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As both a sensor of extracellular calcium (Ca2+o) concentration and a key
controller of Ca2+o homeostasis, one of the most interesting properties of the
calcium-sensing receptor (CaR) is its sensitivity to, and modulation by, ions and
small ligands other than Ca2+. There is emerging evidence that extracellular
phosphate can act as a partial, non-competitive CaR antagonist to modulate
parathyroid hormone (PTH) secretion, thus permitting the CaR to integrate
mineral homeostasis more broadly. Interestingly, phosphorylation of certain
intracellular CaR residues can also inhibit CaR responsiveness. Thus, negatively
charged phosphate can decrease CaR activity both extracellularly (via association
with arginine) and intracellularly (via covalent phosphorylation).
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Introduction

Calcium and phosphate homeostasis

Ca2+ is the fifth most abundant element both in the human body and the Earth’s crust. Of
the environmentally available ions, Ca2+ is the most reactive and thus has been selected as a
signalling molecule that can control millisecond duration intracellular events, for example,
heartbeat, memory and neuro- and hormone secretion and locomotion (Williams, 2006).
Outside of the cell, Ca2+ serves more of a structural role, both in tight junctions but most
notably as a core component of bone hydroxyapatite. As a result of these differential
functions, the 104 M extracellular versus intracellular Ca2+ (Ca2+i) concentration gradient
must be restored after each intracellular Ca2+ (Ca2+i) signal has had its effect. Otherwise,
sustained rises in Ca2+i concentration will drive Ca2+ overload and cell death (Duchen, 2000).

The other major component of hydroxyapatite is inorganic phosphate (PO4).
Phosphorous is the sixth most abundant element in the body, though is much rarer in
the terrestrial environment than calcium. PO4 is the most abundant intracellular anion and
exists in millimolar concentrations inside the cell both as a free ion (involved in
pH buffering) and as a critical component of the energy-releasing molecules
phosphocreatine and adenosine triphosphate (ATP) as well as the other nucleotides. The
protein kinase-mediated addition of negatively-charged PO4 groups to the sidechains of
certain tyrosine and serine/threonine residues can effect local conformational changes in
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protein tertiary structure that can produce profound functional
changes in those proteins (Hunter, 2012). Indeed, protein
phosphorylation and Ca2+i mobilisation together represent two of
the most fundamental mechanisms of intracellular signalling in
nature. Therefore, any protein that plays a key role in controlling
the total availability of both Ca2+ and PO4 in the body is of critical
importance for both extracellular structure and intracellular
signalling.

The CaR is a homodimeric G protein-coupled receptor (GPCR;
family C) expressed with greatest abundance in organs involved in
mineral ion homeostasis, specifically the parathyroid gland, kidneys,
C cells of the thyroid and bone (Leach et al., 2020). Though capable
of coupling to multiple heterotrimeric G proteins, most in vitro
studies of CaR activity, measure Gq/11-mediated changes in either
inositol phosphate metabolism, Ca2+i mobilisation or extracellular
signal-regulated (ERK) activation, which have helped define CaR
pharmacology.

While the CaR has long been known to sense and respond to
Ca2+o, there is now emerging evidence that CaR is sensitive to, and
inhibited by, PO4 as well (Centeno et al., 2019). Therefore, it is
possible that the homeostasis of these two ions may be specifically
coordinated. It should be noted that the free, ionised Ca2+

concentration in plasma is ~1.2 mM while the concentration of
PO4 tends to be a little lower at ~0.8 mM, though with a wider
normal range. Interestingly, this is a similar ratio to that seen for
Ca2+ and PO4 abundance in hydroxyapatite (Ca5(PO4)3OH) and
therefore coordinated regulation of their relative plasma
concentrations might conceivably be obligatory.

In addition to the proposed inhibitory effect of extracellular PO4

ions on CaR activation, in the cytosol, the terminal PO4 of ATP can
also inhibit CaR signalling, via covalent attachment to Ser-875 and
Thr-888 residues (i.e., phosphorylation) in the receptor’s
intracellular domain (ICD) (McCormick et al., 2010; Binmahfouz
et al., 2019). While the dual but distinct roles of extracellular
(structural) and intracellular (signalling/metabolic) Ca2+ and PO4

may be purely an example of energetic efficiency (i.e., multi-tasking
with the same, simple elementary chemicals), this nevertheless
represents an interesting biological parallel. And more so that for
CaR, Ca2+o is stimulatory while PO4 is inhibitory.

Orthosteric and allosteric CaR
modulators

The CaR exhibits promiscuous pharmacology sensing a broad
range of ligands in addition to Ca2+ (Leach et al., 2020). Some CaR
ligands act as orthosteric agonists, e.g., Mg2+ and spermine. Other
CaR ligands act as positive allosteric modulators (PAMs; e.g.,
L-amino acids and calcimimetics) or negative allosteric
modulators (NAMs; e.g., calcilytics) (Leach et al., 2020).
Structurally, PAMs act by stabilising the CaR’s active
conformation, while NAMs stabilise the inactive conformation
(Leach et al., 2015). Interestingly, H+ and Na+ ions, at least at
high concentrations are, in effect, NAMs of the CaR. But we
have recently shown that PO4 ions are also inhibitory for CaR,
acting potentially as non-competitive partial CaR antagonists. Here
we set out the structural evidence for this (Geng et al., 2016; Zhang

et al., 2016) followed by the functional (Centeno et al., 2019;
Goodman et al., 2022).

CaR extracellular domain

Two groups have now generated four crystal models of the CaR’s
extracellular domain (ECD) (Geng et al., 2016; Zhang et al., 2016)
and more recently these structures have been largely confirmed by
Cryo-EM (Gao et al., 2021). Three of these crystal models were
obtained in the active conformation, while the fourth was obtained
in the CaR’s inactive conformation (Geng et al., 2016). Sequence
alignment followed by structural superpositioning of the CaR ECD
crystal structures (active conformation) confirm the similarity of the
two groups’ models, despite differences in their crystallisation
environments (Figure 1). That said, the two models still exhibit
significant differences in their predicted ligand binding sites and
occupancy.

For example, Zhang et al. (2016) reported three metal binding
sites (occupied by Mg2+ and Gd3+), one orthosteric L-aromatic
amino acid binding site (occupied by L-1,2,3,4-
tetrahydronorharman-3-carboxylic acid (TNCA), an L-Trp
derivate), and one potential anion binding site (occupied by
bicarbonate). In contrast, the CaR active conformation reported
by Geng et al. (2016) suggested four metal binding sites (occupied by
Ca2+), one orthosteric L-aromatic amino acid binding site (occupied
by L-Trp itself), and two anion binding sites (occupied by PO4; see
Figure 1). In addition, Geng’s inactive model revealed two additional
anion binding sites (here occupied by SO4) (Geng et al., 2016). These
discrepancies could be explained, in part, by the different
crystallisation environments. That is, Zhang et al (2016)
employed Mg2+ and Gd3+ in abundance, but with less Ca2+ and
no L-aromatic amino acids, whereas Geng et al. (2016) included Ca2+

and L-Trp in abundance in their crystallisation buffer, and also PO4

and SO4. Given the greater potency and abundance of Ca2+ over
Mg2+ in vivo, the metal binding sites appear more likely to be
physiological Ca2+-binding sites. Also, based on previous literature,
L-Trp and other aromatic amino acids are presumed to be the more
likely ligands for the orthosteric L-aromatic amino acid-binding site,
rather than TNCA (Mun et al., 2004; Conigrave and Hampson,
2006), though this remains to be confirmed.

Anion binding sites in CaR

The two crystal models identified four anion binding sites in the
CaR’s ECD for the first time. However, it is the anion-binding sites
present in the inactive conformation of the Geng et al (2016) model
that we believe to be of particular interest. This is because the two,
closely-associated anion binding sites appear to play an important
role in the stabilisation of the inactive conformation. The first site
mainly involves Arg-62 and Tyr-63, while the second involves Arg-
66, Arg-69, Thr-412, and Arg-415. When unbound, Arg-62 and
Arg-66 may mediate interactions that stabilise the closure of the
Venus flytrap (VFT) domain. These interactions, a hydrogen bond
(R66-S301) and a salt bridge (R62-E277), are directly breakable by
anion binding to the two sites, which would then reduce the free
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energy needed for the VFT to open and to change to an inactive
conformation (Geng et al., 2016).

Inorganic phosphate homeostasis

Serum PO4 levels vary between 0.8 and 1.2 mM in healthy
adults, which includes diurnal variation (Kemp et al., 1992). PO4

homeostasis is largely determined by the kidney because of PTH-
and/or FGF23-mediated phosphaturia (Agoro and White, 2023),
though PTH also increases 1α-hydroxylation of 25(OH)-vitamin D
thus affecting intestinal PO4 absorption (Bergwitz and Juppner,
2010; Komaba and Fukagawa, 2016; Ide et al., 2018). Together, PTH/
PTH1R and FGF23/Klotho pathways coordinate to maintain PO4

homeostasis (Shimada et al., 2004; Quinn et al., 2013; Kawakami
et al., 2017; Fan et al., 2018; Ide et al., 2018). In chronic kidney
disease (CKD) however, decreased phosphaturia commonly results
in hyperphosphataemia as well as accumulation of calciprotein
particles (CPPs), which are associated with soft-tissue

calcification, especially vascular calcification and increased risk of
death (Block et al., 2004; Tentori et al., 2008; Streja et al., 2014).
Crucially, how mammals sense changes in their serum PO4

concentration remains unclear (Komaba and Fukagawa, 2016)
though the presence of one or more PO4 sensors in bone and
parathyroid cells, to regulate PTH and FGF23 release, appears likely.

The stimulatory effect of high PO4 concentration on PTH
secretion has been demonstrated repeatedly in vivo and in vitro
(Almaden et al., 1996; Nielsen et al., 1996; Slatopolsky et al., 1996;
Almaden et al., 2003; Rodriguez et al., 2005), but without a clear
linking mechanism. Interestingly, when studied ex vivo, the PO4

effect on PTH secretion was only observed in intact parathyroid
tissue preparations but not in dispersed cells, where CaR expression
becomes quickly reduced (Nielsen et al., 1996). Patients with
secondary hyperparathyroidism (SHPT) show a left-shift in their
PTH-Ca2+ curve, indicating that higher levels of serum Ca2+ are
needed to activate CaR-mediated inhibition of PTH secretion
(Rodriguez et al., 2005). Our hypothesis for this left-shift in the
PTH-Ca2+ curve is that the hyperphosphataemia of CKD will

FIGURE 1
Identification of ionic binding sites in the CaR extracellular domain. Panel (A) Sequence alignment and structural superposition of the currently
available CaR ECDmodels in the active conformation. The Zhang et al. (2016) model (5FBK) is shown in blue (left) and the Geng et al. (2016) model (5K5S)
is shown in pink (right). In the middle, an alignment of both models reveals an almost identical CaR ECD structure with minor differences. Pymol root
mean square deviation (RMSD) 0.5, after 5 cycles of iteration. Panel (B) Active conformation of the CaR ECD with reported ligand binding sites. The
Zhangmodel (5FBH) is shown as the left monomer, with the Gengmodel (5K5S) on the right. The Zhangmodel describes three Ca2+-binding sites, one in
the upper domain and two in the lower domain facing the interface between monomers. At the same locations, the Geng model describes two Ca2+-
binding sites, but two additional Ca2+-binding sites in the cleft between the upper and lower domains. Both models identified a common L-amino acid
binding site and a common anion binding site, both located at the cleft between the upper and lower domains. In addition, the Geng model includes an
anion binding site located in the lower domain. The ligand binding sites highlighted in boxes are those found in both crystal models. L-AA, L-amino acid.
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promote the direct binding of PO4 to the CaR stabilising its inactive
conformation and thus permitting increased PTH secretion. Indeed,
we have shown that over its pathophysiological concentration range
for CKD, PO4 inhibits CaR signalling in transfected human
embryonic kidney (HEK-293) cells (Centeno et al., 2019). More
specifically, PO4 lowers the efficacy of Ca

2+
o at the CaR (i.e., Emax) as

opposed to altering the CaR’s sensitivity to Ca2+o (EC50). As such,
the PO4 appears to act as a non-competitive CaR (partial)
antagonist. Furthermore, raising buffer PO4 concentrations
rapidly induced PTH secretion from primary human parathyroid
cells and from murine parathyroid glands ex vivo. The rapid and
reversible nature of this PO4 effect is indicative of a receptor-
mediated event. Mutation of CaR residue Arg-62 (expressed in
HEK-293 cells), overcame the inhibitory effect of the added PO4

suggesting that the Arg-62 residue may be the PO4 binding site, or at
least a critical part of it. As mentioned earlier, CaRR62 was reported
by Geng et al. (2016) to be a PO4 binding site present in the inactive
conformation of the ECD but not its active conformation. Thus, the
current functional data supports this structural prediction so far.

Following publication of the idea that the CaR itself serves as a
parathyroid PO4 sensor, the clinical trials that had previously
demonstrated efficacy for Cinacalcet and Etelcalcetide (used to
lower PTH levels in end-stage renal disease) were reanalysed
with regards to the prevailing serum PO4 concentrations in the
patients (Goodman et al., 2022). Subjects were grouped according to
whether their serum PO4 concentrations were above or below one of
three different serum PO4 thresholds and these designations were
dynamic over time, depending on whether their serum PO4 had
risen above or dropped below the given threshold in the intervening
time. By analysing the calcimimetic responses this way, it was found
that calcimimetic-induced decreases in serum PTH levels were
attenuated in subjects with higher serum PO4 concentrations.
The inhibitory effect of high PO4 was quite modest for
Etelcalcetide though more marked for Cinacalcet, especially at
higher PO4 concentrations (Goodman et al., 2022). We would
argue that, teleologically, it would make sense for PO4 to be able
to moderate Ca2+-induced CaR activity/suppression of PTH
secretion but not to be able to ablate it. For example, if one
experienced simultaneous hypercalcaemia and
hyperphosphataemia then without an inhibitory input from PO4,
the high Ca2+o could maximally suppress PTH secretion abrogating
the phosphaturia needed to resolve the hyperphosphataemia. By
blunting this Ca2+o-induced suppression of PTH secretion, the
mineral homeostatic system can resolve both issues, albeit
potentially less quickly with regards to Ca2+. However, if high
PO4 concentration could suppress CaR activity completely, thus
acting effectively as a potent calcilytic, then the additional PTH-
induced phosphaturia would resolve the hyperphosphataemia but
would worsen the hypercalcaemia, perhaps even dangerously so.
Therefore, it might be that as a non-competitive partial antagonist,
elevated PO4 concentrations could integrate with Ca

2+ to achieve the
optimal PTH secretion for both minerals and not just for Ca2+.
Furthermore, pathophysiological PO4 concentration also partially
attenuated the effect of spermine, an endogenous polyamine and
CaR agonist (Centeno et al., 2019). Thus, by disrupting the
maintenance of VFT closure, PO4 may represent a general
attenuator of positive CaR modulation, by acting as a non-
competitive CaR antagonist.

Inhibition of CaR by intracellular
phosphorylation

Although CaR may couple to a broad range of heterotrimeric G
protein families (Leach et al., 2020), it is CaR-induced Gαq/11
activation that has been most studied and is likely of the greatest
importance for its biological functions. In mice, ablation of Gαq/11
results in a phenotype closely resembling that of the CaR knockout
(Wettschureck et al., 2007). Similarly, in humans, some gain-of-
function Gα11 mutations result in autosomal dominant
hypocalcaemia (ADH) type-2 while some loss-of-function Gα11
mutations produce a familial hypocalciuric hypercalcemia
(FHH)-like condition (Nesbit et al., 2013).

Initially, five putative protein kinase C (PKC) phosphorylation
sites were identified in CaR, two in the first and third intracellular
loops (Thr-646 and Ser-794) and three in the intracellular tail (Thr-
888, Ser-895 and Ser-915) (Bai et al., 1998). Mutation of the two
intracellular loop residues to non-phosphorylatable residues had no
detectable effect on CaR activation, whereas mutation of CaRT888,
CaRS895 and CaRS915 increased CaR responsiveness, but with the
greatest effect resulting from CaRT888 mutation (Bai et al., 1998).
Indeed, multiple studies have identified CaRT888 as the key PKC
phosphorylation site in the CaR (Bai et al., 1998; Davies et al., 2007;
Young et al., 2014). Furthermore, the identification of a family with
ADH having a novel missense mutation in the PKC phosphorylation
site Thr-888 (CaRT888M) provides evidence for the physiological
importance of CaRT888 in humans (Lazarus et al., 2011).

Oscillatory Ca2+i signalling is usually ascribed to the IP3 receptor
(IP3R) and how it becomes inhibited by the very rise in Ca2+i
concentration that it mediates. As the cytosolic Ca2+ is returned to
the Ca2+i stores by sarco/endoplasmic reticulum calcium ATPase
(SERCA), the IP3R then reopens permitting the next cycle of Ca2+i
release (Woll and Van Petegem, 2022). However, CaR-induced Ca2+i
oscillations may also be explained by the existence of cycles of PKC-
dependent GPCR phosphorylation and dephosphorylation. This idea
was first proposed for metabotropic glutamate receptor 5 (mGluR5)-
induced Ca2+i oscillations (Nakahara et al., 1997; Bradley et al., 2009).
Since CaR shares significant structural and sequence homology with
mGluR5, it was then proposed that CaR might also share similarities in
terms of Ca2+i signalling (Young et al., 2014). In agreement with this,
different studies have shown that agonist-induced PKC activation leads
to CaR phosphorylation, mostly at CaRT888, which uncouples the
receptor from its Gq/11/PLCβ signalling and thus inhibits Ca2+i
release (McCormick et al., 2010; Ward and Riccardi, 2012). In
contrast, inhibition of PKC results in decreased levels of CaRT888

phosphorylation resulting in CaR reactivation and a subsequent rise
in Ca2+i mobilisation. Overall, these alternating cycles of CaRT888

phosphorylation and dephosphorylation might underlie CaR-
induced Ca2+i oscillations (Conigrave and Ward, 2013) integrated in
some way with the action of the IP3R.

The residue believed most likely to be responsible for the PKC-
mediated inhibition of mGluR5 is Ser-839 (Kim et al., 2005) since
mGluR5S839A does not exhibit Ca2+i oscillations whereas wild-type
mGluR5 does (Kim et al., 2005). Interestingly, mGluR5S839 aligns not
with CaRT888 but with CaRS875, which was not initially considered a
likely PKC site. However, mutation of CaRS875 to alanine increased
CaR sensitivity to Ca2+, while its mutation to aspartate (a phospho-
mimetic site) decreased CaR sensitivity to Ca2+, suggesting that
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CaRS875 is another phosphorylation site with an inhibitory action on
CaR signalling (Binmahfouz et al., 2019) (Figure 2).

In fact, human CaR has 54 serine and threonine residues in either
its intracellular domain (ICD) or intracellular loops (Garrett et al.,
1995). Depending on the phosphosite prediction software used, at least
17 of these could be phosphorylation sites, though the total number
could be as high as 40. The most likely phosphorylation sites are those
serine/threonine residues present in the juxtamembrane region of the
ICD, as opposed to those in the carboxyl-terminus. While CaRT888A

exhibits enhanced, less oscillatory signalling than for wild-type CaR,
cotreatment with a PKC inhibitor can produce a further enhancement
of signalling indicating that CaRT888 is not the sole target of PKC action
(Garrett et al., 1995; Binmahfouz et al., 2019). In contrast, the
CaRS875A/T888A double mutation elicits completely non-oscillatory
signalling, the same as occurs with PKC inhibition, suggesting that
dephosphorylation of both sites is required to abolish the inhibitory

effect of PKC (Binmahfouz et al., 2019). Indeed, it has been suggested
that the precise pattern of phosphorylation on any given GPCR could
vary depending on the cellular context. The so-called “phospho-
barcode” hypothesis posits that different phosphorylation “barcode”
patterns could elicit distinct downstream signalling outcomes (Tobin
et al., 2008; Yang et al., 2017).

Ca2+-sensing by the headless CaR

In this review, we have set out how PO4 may inhibit CaR
activity both as an extracellular bound anion, but also as an
intracellular moiety resulting from phosphorylation. However,
there is also recent evidence that raises fascinating questions
about the evolutionary purpose of the CaR’s ECD. Synthetic
calcimimetics bind within the CaR’s transmembrane domain
(TMD), as demonstrated by the observation that their effect is
maintained in “headless” CaRmutants lacking the ECD (Hauache
et al., 2000; Ray and Northup, 2002; Mun et al., 2004; Rey et al.,
2005). Interestingly, Ca2+ sensitivity is also retained in these
headless mutants, indicating the presence of additional
orthosteric Ca2+ binding sites in the TMD (Petrel et al., 2004).
Indeed, in a headless CaR that also contained the mutation
CaRT888A (i.e., where an inhibitory phospho-site was replaced
by a non-phosphorylatable alanine), the Ca2+o sensitivity was
restored to levels not dissimilar to those seen in wild-type CaR
(Binmahfouz et al., 2019). This suggests that the CaR ECD is not
essential for Ca2+o sensitivity per se, and thus it might be
hypothesised that the ECD a) fine-tunes Ca2+o-sensitivity to
make CaR more physiologically optimal for animal Ca2+o
homeostasis and/or b) provides for regulation by a range of
other physiological modulators (e.g., PO4, L-amino acids)
making for more sophisticated mineral homeostatic
integration. Therefore, further work will be needed to decipher
the precise role(s) of the CaR’s ECD.

Conclusion

The CaR is not merely a Ca2+o-sensor and Ca2+o homeostasis
controller but can sense other endogenous ligands, such as
phosphate, thus permitting it to integrate mineral homeostasis broadly.
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