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Objective: To investigate the tongue image features of patients with lung cancer
and benign pulmonary nodules and to construct a lung cancer risk warning model
using machine learning methods.

Methods: From July 2020 to March 2022, we collected 862 participants including
263 patients with lung cancer, 292 patients with benign pulmonary nodules, and
307 healthy subjects. The TFDA-1 digital tongue diagnosis instrument was used to
capture tongue images, using feature extraction technology to obtain the index of
the tongue images. The statistical characteristics and correlations of the tongue
index were analyzed, and six machine learning algorithms were used to build
prediction models of lung cancer based on different data sets.

Results: Patients with benign pulmonary nodules had different statistical
characteristics and correlations of tongue image data than patients with lung
cancer. Among the models based on tongue image data, the random forest
predictionmodel performed the best, with amodel accuracy of 0.679 ± 0.048 and
an AUC of 0.752 ± 0.051. The accuracy for the logistic regression, decision tree,
SVM, random forest, neural network, and naïve bayes models based on both the
baseline and tongue image datawere 0.760±0.021, 0.764 ±0.043, 0.774 ± 0.029,
0.770 ± 0.050, 0.762 ± 0.059, and 0.709 ± 0.052, respectively, while the
corresponding AUCs were 0.808 ± 0.031, 0.764 ± 0.033, 0.755 ± 0.027,
0.804 ± 0.029, 0.777 ± 0.044, and 0.795 ± 0.039, respectively.

Conclusion: The tongue diagnosis data under the guidance of traditional Chinese
medicine diagnostic theory was useful. The performance of models built on
tongue image and baseline data was superior to that of the models built using
only the tongue image data or the baseline data. Adding objective tongue image
data to baseline data can significantly improve the efficacy of lung cancer
prediction models.
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1 Introduction

According to the World Health Organization’s International Agency for Research on
Cancer (IARC) global burden of cancer data, there were 19.3 million new cancer cases
globally in 2020, of which 2.2 million (11.4%) were new cases of lung cancer, ranking
second among all cancers worldwide; lung cancer is still the leading cause of cancer
death, accounting for 1.8 million deaths (18%) (Siegel et al., 2021; Sung et al., 2021) and
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is also the most common type of cancer in China (Cao et al.,
2021). Because there are no obvious clinical symptoms of early-
stage lung cancer, most patients are in an advanced stage when
they are diagnosed, causing them to miss the best treatment
period. The majority of advanced lung cancer patients live for less
than a year, especially those in high-risk groups.

Pulmonary nodules are one of the most common types of
lung pathology (Mazzone and Lam, 2022), and malignant
pulmonary nodules are one of the most common early-stage
manifestations of lung cancer. Early detection of lung cancer can
be achieved through accurate diagnosis of the type and nature of
pulmonary nodules and is therefore of great clinical importance.
Early detection of benign and malignant pulmonary nodules is
critical for improving patient survival and lung cancer prognoses,
and reducing overdiagnosis and treatment of patients with
benign pulmonary nodules. With the widespread use of high-
resolution multislice spiral computed tomography (CT) in recent
years, the detection rate for pulmonary nodules has gradually
increased. For lung cancer screening, low-dose CT is commonly
used. The National Lung Screening Trial found that screening
with low-dose CT reduced lung cancer mortality by 20%, and one
trial (NELSON) found that low-dose CT screening had a
sensitivity and specificity of 85% and 99%, respectively
(Horeweg et al., 2014). A Japanese study found that low-dose
CT screening for lung cancer is more sensitive than routine chest
X-ray screening, but it had a lower specificity and was associated
with the possibility of overdiagnosis (Toyoda et al., 2008).
Bronchoscopy and biopsy are the gold standards for
diagnosing lung cancer. Although bronchoscopy is a
minimally invasive technique, it still causes discomfort in
patients, is expensive, and has the potential to cause
complications, particularly when biopsies are performed on
suspicious tissues. Although significant progress has been

made in the early detection of lung cancer in recent years,
early detection is still inaccurate. The majority of techniques
and methods currently in use cannot effectively avoid a diagnosis
of advanced stage lung cancer, and so the early detection of lung
cancer remains difficult (Mohan et al., 2020; Nightingale et al.,
2023).

Tongue diagnosis is a method for comprehensively evaluating
the functional state of the body based on an assessment of the
tongue. According to studies, tongue images are more accurate than
blood biomarkers in detecting gastric cancer, and tongue diagnosis
can be used as a stable method for gastric cancer diagnosis (Yuan
et al., 2023). The condition of the gastric mucosa can be predicted by
tongue images in patients with chronic gastritis (Shang et al., 2022).
With the development of the four traditional Chinese medicine
(TCM) diagnostic information technologies, various tongue
diagnosis instruments have been widely used in clinical practice,
the standardized acquisition and analysis of objective data for
tongue diagnosis has gradually matured (Jiang et al., 2021a; Li
et al., 2021a). Key intelligent tongue diagnosis technologies
include tongue image acquisition systems, tongue body
segmentation technologies, tongue body and tongue coating
separation systems, and feature extraction systems. Image
correction, image denoising, tongue body segmentation, tongue
body and tongue coating segmentation are performed on the
collected tongue images, and then the color and morphological
properties of the tongue body and tongue coating are analyzed and
summarized (Wang et al., 2013; Xu et al., 2020; Shi et al., 2021a).

Based on this, this study collected patients with benign
pulmonary nodules and lung cancer, analyzed the objective
characteristics of their tongue images, and established a lung
cancer classification model based on the machine learning
methods. The results showed that the tongue images of lung
cancer patients were dark, showing the tongue as red and

FIGURE 1
TFDA-1 digital tongue diagnosis instrument (A) front (B) side.
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crimson in color and with a coating that was thinner and more
yellow than that of healthy controls and benign pulmonary nodule
patients. The correlation of the objective tongue image data from
patients with benign pulmonary nodules and those with lung cancer
was also different, and the tongue image data-based classification
model performed well in classifying benign pulmonary nodules and
lung cancer.

2 Materials and methods

2.1 Participants

From July 2020 to March 2022, we collected 862 participants,
including 263 patients with lung cancer at Longhua Hospital
Affiliated with Shanghai University of Traditional Chinese
Medicine’s Department of Oncology, 292 patients with benign
pulmonary nodules, and 307 healthy subjects at Shuguang
Hospital Affiliated with Shanghai University of Traditional
Chinese Medicine’s Health Checkup Center. Information
about tongue images was gathered, and objective tongue image
data were obtained using a tongue image feature extraction
system. After removing missing values and outlier samples
from the tongue image data, we finally included 263 lung

cancer patients, 292 benign pulmonary nodules patients, and
307 healthy controls. All lung cancer patients were diagnosed by
pathology, and patients with benign pulmonary nodules were
diagnosed by imaging examination or surgery. All three groups
were aware of the purpose of the study and signed informed
consent forms.

2.2 Diagnostic criteria

The diagnostic criteria for benign pulmonary nodules were small
pulmonary nodules without any discomfort, in reference to the third
edition of the American College of Chest Physicians’ Guidelines for
the Diagnosis and Treatment of Lung Cancer (Gould et al., 2013)
and “China pulmonary nodules classification, diagnosis and
treatment guidelines (2016 edition)” (Zhou et al., 2016) and
based on the results of imaging examination, surgery, and
pathologic examination.

The lung cancer diagnostic criteria were those from the
Clinical Practice Guidelines for Lung Cancer Screening issued
by the National Comprehensive Cancer Network (NCCN)
(Wood, 2015) and the histological classification criteria in the
fourth edition of the WHO classification of lung tumors (Micke
et al., 2016).

FIGURE 2
TDAS tongue image analysis system.
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2.3 Inclusion and exclusion criteria

Inclusion criteria: 1) lung cancer diagnosed by pathology or
cytology; 2) benign pulmonary nodules diagnosed by imaging
examination, surgery, and pathological examination, with the
nodules measuring less than 8 mm in size; 3) age 18–90 years;

4) complete tongue image data; and 5) understanding of the
study and submission of a signed informed consent form.

Exclusion criteria were as follows: 1) inability to meet the
inclusion criteria; 2) pregnancy or lactation; 3) other malignant
tumors; 4) systemic acute and chronic infection; and 5) mental
illness, uncooperativeness, or poor study compliance.

FIGURE 3
Flowchart of standardized tongue map acquisition.
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2.4 Tongue image collection

2.4.1 TFDA-1 intelligent tongue diagnosis
instrument

The tongue images of the patients were collected using the
TFDA-1 digital tongue diagnosis instrument developed by the
National Key Research and Development Program (NO:
2017YFC17033301) project team. The TFDA-1 digital tongue
diagnosis instrument was shown in Figures 1A, B, and the
corresponding tongue image analysis system TDAS was shown in
Figure 2.

To ensure standardization and accuracy, all tongue images were
collected by researchers who had received standardized training.
The following were the specific tongue image acquisition methods:
1) set the shooting parameters and sterilize the instrument with 75%
medical alcohol; 2) ask the subjects to place their chin on the jaw
support of the digital tongue diagnosis instrument, relax, open their
mouths and extend their tongues, relax the tongue body, flatten the
tongue surface, and gently touch the center of the tongue surface to
complete the acquisition; and 3) check the image taken, ensuring
that the tongue surface is complete and not tense and that there is no
fog cover, no light leakage, no overexposure or underexposure.
Images that did not meet the aforementioned requirements were
retaken.

The flow chart of the standardized collection and analysis of
tongue images was shown in Figure 3.

2.4.2 Introduction to the features of tongue images
In recent years, there are many research articles about modern

tongue diagnosis technique have been published (Zhang et al., 2017;
Li et al., 2021a; Jiang et al., 2021b; Li et al., 2021b; Shi et al., 2021b). In
this study, we used computer technology to achieve automatic, fast
and batch feature extraction of tongue images. Each tongue image
could undergo repeated feature extraction, always yielding the exact
same tongue image features. The tongue image color indexes were
derived from RGB color space, L*a*b color space (Belasco et al.,

2020), and YCrCb color space (Figures 4–6). The tongue image
texture indexes include CON (Contrast), ASM (Angular Second
Moment), ENT (Entropy), and MEAN. The tongue coating indexes
include perAll and perPart, and the meaning of each index was
shown in Table 1. In this study, the prefix “TB-” means Tongue
Body, and “TC-” means Tongue Coating.

2.5 Statistical analysis

SPSS 26.0 was used for statistical analysis. Counting data were
expressed as frequencies and constituent ratios, and the chi-square
test was used for comparisons between groups. For continuous
measurement data, the normality test was performed. Tongue
image data that conformed to a normal distribution were
expressed as the mean and standard deviation (SD), while tongue
image data that did not conform to a normal distribution were
expressed as the median and quartile. Measurement data that
conformed to a normal distribution and demonstrated
homogeneity of variance were compared among multiple groups
using ANOVA, and measurement data that did not conform to a
normal distribution and homogeneity of variance were compared
using the Kruskal‒Wallis H rank-sum test. For bivariate correlation
analysis, Pearson’s correlation was used for normally distributed
variables, and Spearman’s correlation was used for nonnormally
distributed variables. All tests were two-tailed, and p < 0.05 was
considered statistically significant.

2.6 Modeling

We used six machine learning algorithms, including decision
tree, SVM, random forest, neural network, naïve Bayes, and logistic
regression, to build prediction models of lung cancer. Logistic
regression is a popular supervised machine learning technique
that creates prediction models by determining the relationship

FIGURE 4
Schematic diagram of the RGB color space.
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between independent and dependent variables, and it is primarily
used to solve classification problems (Schober and Vetter, 2021a). Its
derivation process and calculation method are similar to regression,
and it is considered an extension of linear regression (Schober and
Vetter, 2021b). According to studies, logistic regression does not
demonstrate a worse classification ability than other machine
learning methods (Christodoulou et al., 2019; Song et al., 2021).
Logistic regression analysis can be used to estimate the probability of
a certain output class based on some input variables (Meurer and
Tolles, 2017; Xiang et al., 2022). Decision tree is a classical machine
learning algorithm that can be used for classification and regression
problems. It can be used to divide data step by step according to the
training data and partition the data according to feature attributes to
achieve classification or make predictions (Pashaei et al., 2015; Wu
et al., 2020). Bayesian classification is a machine learning method
based on Bayes’ theorem, which classifies samples by calculating the
probability that a sample belongs to a certain class (Asafu-Adjei and
Betensky, 2015; Ramanujam and Kaliappan, 2016). Support vector
machine is a kind of classification and regression algorithm that can
project data into a high-dimensional space; by finding the optimal
segmentation plane in the high-dimensional space, the data can be
classified or regressed (Agyapong et al., 2022; Tang et al., 2022).
Neural networks are artificial networks that mimic the workings of
neural networks in the human brain and can be used to solve
classification, regression, and a variety of other machine learning
problems (Checcucci et al., 2020; Laudicella et al., 2021). The
random forest algorithm is an integrated learning algorithm
based on a decision tree, which is a statistical extension of the
classification and regression tree (CART) algorithm. It constructs
multiple decision trees and then combines them together. An
important concept in random forest is randomness, which
provides a good method for reducing overfitting (Chen et al.,
2014; Seo et al., 2019).

In this study, we performed the modeling using R language
program modeling. Ten-fold cross-validation was used to screen the

best parameters for the models. After confirming the optimal
parameters, they were locked, and the data were divided into a
training set and a test set at a ratio of 7:3. To avoid the contingency of
one modeling’s results, we performed three random samplings and
used the means and standard deviations of the three modeling
results to evaluate the model’s classification efficiency. Accuracy,
sensitivity, specificity, F1 score, precision, area under the curve
(AUC), positive predictive value (PPV), negative predictive value
(NPV), and area under the precision-recall curve (AUCPR) which is
average precision (AP) were used to assess the model’s performance.
Formulas of The formulas for accuracy, sensitivity, specificity,
precision, and F1 score were as follows:

Accuracy � TP + TN
TP + TN + FP + FN

(1)

Sensitivity � TP
TP + FN

(2)

Specificity � TN
TN + FP

(3)

Precision � TP
TP + FP

(4)

F1 � 2 × Precision × Sensitivity
Precision + Sensitivity

(5)

PPV � TP
TP + FP

(6)

NPV � TN
TN + FN

(7)

3 Results

3.1 Characteristics of the participants

The baseline characteristics of the three groups were shown in
Table 2.

FIGURE 5
Schematic diagram of the L*a*b color space.
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The results revealed that there was no statistically
significant difference in sex distribution among the three
groups (p > 0.05), but there were statistically significant
differences in age (p < 0.01). Patients’ ages in the lung
cancer group was significantly older than the benign

pulmonary nodules group, and the group with benign
pulmonary nodules was significantly older than the healthy
controls. Because no study has demonstrated that age has a
significant effect on the characteristic of the tongue, no age
matching was performed among the participants in this study.

FIGURE 6
Schematic diagram of the YCrCb color space (A) Y color space (B) Cr and Cb color space.

TABLE 1 Tongue image data and their meaning.

Tongue index Meaning

TB/TC-R Degree of redness of the tongue. This value ranges from 0 to 255, with larger R values indicating a redder tongue body
color or a thinner tongue coating

TB/TC-G Degree of greenness of the tongue. This value ranges from 0 to 255, with larger G values indicating a greener tongue or
a paler tongue body

TB/TC-B Degree of blueness of the tongue. This value ranges from 0 to 255, with larger B values indicating a bluer tongue or a
more purple tongue body

TB/TC-Y Luminance. This value ranges from 16 to 235, with smaller Y values indicating a darker tongue

TB/TC-Cr Chrominance. This value ranges from 16 to 240 and reflects the difference between the red part of the RGB input
signal and the brightness value of the RGB signal

TB/TC-Cb Chrominance. This value ranges from 16 to 240 and reflects the difference between the blue part of RGB input signal
and the brightness value of RGB signal

TB/TC-L Lightness. This value ranges from 0 to 100 represents the range from pure black to pure white

TB/TC-a The green‒red axis. A positive value represents red, and a negative value represents green

TB/TC-b The blue‒yellow axis. A positive value represents yellow, and a negative value represents blue

TB/TC-CON Jordanova et al. (2022) The clarity of the image and the depth of the texture groove

TB/TC-ENT Siqueira et al. (2009), Küçükaslan et al.
(2014)

The degree of nonuniformity or complexity of the tongue texture

TB/TC-ASM Jordanova et al. (2022) The tongue grayscale distribution uniformity and texture thickness

TB/TC-MEAN Zabitler et al. (2022) Grayscale mean of the tongue

perAll The ratio of the pixels representing the tongue coating to the total tongue area

perPart The ratio of the pixels representing the tongue coating to the area occupied by the tongue coating
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TABLE 2 Baseline characteristics of the study participants.

/ Healthy controls (n = 307) Benign pulmonary nodules (n = 292) Lung cancer (n = 263)

Sex [n (%)] Male 143 (46.58) 148 (50.68) 124 (47.15)

Female 164 (53.42) 144 (49.32) 139 (52.85)

Age [Mean (SD)] 36.30 ± 6.34 42.91 ± 10.89** 57.05 ± 15.21**△△

Compared with healthy controls, *p < 0.05, **p < 0.01. Compared with benign pulmonary nodules, △p < 0.05, △△p < 0.01.

TABLE 3 Comparison results of tongue image data of the three groups [Mean (SD), Median (P25, P75)].

Tongue index Healthy controls (n = 307) Benign pulmonary nodules (n = 292) Lung cancer (n = 263)

TB RGB R 162.00 (158.00, 166.000) 161.00 (157.00, 164.00)** 160.00 (156.00, 164.00)**

G 97.00 (92.00, 102.00) 97.00 (93.00, 102.00) 93.00 (88.00, 98.00)**△△

B 101.00 (97.00, 109.00) 102.00 (96.00, 106.00) 96.00 (90.00, 101.00)**△△

Lab L 48.40 (47.02, 50.42) 48.37 (46.92, 49.81) 47.26 (45.62, 48.78)**△△

a 26.80 ± 2.15 26.28 ± 2.43* 27.75 ± 2.30**△△

b 8.82 ± 1.57 8.69 ± 1.86 10.38 ± 2.27**△△

YCrCb Y 116.19 (113.20, 120.68) 116.30 (113.08,119.43) 113.60 (109.73, 117.11)**△△

Cr 156.14 ± 1.94 155.59 ± 2.29* 157.30 ± 2.21**△△

Cb 120.31 ± 1.19 120.41 ± 1.39 119.26 ± 1.69**△△

Texture index CON 103.20 (84.93, 128.01) 105.54 (86.67, 123.55) 96.17 (83.35, 113.41)*△

ASM 0.06 (0.05, 0.07) 0.06 (0.06, 0.07) 0.06 (0.06, 0.07)*△

ENT 1.29 (1.25, 1.34) 1.30 (1.25, 1.33) 1.28 (1.24, 1.32)*

MEAN 0.03 (0.03, 0.04) 0.03 (0.03, 0.03) 0.03 (0.03,0.03)**△

TC RGB R 151.00 (144.00, 158.00) 152.00 (145.00, 158.00) 148.00 (136.00, 156.00)**△△

G 105.00 (98.00, 111.00) 106.00 (99.25, 113.00) 99.00 (88.00, 107.00)**△△

B 107.00 (100.00, 114.00) 108.00 (100.00, 115.00) 101.00 (87.00, 108.00)**△△

Lab L 49.17 (46.47, 51.79) 49.54 (47.08, 51.95) 47.21 (42.35, 50.20)**△△

a 19.01 ± 1.90 18.46 ± 2.31** 19.66 ± 2.03**△△

b 6.03 (5.02, 7.19) 6.08 (4.97, 7.45) 7.59 (6.09, 9.29)**△△

YCrCb Y 118.20 (112.14, 123.08) 118.95 (113.50, 124.25) 113.86 (102.96, 120.41)**△△

Cr 148.21 ± 1.72 147.74 ± 2.10* 149.02 ± 1.89**△△

Cb 122.21 (121.47, 123.08) 122.21 (121.19, 123.09) 121.19 (120.00, 122.35)**△△

Texture index CON 129.86 (104.92, 157.78) 135.67 (108.38, 167.48) 130.33 (99.64, 155.93)

ASM 0.05 (0.05, 0.06) 0.05 (0.05, 0.06) 0.06 (0.05, 0.06)△△

ENT 1.34 (1.29, 1.39) 1.35 (1.30, 1.40) 1.34 (1.27, 1.38)△△

MEAN 0.04 (0.03, 0.04) 0.04 (0.03, 0.04) 0.04 (0.03, 0.04)

Area index perAll 0.33 (0.27, 0.38) 0.34 (0.28, 0.41) 0.23 (0.11, 0.33)**△△

perPart 0.65 (0.57, 0.76) 0.69 (0.58, 0.87)* 0.64 (0.53, 0.83)△△

Compared with healthy controls, *p < 0.05, **p < 0.01. Compared with benign pulmonary nodules, △p < 0.05, △△p < 0.01.
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3.2 Statistical analysis of tongue image data

The statistical analysis results for the tongue image data of the
three groups were shown in Table 3.

The violin maps shown in Figure 7 were created using the Origin
2021 software to facilitate observation of the distribution of tongue
image indexes.

The results showed that there were significant differences in the
L, a, b, Y, Cr, and Cb values of the tongue body and coating among
the three groups (p < 0.01). The lung cancer group’s TB-L, TC-L,
TB-Y, and TC-Y values were lower than those of the benign
pulmonary nodules group (p < 0.01). The values of TB-a, TC-a,
TB-Cr, and TC-Cr of the lung cancer group were significantly higher
than those of the benign pulmonary nodules group (p < 0.01), while
TB-B, TC-B, TB-Cb, and TC-Cb were significantly lower (p < 0.01).
The TB-b and TC-b values of the lung cancer group were
significantly higher than those of the benign pulmonary nodules
group (p < 0.01). The TC-L, TB-Y, TC-Y, TB-G, TC-G, TB-B, TC-B,
TB-Cb, and TC-Cb values of the benign pulmonary nodules group
were higher than those of the healthy controls (p < 0.01), while the

TB-a, TC-a, TB-Cr, TC-Cr values were lower (p < 0.01). The value of
perAll in the lung cancer group was lower than that in the benign
pulmonary nodules group (p < 0.01), and in the benign pulmonary
nodules group, it was larger than that in the healthy controls (p <
0.01). Furthermore, the TC-ASM was higher in the lung cancer
group than in the benign pulmonary nodules group, but the other
texture indexes (CON, ENT, MEAN) were not significantly different
between the two groups.

3.3 Correlation analysis of tongue image
data

In the heatmaps, the red square represents a positive correlation,
and the blue square represents a negative correlation. The heatmaps
of the correlation analysis results of the tongue indexes in the healthy
control group, benign pulmonary nodules group, and lung cancer
group were shown in Figures 8–10, and the corresponding
correlation coefficient values of the tongue image data for the
three groups were shown Supplementary Figures S1–S3.

FIGURE 7
Violin map of tongue image feature distribution of the three groups.
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FIGURE 8
Correlation heatmap of the healthy control group.

FIGURE 9
Correlation heatmap of the benign pulmonary nodules group.
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According to the results, the correlations between the texture
indexes of the tongue body and tongue coating (TB/TC-CON, TB/
TC-ASM, TB/TC-ENT, TB/TC-MEAN) and the RGB\Lab\YCrCb
color space indexes of the tongue body showed the following trends:
lung cancer group > healthy controls > benign pulmonary nodules
group. The correlation between TC-a and TB-G and between TC-Cr
and TB-G, TB-B, and TB-L, showed the following trends: benign
pulmonary nodules group > healthy controls > lung cancer group. In

the group of people with lung cancer, the correlation coefficient of
TB-Cr and TB-a was 0.93 (p ≤ 0.001), while in the group of people
with benign pulmonary nodules, it was 0.96 (p ≤ 0.001). The
correlation coefficients between TC-b and TB-b and TB-Cb in
the group of people with lung cancer were 0.83 and −0.85,
respectively (p ≤ 0.001), while those between TC-Cb and TB-b
and TB-Cb were −0.78 and 0.82 (p ≤ 0.001). In contrast, in the group
of people with benign pulmonary nodules, the correlations of TC-b

FIGURE 10
Correlation heatmap of the lung cancer group.

FIGURE 11
Hierarchical clustering of tongue indexes of the three groups. (A) the healthy controls, (B) the benign pulmonary nodules group, (C) the lung cancer
group.
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with TB-b and TB-Cb were 0.77 and −0.75 (p ≤ 0.001), and those of
TC-Cb with TB-b and TB-Cb were −0.75 and 0.77 (p ≤ 0.001),
respectively. However, the correlations between the texture
parameters of the tongue body and tongue coating in the benign
pulmonary nodules group were higher than those in the lung cancer
group.

The hierarchical clustering heatmaps of the three groups of
tongue indexes were shown in Figure 11.

The results showed that the healthy control group and benign
pulmonary nodules group had similar clusterings, while the

TABLE 4 Collinearity statistics of tongue image data.

Index Tolerance VIF Index Tolerance VIF

TB-L 0.415 2.412 TC-b 0.246 4.067

TB-a 0.202 4.952 perAll 0.124 8.066

TB-b 0.179 5.574 perPart 0.809 1.236

TC-L 0.302 3.307 TB-ASM 0.641 1.56

TC-a 0.502 1.992 TC-ASM 0.489 2.045

TABLE 5 Classification results of each model based on different data sets [mean (standard deviations)].

Classifier Data
set

Sensitivity Specificity F1_score Precision Accuracy AUC PPV NPV AP

Decision tree Model 1 0.549 (0.030) 0.790 (0.057) 0.606 (0.031) 0.676 (0.044) 0.689 (0.032) 0.717
(0.007)

0.835
(0.062)

0.735
(0.019)

0.776
(0.026)

Model 2 0.491 (0.045) 0.748 (0.076) 0.545 (0.026) 0.628 (0.080) 0.631 (0.020) 0.679
(0.022)

0.596
(0.029)

0.702
(0.029)

0.635
(0.042)

Model 3 0.589 (0.072) 0.911 (0.007) 0.692 (0.054) 0.846 (0.019) 0.764 (0.043) 0.764
(0.033)

0.709
(0.089)

0.865
(0.008)

0.741
(0.022)

SVM Model 1 0.650 (0.029) 0.768 (0.027) 0.664 (0.027) 0.683 (0.063) 0.715 (0.012) 0.703
(0.008)

0.745
(0.012)

0.867
(0.011)

0.806
(0.007)

Model 2 0.633 (0.058) 0.780 (0.030) 0.665 (0.021) 0.706 (0.034) 0.711 (0.033) 0.694
(0.033)

0.655
(0.012)

0.721
(0.042)

0.759
(0.026)

Model 3 0.687 (0.048) 0.851 (0.014) 0.734 (0.034) 0.791 (0.043) 0.774 (0.029) 0.755
(0.027)

0.76 (0.048) 0.824
(0.014)

0.844
(0.022)

Random forest Model 1 0.560 (0.021) 0.766 (0.014) 0.600 (0.030) 0.648 (0.051) 0.677 (0.005) 0.697 (0.01) 0.768
(0.013)

0.779
(0.025)

0.623
(0.038)

Model 2 0.586 (0.066) 0.761 (0.044) 0.623 (0.038) 0.673 (0.047) 0.679 (0.048) 0.752
(0.051)

0.628
(0.031)

0.660
(0.011)

0.741
(0.025)

Model 3 0.660 (0.047) 0.862 (0.041) 0.724 (0.045) 0.802 (0.042) 0.770 (0.050) 0.804
(0.029)

0.732
(0.052)

0.778
(0.026)

0.841
(0.027)

Neural network Model 1 0.626 (0.017) 0.829 (0.014) 0.677 (0.022) 0.738 (0.037) 0.741 (0.020) 0.749
(0.010)

0.746
(0.016)

0.689
(0.036)

0.806
(0.006)

Model 2 0.585 (0.081) 0.744 (0.087) 0.614 (0.018) 0.666 (0.073) 0.669 (0.037) 0.690
(0.058)

0.631
(0.051)

0.664
(0.036)

0.676
(0.077)

Model 3 0.612 (0.103) 0.897 (0.040) 0.697 (0.078) 0.827 (0.073) 0.762 (0.059) 0.777
(0.044)

0.712
(0.063)

0.895
(0.025)

0.811
(0.007)

Naive bayes Model 1 0.637 (0.020) 0.797 (0.039) 0.668 (0.029) 0.707 (0.070) 0.725 (0.022) 0.760
(0.011)

0.753
(0.021)

0.912
(0.026)

0.805
(0.008)

Model 2 0.642 (0.071) 0.690 (0.031) 0.636 (0.044) 0.633 (0.027) 0.667 (0.052) 0.748
(0.047)

0.649
(0.027)

0.662
(0.015)

0.712
(0.057)

Model 3 0.672 (0.068) 0.741 (0.033) 0.677 (0.045) 0.684 (0.024) 0.709 (0.052) 0.795
(0.039)

0.67 (0.065) 0.697
(0.040)

0.806
(0.034)

Logistic
regression

Model 1 0.697 (0.034) 0.723 (0.033) 0.675 (0.019) 0.659 (0.062) 0.709 (0.006) 0.758
(0.010)

0.790
(0.015)

0.823
(0.009)

0.806
(0.006)

Model 2 0.662 (0.041) 0.713 (0.044) 0.659 (0.022) 0.659 (0.037) 0.689 (0.038) 0.745
(0.041)

0.661
(0.016)

0.678
(0.030)

0.758
(0.028)

Model 3 0.744 (0.036) 0.776 (0.006) 0.738 (0.019) 0.734 (0.028) 0.760 (0.021) 0.808
(0.031)

0.801
(0.053)

0.750
(0.007)

0.857
(0.031)

Note: Model 1, model based on baseline data (age and sex), Model 2, model based on tongue image data, Model 3, model based on both baseline and tongue image data, PPV, positive predictive

value; NPV, negative predictive value; AP, average precis.
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clustering results of the lung cancer group were significantly
different from those of the other two groups.

3.4 Modeling results

First, collinearity statistics were calculated for the tongue image
data that were significantly different between benign pulmonary
nodules and lung cancer patients. Collinearity was considered
present if the tolerance was less than 0.1 or the variance inflation
factor (VIF) was larger than 10. The following indexes were assessed
and found to be noncollinear after factors that could have led to
collinearity in this study were eliminated. The statistics on
collinearity were shown in Table 4.

This study mainly to analyze the contribution rate of tongue
image data to the differential diagnosis of lung cancer and benign
pulmonary nodules. Meanwhile, the baseline information, baseline
information combined with tongue image data were respectively
used as input variables for modeling to construct different models,
which in order to compare the modeling effect of tongue image data.
The model evaluation results of the six machine learning methods
were shown in Table 5.

The ROC curves of models based on baseline, tongue image
data, baseline and tongue image data using each machine learning
algorithm were shown in Figures 12–14.

The precision-recall curves of models based on baseline, tongue
image data, baseline and tongue image data were shown in
Supplementary Figures S4–S6. The precision-recall curves from A
to F in Supplementary Figures S4–S6 correspond to various
algorithms such as decision tree, SVM, random forest, neural
network, naive bayes, and logistic regression, respectively.

The results showed that of the models based on tongue image
data, the random forest prediction model performed the best, with a
model accuracy of 0.679 ± 0.048 and an AUC of 0.752 ± 0.051, while
amongmodels based on the baseline data, the naïve Bayes prediction
model performed the best, with a model accuracy of 0.725 ±
0.022 and an AUC of 0.760 ± 0.011. In addition, all models
based on baseline data (except the random forest model)
outperformed the tongue data-based models. There was no
significant difference in the model performance of multiple
machine learning methods in the “baseline and tongue image”
data set. The accuracy for the logistic regression, decision tree,
support vector machine, random forest, neural network, and
naïve bayes models based on both the baseline and tongue image

FIGURE 12
ROC curves of the models based on baseline data sets.
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data were 0.760 ± 0.021, 0.764 ± 0.043, 0.774 ± 0.029, 0.770 ± 0.050,
0.762 ± 0.059, and 0.709 ± 0.052, respectively, while the AUCs for
each model were 0.808 ± 0.031, 0.764 ± 0.033, 0.755 ± 0.027, 0.804 ±
0.029, 0.777 ± 0.044, and 0.795 ± 0.039, respectively. Furthermore,
all six machine learning methods performed better when based on
both the baseline and tongue image data than when based only on
the tongue image data or on the baseline data.

In addition, to directly observe and understand the differences in
the tongue images between the benign pulmonary nodule and lung
cancer groups, representative tongue images of the two populations
were shown in Figure 15.

4 Discussion

Early-stage lung cancer is a symptomless disease characterized
mostly by pulmonary nodules, observable pathological products
with a high clinical detection rate. Because it is challenging to
determine whether they are benign or malignant, they are a focus
of both domestic and international studies. According to TCM, most
of its pathogenesis derives from a deficiency of vital qi and the
interjunction of phlegm and blood stasis, and some pulmonary
nodules can gradually enlarge and deteriorate. Such pulmonary

nodules are actually the embryonic form of lung cancer, a very
harmful disease among humans. Careful follow-up, observation of
the direction of development and appropriate and timely treatment
are needed. Determining whether pulmonary nodules are lung
cancer is a serious medical issue. The accurate differentiation of
benign and malignant nodules aids in early lung cancer detection,
diagnosis, and treatment (Aberle et al., 2011; McWilliams et al.,
2013). The likelihood of malignancy in pulmonary nodules being
may be efficiently predicted, screening costs and the risk of
morbidity and death can be decreased, and clinical decision-
making can be supported by an accurate and useful model.

L stands for relative lightness, and Y stands for luminance; the
lower the L and Y values are, the darker the color of the image.
Statistical analysis of the tongue images of the three groups revealed
that the lung cancer group’s TB-L, TC-L, TB-Y, and TC-Y values
were lower than those in the pulmonary nodules group (p ≤ 0.01),
indicating that the lung cancer group’s tongue image was darker and
the brightness was lower. “a” represents the green‒red axis, and a
positive value represents red. Cr reflects the difference between the
red signal and the brightness value; the higher the Cr value is, the
more reddish the tongue is. B represents the blue component; the
higher the B value is, the bluer the tongue is; in other words, the
concentration of blue components increases, and the tongue appears

FIGURE 13
ROC curves of the models based on tongue image data.
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blue or purple. The lung cancer group’s TB-a, TC-a, TB-Cr, and TC-
Cr values were higher than those in the benign pulmonary nodules
group (p ≤ 0.01), while the TB-B, TC-B, TB-Cb, and TC-Cb values
were lower (p ≤ 0.01), indicating that the tongues in the lung cancer
group were more reddish and purple, and the tongues in the benign
pulmonary nodules group were more cyanotic. “b” is the yellow‒
blue color of the object, and positive values represent yellow. The
lung cancer group’s TB-b and TC-b were higher than those in the
benign pulmonary nodules group (p ≤ 0.01), indicating that the
tongue coating in the lung cancer group was more yellow. In
addition, the TC-L, TB-Y and TC-Y values in the benign
pulmonary nodules group were significantly higher than those in
the healthy controls (p ≤ 0.01), indicating that the tongue images of
the former were brighter, while the TB-a, TC-a, TB-Cr and TC-Cr in
the benign nodules group were lower than those in the healthy
controls (p ≤ 0.01). The TB-G, TC-G, TB-B, TC-B, TB-Cb, and TC-
Cb values were all higher than those in the healthy controls (p ≤
0.01), indicating that the tongue images of patients in the benign
pulmonary nodules group were paler and bluer than those of healthy
controls. PerAll is the ratio of the tongue coating pixels to the total
tongue area, and perPart is the ratio of tongue coating pixels to the
area occupied by the tongue coating. The perAll and perPart values
of the lung cancer patients were lower than those of the benign

pulmonary nodules group (p ≤ 0.01), indicating that the lung cancer
group had a smaller or nonexistent or thinner tongue coating area
that was more likely to peel. The reason may be that lung cancer
patients mostly have yin deficiency and fire prosperous syndrome,
and their tongue images are characterized by a red tongue body and
little and thin coating. In contrast, most benign pulmonary nodule
patients have excess syndrome because the phlegm-dampness
condenses, and the tongue coating was thick and greasy. The
study’s findings concur with the TCM theory. The perAll value
of the benign nodules group was higher than that of the healthy
control group (p ≤ 0.01), indicating that the tongue coating area of
patients with pulmonary nodules was higher than that of healthy
controls. In addition, among the tongue texture indexes, a smaller
CON, ENT and MEAN and a larger ASM indicate finer tongue
texture, while for the tongue coating, these values indicate increased
greasiness. In this study, TC-ASM was higher in the lung cancer
group than in the benign pulmonary nodules group (p ≤ 0.05, p ≤
0.01), and the other texture indexes (CON, ENT, MEAN) were not
noticeably different, indicating that in the lung cancer group, the
shallower tongue groove was associated with a less clear tongue
texture and a greasier tongue coating. In conclusion, the research
showed that there were differences in the correlation of tongue
indexes among the three groups, and the level of correlation between

FIGURE 14
ROC curves of the models based on baseline and tongue image data.
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the three groups had a specific pattern of distribution that could be
used as the basis for categorizing various populations. In the future,
the differences between tongue indexes of benign pulmonary
nodules and lung cancer populations can be further explored
based on multi-center and large samples in order to better
support the intelligent classification of benign pulmonary nodules
and lung cancer.

The diagnosis and management of pulmonary nodules depend
greatly on the evaluation of benign and malignant conditions.
Primary nodule malignancy probability prediction models have
become increasingly popular in China in recent years (Schultz
et al., 2008; Deppen and Grogan, 2015). Studies have been
conducted on the prediction models of pulmonary nodules
malignancy probability, including foreign models such as the
Mayo Model (Swensen et al., 1997), Herder model (Herder et al.,
2005; Vayntrub et al., 2021), Brock model (McWilliams et al., 2013;
Kim et al., 2021), and VA model (Tanner et al., 2020). A risk
prediction model combining clinical, blood, and imaging
biomarkers can improve the noninvasive diagnosis of patients
with indeterminate pulmonary nodules, potentially reducing the
incidence of unnecessary invasive procedures and shortening the
time to diagnosis (Kammer et al., 2021). Logistic regression is a
popular supervised machine learning technique. The use of logistic
regression has several advantages, including the ability to directly
model classification probability without making any assumptions
about the data distribution. In addition to categories, logistic
regression can produce approximate probability predictions,
which is very useful for many tasks where probability is required
to support decision-making (Bucur et al., 2017; Hercus and Hudaib,
2020; Schober and Vetter, 2021a). According to this study’s
modeling findings, it is possible to diagnose benign pulmonary

nodules and lung cancer to a certain extent using objective
tongue imaging data. Given that age differs between patients with
pulmonary nodules and those with lung cancer and is the most
frequently used baseline information, it was included in the
modeling data set, and the modeling results showed that the
classification efficiency was improved, suggesting that we can
combine objective tongue image data with baseline data to create
a better classification model.

This study still had some limitations. First, the sample size of
this study was small, future research still require multi-center
studies with larger samples. Secondly, this study was only based
on tongue data for lung cancer risk warning, and the model
accuracy was not high. It might not be sufficient to be applied to
cancer screening in real world. In the future, pulse data, face data
and Western medical index can be further integrated, using
multi-modal data fusion technology to create a lung cancer risk
warning model based on multi-dimensional data that is more
accurate and more suited for clinical practical applications.

5 Conclusion

The objective tongue image data of benign pulmonary nodules
and lung cancer patients had different statistical characteristics and
correlations. TB-L, TB-a, TB-b, TB-ASM, TC-L, TC-a, TC-b, TC-
ASM, perAll, and perPart played an important role in the differential
diagnosis of benign pulmonary nodules and lung cancer. The
performance of models built on tongue image and baseline data
outperformed models built only on tongue image or baseline data.
Adding objective tongue image data to baseline data can
significantly improve the efficacy of lung cancer prediction models.

FIGURE 15
Representative tongue images of benign pulmonary nodules and lung cancer patients. (A) benign pulmonary nodules group, (B) lung cancer group.
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