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How probable are arrhythmias in spaceflight? The International Space Station (ISS) has
been in Low-Earth orbit (LEO) for more than 20 years. During this time, there have been no
reports of pronounced arrhythmias in space crew members. Does this mean that there were
no arrhythmias among the ISS crew members who were in LEO? Or were they not reported?
On the one hand, the level of medical control in the selection and further screening of crews
for space missions is high in all space agencies. On the other hand, routine activities on the
ISS require significant skills and experience, and this leads to an increase in the age of space
crew members, both males, and females. And this is a serious arrhythmogenic factor (Tank,
2005; Wittnich et al., 2013; Platts et al., 2014; Koenig and Thayer, 2016; Yoo and Fu, 2020).
Not to mention that, undoubtedly, human cardiovascular physiology is not adapted to exist
outside gravity (Shen and Frishman, 2019) and outside the magnetic field of Earth with
increased levels of heavy ionizing radiation (Afshinnekoo et al., 2020).

It is known that since the late 1950s, 17 cases of atrial arrhythmias have been identified
among 317 active and retired astronauts. Overall, the prevalence of arrhythmias, the most
common of which was atrial fibrillation, was 5%, which is comparable to the prevalence of
arrhythmias in the general population, but the age of astronauts is much younger
(41–45 years). All of the above increases the likelihood of arrhythmias during long-term
space flight (SF), as medical care will be limited (Khine et al., 2018). In addition, in this study,
48-h high-resolution Holter monitoring data were obtained before, during the flight and on
the day of landing, and magnetic resonance imaging data before and after the 6-month SF.
According to the results of this study, the volume of the left atrium temporarily increased
after 6 months of SF (12 ± 18 mL; p = 0.03), while the function of the atria did not change,
also 1 astronaut had a significant increase in supraventricular ectopic contractions, but none
of them developed atrial fibrillation. Correspondingly, 6 months of stay in SF can cause
temporary changes in the structure of the left atrium, which increase the risk of atrial
fibrillation, but no episodes of atrial fibrillation were detected.

A Delp et al. (2016) study reported a 4–5 times higher risk of cardio-vascular disease
(CVD) in Apollo astronauts compared to astronauts who never traveled beyond LEO.
Therefore, due to the increase in the duration and range of planned SFs, the probability of
cardiovascular systemmaladaptation and dysfunction increases as the influence of SF factors
intensifies.

In the absence of Earth’s gravity there is a shift of fluid in cranial direction (about 2 L of
fluid moves out of the legs) due to the decrease of intrathoracic pressure. Central venous
pressure decreases within 1 day of being in microgravity, which is associated with a decrease
in compression on the veins by muscles and internal organs (Hughson et al., 2018). Left
ventricular end-diastolic volume increases concurrently with a decrease in central venous
pressure (Buckey et al., 1996). Arterial pressure in microgravity is uniform throughout the
body and thereby reduces cardiac strain and the physiological need for arterial pressure
regulation mechanisms.

Baroreceptor stimulation as a consequence of cardiac remodeling and increased
cerebrovascular pressure due to redistributed fluid may affect neural and endocrine
regulatory loops. This may lead to inhibition of the renin-angiotensin-aldosterone
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system and increased release of atrial natriuretic peptide (Frings-
Meuthen P. et al., 2020). There is also a 10%–15% decrease in blood
plasma volume (Leach C.S. et al., 1985), which has not been
suggested to be due to increased diuresis but rather to a
reduction in intrathecal pressure and an increase in vascular
pressure in the upper body, which together promote
transcapillary fluid movement into the upper body interstitial
(Watenpaugh D.E., 2001). These responses stabilize during the
first 2 weeks in space and persist thereafter in both short- and
long-duration spaceflight (Leach C.S. et al., 1985; Garrett-Bakelman
F.E. et al., 2019) (Figure 1).

Hughson R.L. et al. (2016) have shown increased aldosterone,
which is a known cardiac remodeling factor, in 6-month spaceflight,
with these hormones increasing more in female astronauts than in
male astronauts. There is evidence from animal models and
spaceflight that the levels of endogenous glucocorticoids are
elevated (Yang J. et al., 2020). Similarly, in a study by Kumei Y.
et al. (1985) it was found that glucocorticoid receptor mRNA levels
were increased three to eight-fold on the 4th and 5th days of SF.
However, these data were obtained in a cell-based study of
osteoblasts.

Perhonen et al. (2001) showed that both after 10 days of SF and
after 6 weeks of bed rest (BR), cardiac atrophy occurs as magnetic
resonance imaging showed a 12% reduction in left ventricular mass.
This study demonstrates that cardiac remodeling occurs under both
SF and microgravity simulation conditions.

In addition, as early as 1985 (Bungo et al., 1987) a slight
posterior wall reduction was observed together with a 28%
decrease in stroke volume after SF of 5–8 days.

Left atrial volume was shown to increase transiently after
6 months of SF, but there was no difference in P-wave duration
over time. And RMS20 decreased compared with the preflight
period on all days except the day of landing (Khine et al., 2018).

Thus, an episode of ventricular tachycardia with a maximum
frequency of 215 beats per minute and a duration of 14 min was
recorded during the era of the MIR station. It has been suggested
that the cause of tachycardia could be autonomic changes associated
with changes in ventricular volume or mass of the heart (Fritsch-
Yelle et al., 1998). Another medical problem during the MIR
program was arrhythmias (Gontcharov et al., 2005).

In the investigation of Turchaninova et al. (2002) it was shown,
that the most characteristic feature of electrocardiogram (ECG) in
flight was the instability of ventricular repolarization elements. Their
statistical analysis testified to significant decrease of T-beats
amplitude, which started from the 1st month of the flight and
was mainly diffuse with predominant changes in the leads, reflecting
potentials of left ventricle posterolateral portions. The variability of
the terminal part of the ventricular ECG complex was manifested by
significant variations both in the magnitude, shape and direction of
T-beats, and the number of leads in which these changes were
detected, and the range of changes was rather wide: the presence of
biphasic, biphasic and inverted T-beats in all leads of
electrocardiogram.

During the 14-day BR it was noted that the alternation of
microvolt T waves increased. So before BR micro alternations of
T-waves were observed in 17% of the subjects (24 healthy men in
total participated in the experiment), and after stay in analogue
conditions of microgravity in 42. Also at the end of the 14-day stay in
BR there was a tendency to increase potassium excretion (p = 0.06)
compared with baseline values (Grenon et al., 2005).

Intensive regular physical activity can lead to morphological and
electrical adaptations of the heart, commonly referred to as the
“athlete’s heart”. There is a general consensus that athletes are more
prone to sudden cardiac death (SCD) and arrhythmias than non-
athletes (Link M.S. et al., 2010; Bisbal F. et al., 2012). Thus studies
Basso, C. et al. (2020) have shown that SCD during sport activity

FIGURE 1
Factors of possible occurrence of arrhythmias in space flight.
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account for a small but significant proportion, 5% of all SCDs. Long-
term intensive endurance exercise is now considered to be an
etiological factor in the development of supraventricular heart
disorders, including atrial fibrillation, bradyarrhythmia and also
atrioventricular block (D’Souza A. et al., 2019).

The main type of training on the Russian segment of the ISS for
cosmonauts is a four-day cycle of locomotor training (Kozlovskaya
I.B. et al., 2013), while the American segment for astronauts is
characterized by resistance training (Loehr, J. A. et al., 2015), which
is also used in the Russian segment. Thus, the avoidance of
arrhythmias in SF requires individual and comprehensive
training selection with a large variability of load parameters when
performing resistance training.

Thought the Apollo 15 flight there were physiological
abnormalities manifested by ectopic ECG activity (bigeminal
premature ventricular contractions and premature atrial
contractions) and unusual changes in exercise tolerance, which
were thought to be related to decreased potassium content in the
body and lack of potassium intake during the flight (Rossum et al.,
1997). Plausibly, elevated urinary potassium levels may indicate
inadequate potassium intake and may also indicate muscle atrophy.
In addition, it is known that during diastole, potassium currents
mainly maintain the resting potential (RP) of cardiomyocyte
membranes; accordingly, changes in potassium concentration
(especially extracellular) can directly alter cardiomyocyte RP in
SF (Jeevaratnam et al., 2018; King et al., 2021). Therefore,
potassium intake must be strictly monitored for future long-
duration SF.

Sleep disturbance is a serious problem for space travelers. It is
known that under spaceflight conditions there is a shortening of
sleep time, moreover, the number of awakenings increases, and the
amount of slow-wave sleep and REM sleep decreases (Dijk D.J. et al.,
2001). Extreme space conditions, heavy workload may seriously
disturb not only sleep but also circadian rhythms. And mismatch
between circadian clock and sleep also affects the cardiovascular
system, thus increasing the risk of cardiovascular disease (Guo, JH.
et al., 2014).

Prolonged time in outer space will inevitably increase the health
risks to space crew due to exposure to galactic cosmic rays and solar
particles. Although the dose of cosmic radiation is lower than in
radiation therapy patients, epidemiological evidence suggests an
increased risk of late CVD even at low radiation doses (Hughson
et al., 2018).

Soucy et al. (2011) examined vascular and endothelial
function in healthy rats exposed to a single whole-body dose
of 56 Fe (0, 0.5, or 1 Gy). In vivo aortic stiffness and ex vivo aortic
tensile response, as indicators of chronic vascular damage, were
measured 6 and 8 months after irradiation. Rats irradiated with
1 Gy 56Fe showed a significant increase in aortic stiffness as
measured by pulse wave velocity. Aortic rings of irradiated rats
showed impaired endothelium-dependent relaxation, which is
consistent with endothelial dysfunction. According to the results
of the research (Yan et al., 2014; Ramadan et al., 2016; Seawright
et al., 2019) we can conclude that exposure to 56 Fe ions affects

myocardial remodeling, increase of left ventricle end-diastolic
volume, and fibrosis in mice.

In conclusion, we suggest that SF may be arrhythmogenic, as
being outside LEO can be accompanied by exposure to various
particles contained in cosmic radiation, which can lead to the
development of various CVD such as accelerated atherosclerosis,
microvascular damage, and myocardial fibrotic remodeling
(Meerman et al., 2021), in addition, the duration of flights (at the
moment, the flights mostly last 6 months, and the flight to Mars is
supposed to last more than 2 years, taking into account the stay and
flight in both directions) and the age of astronauts are increasing,
respectively increasing the risk of late CVD and the likelihood of
atrial fibrillation because increase of left ventricle end-diastolic
volume occurs due to fluid redistribution (Chow et al., 2012;
Chen et al., 2017). Despite the data of registration of arrhythmias
in SF, arrhythmias can have not only a pathological character, but
also a neurogenic nature. Unfortunately, there is no data on the
etiology of arrhythmias in SF at the moment. So, controls of
arrhythmia cases are mandatory.
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