT (99 [88; 111] ms) and QRSd (142 [132; 155] ms) at
ML-PS are seen to be significantly shorter than at baseline (151 [137;
166] and 190 [175; 205], p < 0.01, respectively). At the same time, no
significant difference in average TAT and QRSd was found between
ML-PS and ref-PS (Table 1).

Both the inter- and intra-ventricular dyssynchrony indices (RV-
LV activation delay ADRVLV and ST-LV activation delay ADSTLV ) in
LBBB baseline have positive average values reflecting a significantly
later activation of LV versus RV, and LV lateral wall versus septum
(Supplementary Table S5). Both indices reduce several times at ML-
PS as compared with LBBB. However, no difference between ML-
PS and ref-PS was found in the inter-ventricular dyssynchrony
indexADRVLV . In contrast, the intra-ventricular dyssynchrony index
ADSTLV , is slightly higher for ML-PS versus ref-PS. The positive
ADSTLV (0.08 [0.02; 0.18]) at ML-PS suggests later activation of
the LV lateral wall as compared to the septum, while the negative
index (−0.09 [−0.15; −0.03]) at ref-PS reflects later activation of the
septum.

Similarly, there were no effects of pacing site position on TAT
and QRSd, and on the dyssynchrony indices in the responder and
non-responder groups. Thus, the peculiarities of any single model-
derived indices tested under different pacing site positions could not
explain the differences in the ML-score we found.

As described above, the Scar-LVPS distance from the LV pacing
site to postinfarction scar area was selected as one of the significant
model-driven features affecting LR classifier accuracy and the ML-
score value. The Scar-LVPS distance was significantly longer at
optimal ML-PS as compared to ref-PS (58 [45; 71] vs. 34 [10; 49],
respectively, p < 0.05, Table 1). Moreover, a positive correlation
(r = 0.673, p < 0.01) was found between the improvement in
the ML-score and the extension of the Scar-LVPS distance when
switching from ref-PS to ML-PS. Comparing the responder and
non-responder groups, we observed that the Scar-LVPS distance
was shorter for the non-responder group at ref-PS, while at ML-
PS the distance increased significantly in the non-responder group,
blurring the difference between the groups (Table 1). Finally, no
correlation between the maximum ML-score and the Scar-LVPS
distance was found at ML-PS.

3.4 Validation of LV pacing site
optimization based on ML-score

Our current study utilized retrospective clinical data, with no
patients treated according to the optimization procedure for LV
lead implantation that we have developed. However, we were able
to perform a virtual “clinical trial” of our optimization approach.
First, we selected a group of patients classified as positive for CRT
response with a maximum ML-score > 0.5 (referred to as the
“positive” group, n = 31, 54% of the total 57 patients) identified
by our optimised selection algorithm. Even with the use of an
empirical approach to LV pacing lead implantation in patients from
the selected positive group, the group contained 20 (65%) clinical
responders and 11 (35%) non-responders paced from ref-PS. Thus,
the clinical CRT response rate (65%) in the positive group selected
according to our optimised approach was significantly higher than
that of 40% in the entire cohort selected according to current
guidelines.

In contrast, in the group classified as negative for CRT response
(maximum ML-score < 0.5, n = 26, 46% of the total), there were
only 3 (12%) clinical responders and 23 (88%) non-responders.
Therefore, the odds ratio of becoming a responder with a positive
prognosis versus a negative prognosis was 13.9 CI(3.4; 57) in our
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cohort, suggesting a great potential of our approach to assist in the
selection of CRT candidates.

Not surprisingly, a higher ΔLVEF was found in the positive
group (14 [8; 17] vs. 3 [0; 9]%, p < 0.001) reflecting the higher ratio
of responders against the negative group. However, no difference in
ΔLVEF was found between positive and negative responders, nor
between positive and negative non-responders. This fact suggests
that if LV pacing site optimisation is not applied to selected patients,
no additional LVEF improvement compared to the guidelines could
be expected in positive candidates.

Next, to demonstrate the strength of LVpacing site optimisation,
we classified our patients according to the proximity of the clinical
ref-PS to the optimal ML-PS and assessed the significance of the
distance (DPS) from the ref-PS to ML-PS as a measure of predicting
CRT response. An average distance DPS in the responders from the
entire cohort was shorter against the non-responders (42 ± 25 mm
(median 35 [21, 61] mm) versus 65 ± 30 mm (median 64 [41,
92] mm, p = 0.005 respectively). The distinction in DPS between
responders and non-responders was even higher in the positive
group: 40 ± 25 mm (median 29 [20, 61] mm) versus 66 ± 28 mm
(median 72 [45, 88] mm), p = 0.005.Moreover, we found amoderate
correlation (r = 0.423, p < 0.001) between the distance DPS and
ΔLVEF (Supplementary Figures S4, S5).The results suggestedDPS to
be predictive of the CRT response.

Furthermore, we selected the two features—the maximum ML-
score > 0.5, and the distance DPS—as measures to perform a linear
discriminant analysis. The model yielded a ROC AUC of 0.85, p <
0.001. The optimal cut-off point analysis showed that max ML-score
= 0.51 and DPS = 30 mm divided the patients into responders and
non-responders providing the best balance between sensitivity and
specificity (sensitivity 87%, specificity 71%, positive predictive value
67%, and negative predictive value 89%).

In the group of patients with a maximum ML-score > 0.5
(positive) and DPS < 30 mm (n = 12 (21%) out of total 57), the
response rate was 83% (10 responders) which is much higher than
29% (13 responders out of 45) in the rest of the cohort. Selection
of CRT candidates based on the positive prediction with maximum
ML-score > 0.5 and DPS < 30 mm has the odds ratio for CRT
response of 12.3 CI (2.4; 64). Moreover, an average ΔLVEF value
of 16 ± 8 (median 15 [11; 20]) in this group is much higher than
7 ± 8 (median 7 [1; 14])% (p < 0.01) in the rest of the population,
demonstrating a great improvement in the selected patients with
a maximum ML-score > 0.5 and LV pacing leads deployed in the
proximity to the optimal LV pacing site.

The above results evidence a high potential of our ML-score
based optimal LV lead placement to assist in selecting CRT
candidates and guiding lead implantation.

4 Discussion

4.1 ML-score based optimal LV lead
position

In our recent study (Khamzin et al., 2021), we developed and
validated ML classifiers to predict a long-term LVEF improvement
of more than 10% in CRT recepients. In the current study,
we used such an LR classifier as an essential component of

a novel technology for optimising CRT. This technique may
help to assess the probability of patient improvement before
implantation, and to guide the procedure in selected patients. The
CRT optimisation algorithm utilises characteristics of ventricular
activation dyssynchrony derived from personalised computational
models depending on the pacing site position. Here, we fixed the RV
pacing site at the post-operative position in the BiV model settings
because it did not vary between patients and was conventionally
located in the RV apical region. The aim of this study was to evaluate
the role of LV pacing site position and the ability to optimise CRT
response by choice of position. The main advantage of using model
simulations is the possibility of testing any accessible pacing site on
the LV surface and predicting an optimal lead placement, which
maximises the probability of patient improvement at BiV pacing.

As emphasised above, our approach to CRT optimisation can be
applied during preoperative patient evaluation before data on RV-
LV pacing sites and ECG recorded during BiV pacing are available
for a given patient. The optimisation algorithm maximises an ML
score of CRT response across the LV surface available for pacing
using simulations of BiV pacing at different LV pacing site positions.
Of note, a supervised ML classifier used to compute ML scores
must be developed independently of and prior to the application
of the optimisation procedure. At this stage, for the development
of supervised LR classifiers, we need a training dataset of post-
operative clinical data with determination of LV and RV pacing
sites from CT images and determination of myocardial conductivity
parameters based on clinically recorded QRSd at pacing. Since such
a supervised LR classifier has been created (as a formulation with
defined coefficients), one can use this classifier (with predefined and
fixed coefficients) to computeML scores for an arbitrary RV-LV lead
setting using simulations of BiV pacing with that particular pacing
site location. Of course, such an ML-classifier could be re-trained
from time to time with an expanded dataset as new post-operative
clinical data becomes available. However, since the ML classifier is
set, no clinical pacing site location is required for our optimization
algorithms.

The patient assessment algorithm involves building a
personalised ventricular model; performing simulations with LBBB
activation pattern and under BiV pacing with multiple LV pacing
site positions; calculating ML-scores from the LR classifier fed
with selected pre-implant clinical data and model-derived features,
building a map of ML-score values over the entire LV surface, and
finding the optimal LV pacing site position with a maximum ML-
score using Gaussian process regression and Bayesian optimisation
(Figure 2). Ultimately, this approach gives a CRT operator an LV
surface map with labelled areas for LV pacing, predicting either
a positive (ML-score > 0.5) or negative (ML-score < 0.5) CRT
response. Moreover, it identifies a target position for optimal LV
pacing site that maximises the ML-score, predicting the highest
possible probability of the patient’s response to CRT (see examples
of ML-score maps in patient specific models in Figure 3). If the
optimal ML-score is higher than cut-off value dividing responders
and non-responders according to the ML classifier (maximum ML-
score >0.5), the patient may be considered as a candidate for CRT.
The ML-based optimal LV lead position can be used to guide the
implantation procedure.

We demonstrated a broad in-patient variation in the ML-score
depending on the pacing site position (Figure 4). The ML-score
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varied more than 10-fold across the LV surface, and the range
was much broader in the non-responder group of patients. One
of the essential results of our study is that the ML-based optimal
LV pacing site (ML-PS) provides the highest ML-score for CRT
response in our patient population exceeding significantly the ML-
score values at the clinical (ref-PS) and alternative pacing sites we
tested. Moreover, in the non-responder group, the optimal ML-
score showed a two-fold improvement compared to the referent
value.

The strength of ML-based optimisation is clearly visualised
in Figure 6. It shows a great number of transitions among the
patients classified as negative for CRT response (ML-score < 0.5)
at ref-PS into the positive group (ML-score > 0.5) at ML-PS. The
maximum ML-score predicted a higher ratio of positive-to-negative
patients (31/26≈ 1.2) as compared with the ratio of responders/non-
responders (23/34 ≈ 0.67).

4.2 On the regional distribution of optimal
LV lead positions

Several clinical trials have recommended avoiding apical and
anterior regions for LV pacing, where possible (Butter et al., 2021).
Supplementary Figure S1 compares the distribution of segments
with LV pacing sites derived from the CT images with implanted
leads and suggested by different optimisation approach. It can be
seen that for ref-PS the lateral segments with LV pacing sites are
more frequent (50 out of the 57 cases) in our population. For
ML-based optimisation, lateral segments are more frequent (36
cases) as well, but both anterior (11 cases) and inferior (10 cases)
segments are also representative in terms of the maximum ML-
score. Analyzing the 11 cases with chosen optimal anterior segments
for ML-PS, we found 4 responders with ref-PS in proximity to
the optimal ML-PS (in the same or neighboring segments). The
rest 7 non-responders were still predicted as negative at ML-PS
(max ML-score < 0.5) suggesting a low likelihood of improvement.
Thus, our model predictions are in line with clinical observations
showing a small fraction of anterior segments among positive
responses.

4.3 On the role of scarring area for optimal
LV lead positioning

In our study, the extent of LV myocardial damage (both
absolute and relative to the surviving myocardium volume) was
not selected as a strong predictor of CRT response for the LR
classifier. At the same time, the Scar-LVPS distance was selected as
the third most important feature for CRT response prediction (see
Supplementary Figure S3). It was selected by every feature selection
algorithm we tested. This Scar-LVPS distance was the only model-
driven feature that distinguished responders from non-responders
in our population at the referent LV lead position (see Table 1),
although, no correlation was found between the Scar-LVPS distance
and LVEF improvement (r = 0.18, p = 0.211).

At the same time, we found a low positive correlation between
the ML-score value and Scar-LVPS distance at ref-PS (r = 0.419,
p < 0.001). In addition, we revealed a strong positive correlation

between the improvement in the ML-score at the optimal ML-PS
and the increase in Scar-LVPS distance against the ref-PS (r = 0.673,
p < 0.01). The higher Scar-LVPS distances were associated with the
maximum ML-scores (Table 1).

Our findings are consistent with the results of clinical studies
which assessed the significance of postinfarction scar for CRT
response. A higher LV dyssynchrony was shown to be strongly
associated with echocardiographic response to CRT, while the total
extent of scar derived from MRI and a match between the LV
pacing site and transmural scar were found to be favourable to
non-response (Marsan et al., 2009). The location of scar in the
posterolateral region of the LV, which is empirically thought to be
a target site for LV lead implantation, was associated with lower
response rates following CRT (Chalil et al., 2007). Pezel and co-
authors (Pezel et al., 2021) found no difference in the presence
and extent of scar between CRT responders and non-responders.
However, in non-responders, the LV lead was more often over
akinetic/dyskinetic regions. By contrast, the extent of the scar core
and gray zone was automatically quantified using cardiac MRI
analysis and the highest percentage of CRT response was observed
in patients with low focal scar values and high QRS area before
operation (Nguyên et al., 2018). However, the lack of direct MRI
information regarding scarring in the cardiac tissue was mentioned
as one of the limitations of the data they used. In our models we
accounted for scar/fibrosis data and showed that this is essential for
model predictions.

4.4 Validation of the optimal ML-PS
approach

We analysed the benefits of our novel pacing site optimisation
technology with respect to two clinical tasks: optimisation of
patient selection and optimisation of procedure planning. The
technology allows both steps to be performed preoperatively and
simultaneously. Even without pacing site optimisation, a positive
group of patients classified as favourable for CRT response by
a maximum ML-score > 0.5 contained a higher proportion of
clinically proven responders with LVEF improvement greater than
10% (65% vs. 40%) and showed a higher ΔLVEF (14 [8; 17] vs. 9 [2;
15]%, p < 0.01) compared to the entire cohort selected according
to current guidelines. As expected, the ML-based positive group
showed great advantages over the negative group with maximum
ML-scores < 0.5, consisting of only 12% of responders and showing
a low ΔLVEF of 3 [0; 9] (p < 0.01). These results demonstrate
the high potential of our technology for patient selection for
implantation.

Any predictive model has less than 100% sensitivity and
specificity. Same with our ML based LR model, which is
multifactorial, and a specific combination of input features
contributes to the overall ML score output. Our optimized patient
selection algorithm based on the positive response prediction
from max ML-score > 0.5 predicts clinical responders with a
high sensitivity of 87% with 20 true positive (max Ml-score >
0.5) and 3 false negative (max ML score < 0.5) out of 23 true
clinical responders. The 3 false negative patients #4, #34, #44 were
ischemic cardiomyopathy patients with a high relative scar size in
the myocardial tissue volume (31, 20 and 28% correspondingly)
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over the 75% quartile of the distribution 0.12 [0.07; 0.23] and a
great majority of damaged segments according to the AHA LV
model (8, 10 and 7 damaged segments out of max 12 segments
available for pacing). Two of the three patients have BMI of 31,
32 over the average 30 in non-responders. One of the latter has
a high baseline LVEF of 32 over the mean 29 in non-responders.
For two of the three patients, a short Scar-LVPS distance from the
clinical LV pacing site to the scar area (0 and 16 mm) was lower than
the 25% quartile for the distribution 44 [19; 53] in the responders.
The above factors favor the negative ML-score prediction of the
response for the patients, and it is actually difficult to distinguish
particular features that are responsible for the false prediction in the
multifactorial LR classifier. Despite max ML-score in these patients
was 2–3 times higher than ML-score at ref-PS, it was still lower
than the cutoff of 0.5. Note that in patient #43 the max ML-score
was of 0.43, close to the responder threshold. We think that such
patients with great extent of myocardial damage need more accurate
scar area segmentation to get more specific response prognosis (see
below Limitation Sec.).

Then, we demonstrated the validity of our optimisation
approach as a procedure planning strategy. We showed that the
distance DPS from the clinical LV pacing position to the optimal
site identified by our algorithm was an independent predictor of
CRT response (ROC AUC = 0.72, p = 0.005). The distance was
shorter in the responders and correlated with LVEF improvement
(Supplementary Figure S4). Finally, discriminant analysis showed
that a combination of the maximum ML-score and DPS values is
predictive of CRT response with a high accuracy (ROC AUC = 0.85,
p < 0.001). Together with max ML-score > 0.5, a DPS of less than
30 mm is suggested as a cut-off for predicting more than 10% LVEF
improvement. The group of patients with maximum ML-scores >
0.5 and DPS < 30 mm demonstrated an higher response rate (83%
vs. 29%, OR = 12.3 CL (2.4; 64)) and a better LVEF improvement
(15 [11; 20]% vs. 7 [1; 14]%, p < 0.01) as compared with the rest of
the cohort.

The above results provide evidence of the high potential of our
ML-score based LV pacing site optimisation for the selection of CRT
candidates and for guiding lead implantation.

4.5 Which optimised LV lead position is
better?

To compare the results of our ML-based optimisation approach,
we tested two alternative LV pacing sites, which had been reported
as potential for CRT improvement. In the first approach, we
characterised the area of the LV late activation time (LAT) from
the simulated ventricular activation map at baseline LBBB in each
personalised model. The LAT pacing site (LAT-PS) was tested as
an alternative LV pacing site during BiV pacing in each model.
Using LAT-PS, we also calculated the distance DLAT−LVPS from
the ML-PS and ref-LV to LAT area. In addition, we estimated
the interventricular RV-LV delay as a time interval between the
activation of the LV and RV pacing sites in the LBBB pattern.
This feature is often used instead of the Q-LV delay measured
from the onset of QRS complex to the activation time of the LV
electrode in baseline or during RV pacing. Several studies have
showed favourable effects of using the RV-LV delay or DLAT−LVPS

as a guide (Gold et al., 2017; Lee et al., 2021; Fyenbo et al., 2022;
Parreira et al., 2023). By contrast, selecting the LAT pacing site
in patients with non-LBBB was reported to have no benefits
(Singh et al., 2020).

The other LV pacing alternative we tested involved LV pacing
sites ensuring a minimum total biventricular activation time (TAT-
PS). TAT is often used as a measure of ventricular dyssynchrony
and its reduction via BiV pacing or at other pacing settings is
considered as a target for stimulation design (Pereira et al., 2019;
Zweerink et al., 2021; Fyenbo et al., 2022; Rodero et al., 2022). In
clinical practice, direct assessment of both LAT area and TAT is
complicated and requires invasive electrophysiological mapping to
be performed. Currently, non-invasive body surface ECG mapping
showed advantages in deriving ventricular activation characteristics
(Sieniewicz et al., 2019; Sedova et al., 2021; Parreira et al., 2023).
Personalised cardiac models present another useful tool for non-
invasive prediction of the LAT area in LBBB and TAT values at
various pacing configurations prior to the procedure (Lee et al.,
2019).

In our patient cohort, we found no difference in the average
RV-LV delay at ref-PS between the responders and non-responders
(Supplementary Table S6). Neither was there a correlation between
the RV-LV delay and LVEF improvement (r = –0.14, p = 0.314).
Similarly, there was no difference in the distance DLAT−LVPS between
the responders and non-responders, and no correlation with LVEF
improvement was found. Accordingly, in the univariate analysis
these variables were not selected as independent predictors for CRT
response; neither were they selected in the multivariate analysis.
Therefore, none of these two features was used as an independent
variable in our multivariable LR classifier of CRT response and in
the algorithms of pacing site optimization.

As we showed above, TAT95 simulated in baseline LBBB was
selected as one of the most important features for the multivariable
LR classifier of CRT response, reflecting the significance of a
wide QRSd in guiding patient selection for CRT. However, in
consistencywith clinical and simulated data onQRSd, no correlation
was found between LVEF improvement and simulated TAT at
either LBBB or BiV pacing. No correlation was found between
LVEF improvement and relative reduction in TAT at BiV pacing
against baseline for any pacing site strategy we tested (Table 1).
The distance between TAT-PS and ref-PS did not differ between
responders and non-responders and did not correlate with LVEF
improvement either. Our simulation results are consistent with the
simulation results by Lee et al. (Lee et al., 2021). These authors
also found no significance of changes in several characteristics
of ventricular activation dyssynchrtony in comparison to RV
pacing as predictors of an acute hemodynamic response to BiV
pacing.

The results of BiV pacing based on neither LAT-PS nor TAT-PS
showed a more favourable prognosis of response to CRT compared
to clinical ref-PS or optimal ML-PS. Despite the highest RV-LV
delay at LAT-PS and the shortest TAT at TAT-PS as compared with
other pacing sites (p < 0.01), no improvement in the ML-scores
over ref-PS was attained (see Supplementary Figure S2 for the ML-
score distribution at alternative pacing sites).The results suggest that
any uniparametric strategy for targeting LV lead placement cannot
improve CRT response prognosis. At the same time, the optimal
ML-scores at ML-PS based on the multivariable LR predictions
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demonstrated the highest ML-score among the other pacing sites,
suggesting the highest probability of CRT response.

The above results may seem inconsistent with several studies
addressing pacing site optimization. Among the reasons of
inconsistency could be difference in criteria used to define CRT
response and the choice of either acute or chronic response for
evaluating the outcome. In our current study, we trained predictive
models on long-term LVEF improvement values during chronic BiV
pacing in 1 year postimplant period. In line with other studies, we
previously showed that the 1-year period is optimal for assessing
the magnitude of outcomes and benefits of therapy compared to
and earlier follow-up (Chumarnaya et al., 2021). Over 1 year, the
impact of the RV-LV delay could be less important. This suggestion
is supported by our recent clinical observations (Chumarnaya et al.,
2022). We compared two groups of patients with quadripolar LV
leads: one group was paced according to maximum RV-LV delay,
while in the other group a maximum RV-LV delay could not be
approached during BiV pacing. We showed a faster improvement
in the first group during the first 3–6 months after implantation.
However, no difference was observed in LVEF improvement
or ESV reduction in 12 months postimplant between the
groups.

Another source for inter-study discrepancies could be related
to data availability on the presence and distribution of LV scar
or fibrosis and the accuracy of LAT area and TAT assessment. To
our knowledge, our current study is the first one to use scar MRI
data to predict LAT area and ventricular activation characteristics
in models predicting response to CRT. Utilising both the distance
DLAT−LVPS from the LV pacing site to the LAT area and the
distance DScar−LVPS from the LV pacing site to the scarring area, our
analysis suggested the latter as a stronger predictor of pacing site
optimisation.

5 Strengths and limitations of the
study

In recent simulation studies, personalized cardiac models were
used to revealmodel-derived features correlatingwithCRT response
(Sermesant et al., 2012; Villongco et al., 2016b; Okada et al., 2017;
Lee et al., 2018; Isotani et al., 2020). In two recent papers, model
simulations were demonstrated to be predictive of LV pacing site
optimization (Lee et al., 2021; Rodero et al., 2022). In our current
study, we have developed an ML-based technique, using both
clinical and simulated features. This technique provides an LV
surface map predicting areas of positive and negative response
and indicating the best possible place for LV lead guidance with a
highest probability of CRT response for a given patient. Such a pre-
operative virtual assistant can help select candidates for implantation
and plan the procedure for selected patients. The results of our
and other simulation studies demonstrate the potential of virtual
clinical trials as a tool for exploring new approaches to CRT
improvement.

In most studies, pacing site optimization is implemented either
intra-procedurally with a parallel assessment of the acute response
to BiV pacing, or post-implant in CRT device programming,
particularly for quadripolar or multipace LV electrodes. Recently,
the largest study using non-invasive 3D electrical activation

mapping (ECGi) demonstrated the potential of using the ECGi
technique in the pre-implantation planning strategy for CRT by
enabling a non-invasive identification of the LAT area coupled to
the identification of a suitable coronary vein (Parreira et al., 2023).
This approach is in line with our pre-implant optimization strategy,
providing an operator with a target area for implantation. Note
also that the reported strategies of pacing lead optimization are
predominantly based on a single pre- or intra-operative feature
(e.g., either LAT, or QRSd, or TAT, or dP/dtmax, etc.). In contrast,
our ML-based LV pacing site optimization accounts for multiple
significant features related to the CRT response. A major added
benefit of our approach is the use of model-derived predictions
of BiV pacing from any available LV pacing site to estimate the
probability of CRT response and to select an optimal pacing site
that provides the highest probability. In addition, an essential
advantage of our approach is the assessment of CRT efficacy prior to
implantation, which can improve the response rate through optimal
candidate selection and, together with optimised pacing, improve
the outcomes.

There are several limitations in our study.
Small dataset: In this study we had a limited dataset sampled

from 57 patients. However, to the best of our knowledge, this is the
largest model population used in simulation studies. Nevertheless,
more data should be collected to split the datasets for training
and testing the predictive models, in order to draw more robust
conclusions. Still, more data are needed to validate the approach
and confirm its usefulness for patient stratification and optimal lead
guidance.

Fibrosis/scar segmentation and simulation: We have shown
a high importance of the distance DScar−LVPS from the LV pacing
site to the myocardial damage area for CRT optimization. In this
study, we have simulated LV scarring area based on the labeling
of damaged LV segments performed by the expert that analyzed
the MRI scans. A more accurate segmentation of the raw MRI
data should be used to confirm model predictions. In addition, our
functional model of an infarct injury region was also simplified
as we simulated the scar region as an inexcitable obstacle. Such
a simplified assumption has often been used in modelling studies
addressing the effects of the scar region on excitation propagation
(see a review in (65)). However, experimental data in experimental
animals and humans using MRI and optical mapping techniques
showed a much more complex local structure and behaviour
in the infarct zone (Ashikaga et al., 2007; Rutherford et al., 2012;
Richardson et al., 2015; Connolly and Bishop, 2016; Martínez et al.,
2017; Lodrini and Goumans, 2021). The scar area, and particularly
its border zone, has been shown to contain excitable inclusions
of viable cells and fibroblast/myofibroblasts that influence the
electrical activity in this area and in the surrounding myocardial
tissue (Rutherford et al., 2012; Lodrini and Goumans, 2021). These
structural and functional changes can result in a significant
reduction in conduction velocity (but not complete absence
of activity), which could be more accurately accounted for
in the personalised models (Ringenberg et al., 2014; Connolly
and Bishop, 2016; Mendonca Costa et al., 2018; Dokuchaev et al.,
2020).

Purkinje network and LBBB level: Next, in this study we
assumed complete LBBB when simulating baseline activation in
the models. To simulate LBBB activation patterns in our models,
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we used a right branch of a synthetic model of the Purkinje
network (Ijiri et al., 2008; Sebastian et al., 2011; Barber et al., 2021)
with the left branch completely excluded. Previously, such Purkinje
network models have been shown to reproduce an anatomical
structure and myocardial activation patterns in the human and
rabbit heart in norm and LBBB (Barber et al., 2021; Zhu et al.,
2021). At the same time, there are experimental data on the
morphological varieties of the Purkinje fibre network inmammalian
hearts (Ono et al., 2009). However, currently it has not been possible
to derive personalised data on the Purkinje network using non-
invasive methods applicable in clinical practice. Furthermore, the
effects of inter-subject variability in the Purkinje network on the
ventricular activation pattern have not been addressed in detail
in the experimental or simulation studies. Given that Purkinje
myocardial junctions cover almost the entire endocardial surface
of the right ventricular wall, we suggested that variations in the
configuration of the right bundle branch should not significantly
affect ventricular activation patterns in LBBB.Another facet of LBBB
simulation is that current ECG criteria for LBBB do not distinguish
between proximal and distal LBB conduction block, which may also
affect the activation pattern in LV and requires further experimental
and clinical consideration. In contrast, during BiV pacing, the
onset of ventricular activation is defined by the location of RV-
LV pacing sites, which we were able to define with high accuracy
from CT images. In this case, the Purkinje network was excluded
from the ventricular models and did not affect the results of BiV
simulations.

Model parameter tailoring: Another limitation of our
personalised models was the use of an average QRSd and a global
conductivity parameter for viable myocardium to fit the models to
personal clinical ECG data. Such an approach provides a fast and
robust solution, but may not reflect intra-ventricular variability in
local conductivity, especially in areas where myocardial fibrosis/scar
affects regional propagation.

We used different values of a global conductivity parameter
in the LBBB and BiV models. The conductivity values were fitted
from the clinical data on QRSd recorded pre- and post-operatively
and reflected the clinically observed reduction in QRSd on pacing.
The global parameter of myocardial conductivity in the Eikonal
equation that we fitted to the QRSd value is actually an effective
parameter of the model (not a purely physical value, unlike
the local conductivity parameters) and depends on many factors
such as LV end-diastolic volume, the relative volume of excitable
myocardial tissue to non-excitable tissue, the fraction of fibrotic
tissue with reduced conductivity, the area of initial pacing and
the location and proximity of the LV pacing lead to the infarct
area, etc. These factors varied in the personalized models, which
may explain a substantial variability in the global conductivity
parameter (ranging from 0.2 to 1.5 for the scaling factor of the
reference conductivity parameter value) that we identified from
the clinical QRSd. Global conductivity parameters tended to be
higher in BiV settings than in LBBB settings. This observation can
be seen as a penalty for using only one parameter to compensate
for many factors that contribute to the difference in activation
time with BiV pacing compared to the baseline LBBB pattern. In
particular, the increase in the global conductivity parameter was
greater in BiV models with greater QRS reduction and a higher
proportion of viable myocardium. In this study, we were not able

to account for the postoperative change in ventricular geometry and
LV volume, which decreases in a majority of patients with chronic
pacing (especially in those we classified as responders), because we
used postoperative CT scans for the ventricular geometry models
used for both activation settings. It has recently been shown in a
simulation study by Rodero and co-authors (Rodero et al., 2022)
that cardiac remodeling and reduction in ventricular volume after
CRT implantation can reduce the effects of ventricular pacing.
Then, our simplified models did not account for the mechanical
activity, which is able to affect myocardial excitation depending
on the contraction pattern and may contribute to the difference
in ventricular dyssynchrony characteristics revealed by QRSd
reduction. In addition, the timing of activation depends on the
stimulation area, which we set in the BiV models as a small area
of less than 2 mm around the pacing site, whereas in reality this
area could be larger depending on the stimulation settings used in
patients. Moreover, myocardial conductivity during chronic pacing
may itself change due to myocardial remodeling processes initiated
by the change in activation sequence. Thus, an increase in global
conductivity in the model at BiV settings could compensate for all
of the above and other implicit factors to reproduce a substantial
reduction in QRSd during postoperative myocardial remodeling.
The difference in the global conductivity parameters we defined for
LBBB and BiV models can be considered as a reflection of a number
of uncertainties in the real system that are integrated in the single
global parameter value.

Model consistency and further improvements: Nevertheless,
even with all the aforementioned assumptions and simplifications,
we constructed and fitted our personalised models, which
demonstrated the ability to capture clinical characteristics of
ventricular activation at baseline and during BiV pacing and
to reproduce clinically seen synchronisation of ventricular
activation during BiV pacing (Section 2.1 and Section 3.1;
Supplementary Figures S6–S10 on the consistency of model
simulations to the clinical data). These results, together with the
high accuracy of the ML classifier of CRT response utilizing the
model-derived features at ref-PS, support the use of personalised
models to predict the effects of BiV pacing within the ML-based
approach we have developed to help CRT optimisation.

To ensure that the results of our study were robust to the global
conductivity parameter used in the BiV settings, we compared the
predictions of the optimal LV pacing site using BiV simulations with
either the global conductivity parameter (BiVcond) defined from the
postoperative QRSd at BiV pacing or the conductivity (LBBBcond)
defined to match the preoperative clinical QRSd at baseline. The
latter global conductivity parameter was used to compute simulated
characteristics at both LBBB setting and BiV pacing with different
tested LV pacing site locations. Corresponding ML scores were then
computed using the predefinedML classifier we developed and used
to predict an optimal LV lead position across the LV surface. We
found that in 55 out of 57 (96%) patient models, the optimal lead
position at the LBBBcond parameter was predicted in the same or
neighboring segments of the LV AHA model as predicted from
model simulations with the BiVcond parameter. The median distance
between optimal LV pacing site locations was 3.9 mm, which is
approximately the size of the stimulation area with the point source.
In 75% of the models the distance was less than 10 mm and in
49 (86%) of the 57 models the distance was less than 20 mm.
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The larger distance was observed in a few models with a large
infarct size, where the optimal LV pacing location was predicted
at the same distance from the infarct zone, but at the opposite
position of the infarct area. Notably, ML-scores predicted from BiV
simulations with different global conductivity parameters were not
significantly different and predicted the same positive or negative
CRT response for a patient. The only exception was observed in a
non-responder model (patient #50), whose optimal ML-scores at
different conductivities for BiV settings were close to each other
(0.48 versus 0.52) and to the ML-score threshold of 0.5, which did
not allow one to guarantee the positive response at the optimal
position.

These observations allow us to suggest that, despite the
limitations of the model, it is clearly able to predict the optimal
position for the LVpacing site based on the only preoperative clinical
data used for simulation at the BiV settings.

However, further improvements of personalised models could
be performed in future to assess effects of more specific simulation
of the Purkinje network morphology and LBBB level; scar/fibrosis
area location, shape and texture; and tailoring personalised
electrophysiological parameters based on the morphology of the
QRS complex or the entire time-dependent ECG signal. Several
approaches to the latter problem, assuming spatial heterogeneity
of conductivity within the myocardial tissue and taking into
account partially excitable areas of damaged myocardium, have
recently been developed by several groups, including our team
(Moreau-Villéger et al., 2006; Albors et al., 2022), and could
be implemented to fit model predictions to personal clinical
data.

Coronary sinus data merge: In this study, we identified a
sort of ideal optimal LV pacing site on the entire LV surface.
Here, we did not consider realistic anatomical constraints for
epicardial LV lead access, which are limited by the available
coronary sinus veins traditionally used for LV lead implantation.
We plan to circumvent this limitation and validate our ML-
based optimisation technique using ventricularmodelsmerged with
coronary sinus visualisations. This will allow us to test the LV
pacing sites within the coronary sinus approach and verify if our
ML-based approach is able to improve CRT candidate selection
and procedure outcome with more realistically optimised BiV
pacing.

Multi-modal clinical data:We have not addressed a number of
strategies for patient selection and pacing site optimization that are
becoming available with further development in ECGI and other
imaging techniques. Recent studies have paid much attention to
utilyzing vector ECG characteristics for CRT response prediction
(Van Deursen et al., 2015; Emerek et al., 2019; Ghossein et al.,
2022). The morphology and specific features of both conventional
12-lead ECG and vector ECG could be used to more accurately
identify electrophysiological parameters in the personalised models
(Gillette et al., 2021; Pezzuto et al., 2021; Costa et al., 2022) and to
further improve predictive models of CRT response. In the present
study, CRT response prediction involved simulated characteristics of
ventricular activation and ECG derived from electrophysiological
models. However, the synchronization of ventricular contraction
and subsequent improvement in the mechanical performance of
the ventricles is the main goal of the therapy. Recent studies have
shown the predictive power of the mechanical indices that could

be measured from CT or echocardiography images and accounted
for in the predictive models of optimal pacing designs (Lee et al.,
2021). Moreover, electromechanical models of cardiac activity
(such as reported by (Sermesant et al., 2012; Okada et al., 2017;
Lee et al., 2018; Isotani et al., 2020) and being developed by our
team) could help perform direct simulations of LVEF, dP/dtmax
changes and other mechanical biomarkers of CRT response,
which can further improve ML based optimization of the CRT
procedure.

Alternative strategies for ventricular pacing: In this proof-
of-concept study, we used our ML-based approach to optimize
BiV pacing. Currently, there are data emerging on different
pacing modality enhancing effects in selected patients depending
on the ischemic or non-ischemic origin of HF, LBBB or non-
LBBB activation, the levels of conduction system block, etc. New
techniques for His-Purkinje and/or conduction system pacing,
selective LV, RV or BiV, or multipole pacing, epicardial versus
endocardial pacing and their possible combinations together with
AV and VV delay optimisation for optimal ventricular fusion
create a challenge for making the best choice (Zweerink et al.,
2021; Mariani et al., 2023; Rijks et al., 2023). Only computational
modeling provides a tool to test every possible combination
and to suggest ones that help optimise patient outcome. The
technology we have developed enables solving such complex
problems.

Our approach enables one to account for more data available
from various imaging modalities in the analysis and training of
multivariable ML classifiers. Thus, the dataset for analysis can
be expanded, CRT response criteria can be improved, and our
generalML-based simulation approach to finding an optimal pacing
configuration that maximises the probability of response can be
further improved to accommodate data expansion. Furthermore,
there is a general conclusion that can be drawn from the studies
suggesting a strategy for LV pacing site optimisation to improve
CRT response, that is, any such strategy needs to be evaluated
prospectively in an intention-to-treat trial, in which data from
different modalities can be included and different strategies can be
compared.

6 Conclusion

We have developed algorithms to identify an optimal LV pacing
position across the accessible LV surface that maximizes the ML-
score generated by the LR classifier of CRT response.

In the group of selected patients with maximum ML values
> 0.5 predictive of a positive CRT response, the response
rate improved compared to the negative group and the overall
cohort.

The proximity of implanted LV leads to the optimal pacing site,
which can be determined non-invasively and preoperatively using
our optimisation technique, was shown to be a strong independent
predictor of CRT response.

Our non-invasive approach to identifying amaximumML score
of CRT response can help improve patient selection for CRT. At the
same time, the best pacing site location predicted by our algorithms
can be used to guide lead placement. Overall, our approachmay help
improve the efficacy of CRT.
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