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Introduction: Drowsy driving is a significant factor causing dire road crashes and
casualties around the world. Detecting it earlier and more effectively can
significantly reduce the lethal aftereffects and increase road safety. As
physiological conditions originate from the human brain, so neurophysiological
signatures in drowsy and alert states may be investigated for this purpose. In this
preface, A passive brain-computer interface (pBCI) scheme using multichannel
electroencephalography (EEG) brain signals is developed for spatially localized and
accurate detection of human drowsiness during driving tasks.

Methods: This pBCI modality acquired electrophysiological patterns of 12 healthy
subjects from the prefrontal (PFC), frontal (FC), and occipital cortices (OC) of the
brain. Neurological states are recorded using six EEG channels spread over the
right and left hemispheres in the PFC, FC, and OC of the sleep-deprived subjects
during simulated driving tasks. In post-hoc analysis, spectral signatures of the δ, θ,
α, and β rhythms are extracted in terms of spectral band powers and their ratios
with a temporal correlation over the complete span of the experiment. Minimum
redundancy maximum relevance, Chi-square, and ReliefF feature selection
methods are used and aggregated with a Z-score based approach for global
feature ranking. The extracted drowsiness attributes are classified using decision
trees, discriminant analysis, logistic regression, naïve Bayes, support vector
machines, k-nearest neighbors, and ensemble classifiers. The binary
classification results are reported with confusion matrix-based performance
assessment metrics.

Results: In inter-classifier comparison, the optimized ensemble model achieved
the best results of drowsiness classification with 85.6% accuracy and precision,
89.7% recall, 87.6% F1-score, 80% specificity, 70.3% Matthews correlation
coefficient, 70.2% Cohen’s kappa score, and 91% area under the receiver
operating characteristic curve with 76-ms execution time. In inter-channel
comparison, the best results were obtained at the F8 electrode position in the
right FC of the brain. The significance of all the results was validated with a p-value
of less than 0.05 using statistical hypothesis testing methods.

Conclusions: The proposed scheme has achieved better results for driving
drowsiness detection with the accomplishment of multiple objectives. The
predictor importance approach has reduced the feature extraction cost and
computational complexity is minimized with the use of conventional machine
learning classifiers resulting in low-cost hardware and software requirements. The
channel selection approach has spatially localized themost promising brain region
for drowsiness detection with only a single EEG channel (F8) which reduces the
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physical intrusiveness in normal driving operation. This pBCI scheme has a good
potential for practical applications requiring earlier, more accurate, and less
disruptive drowsiness detection using the spectral information of EEG biosignals.
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electroencephalography, brain–computer interface, spectral features, drowsiness
detection, feature selection, supervised learning, neurophysiology, channel selection

1 Introduction

Sleep deprivation and persistent tiredness due to environmental
noise and excessive traffic could be the leading cause of driving
fatigue. Mental exhaustion and fatigue may cause driving drowsiness
onset. Vehicle drivers are more likely to nod off at the steering wheel
during long stretches of uninterrupted driving on smooth highways
and straight road patches. All these reasons contribute to drowsy
driving, which is a leading cause of car accidents (Ahn et al., 2016).
These accidents can have devastating personal, societal, and
monetary consequences, along with fatalities. So, vehicular safety
and driving drowsiness detection methods to avoid dire losses are
always motivational aspects for researchers.

There are several subjective and objective methods to detect
drowsiness in drivers. Subjective methods include self-assessment
report-based test questionnaires to measure the level of drowsiness.
Karolinska Sleepiness Scale (KSS), Stanford Sleepiness Scale (SSS),
Epworth Sleepiness Scale (ESS), visual analog scale (VAS), and
observer-rated sleepiness (ORS) are some self-assessment approaches
(Poursadeghiyan et al., 2017; Baiardi et al., 2018). These reports ask
individuals to rate their tiredness by answering questions, but most
subjects overestimate their drowsiness. Objective methods for driver
drowsiness detection rely on measurements of the driver’s physiological
and behavioral characteristics or on-road vehicle response to detect
signs of drowsiness (Hu, 2017b). These methods do not rely on the
driver’s self-assessment report and are considered more reliable than
subjective methods. Behavioral methods incorporate computer vision
algorithms that use onboard cameras to detect changes in the driver’s
behavior (Akrout and Mahdi, 2021). Drowsiness is characterized by
facial recognition, frequent yawning, delayed eye closures, rapid blink
rates, lowered head posture, microsleep, or dozing-off behaviors (Rundo
et al., 2021). However, identifying tiredness with behavioral cues, such as
eye blinks, lipmovement, yawn frequency, and facial features,may cause
false detections. These methods are accurate for online drowsiness
detection but require excessive computational power and expensive
equipment to run computer vision algorithms on live video feeds
(Bamidele et al., 2019). Background variation and poor ambient light
might cause erroneous detections. Vehicular methods measure the
drowsiness with the driving performance, which is assessed through
vehicle response measured with onboard sensors. Parameters such as
vehicle speed, driver’s reaction time, continuous lane deviation, missed
traffic signs, and steering jerking are used to detect signs of drowsiness
(Collet and Musicant, 2019). Tesla, Mercedes Benz, and others use
behavioral driver assistance technologies to avoid accidents. Samsung
and Eyesight collaborated to track driver attentiveness using facial
patterns and features (Jabbar et al., 2020). They introduced assisted
steering, automatic braking, lane departure warnings, and variable cruise
control. Vehicular methods are not suitable for earlier detection as they
ascertain the driver’s drowsiness when an accident ismore likely. On the

other hand, physiological methods measure various physiological
parameters, such as eye movement with electrooculography (EOG),
heart rate variability (HRV) with electrocardiography (ECG), and
neurophysiological measures with electroencephalography (EEG) and
functional near-infrared spectroscopy (fNIRS). These methods can
detect fatigue and drowsiness using bodily organs such as the heart,
muscles, eyes, and brain (Kartsch et al., 2018). Some studies additionally
examine the link between drowsiness and alertness using respiratory
rate, skin electrochemistry, body temperature, etc. (Adão Martins et al.,
2021). These methods are disruptive to the normal driving task and
potentially cause the driver discomfort but have shown promising
results in detection accuracy (Arif et al., 2021b). As each method has
its pros and cons, deciding between vehicular, behavioral, and
physiological measures is a challenging task. Drivers require
detection systems to be less intrusive as well as more accurate with
earlier detection; it is a trade-off between these two aspects. However, all
the bodily states primarily originated from the human brain, so it could
be a potentially useful location for earlier drowsiness detection if the
intrusiveness of the physiological measurement system could be
reduced.

Brain activities are classified into three categories: active
(intentional tasks like mental arithmetic, computation, and body
motion), reactive (response to some external stimulus such as pain,
audio, or video), and passive (unintentional activities like drowsiness,
intelligence, possessiveness, stress, and fatigue) (Naseer et al., 2016;
Qureshi et al., 2017; Nazeer et al., 2020a). Passive brain states aremore
difficult to detect than active and reactive brain states (Alimardani and
Hiraki, 2020; Belo et al., 2021). Detection of sleep or drowsy passive
states during attention-seeking tasks like driving is most crucial due to
the life risks involved. Non-invasive brain–computer interfaces (BCIs)
record the hemodynamic response of the brain, like changes in blood
oxygen level, blood flow, and volume with fNIRS or
electrophysiological signals and electrical neuronal activity with
EEG. Due to low cost and effective utility, EEG and fNIRS-based
BCIs are more widely used to detect activities of the brain (Arif et al.,
2021b). EEG has comparatively better temporal resolution with less
complex hardware, while fNIRS has good spatial resolution and more
stable signals (Khan et al., 2018). Some studies are based on hybrid
solutions to merge the benefits of both techniques and the application
of these methods on real-life subjects (Khan et al., 2021). EEG-based
passive BCI (pBCI) for drowsiness detection is a widely used method
for measuring and analyzing brain activities during alertness or
drowsiness (Min et al., 2017; LaRocco et al., 2020) due to its good
temporal resolution. Various methods can be used to analyze the EEG
signals and determine the level of drowsiness, such as frequency
analysis, correlation analysis, and time domain analysis with machine
learning (ML) and deep learning (DL) techniques (Aboalayon et al.,
2016). DL techniques may achieve more accuracy; however, they have
several potential drawbacks, including data requirements, intensive
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computations, black box problems, overfitting, and biases. ML
algorithms are more promising and effective in avoiding such
drawbacks (Khan et al., 2021).

The performance of the activity classification algorithm in the
pBCI scheme mainly depends upon the number of features and their
extraction complexity. Feature extraction is the process of extracting
relevant and informative characteristics from the raw EEG signal to
represent the drowsiness level of a driver. These characteristics, also
known as features or attributes, are used as input to the classifier.
There are several common feature extraction methods used in driving
drowsiness detection, including temporal features extracted from the
raw EEG signals in the time domain, and they include statistical
measures, such as mean, standard deviation, skewness, and kurtosis
(Nazeer et al., 2020b; Arif et al., 2021b; Khan et al., 2021). Frequency
domain features are extracted from the EEG signals after transforming
them into the frequency domain using methods such as Fourier
transform, wavelet transform, or short-time Fourier transform.
Examples of frequency domain or spectral features include power
spectral density (PSD), alpha and beta band powers, and the ratio of
different EEG frequency bands (Huang et al., 2014; Hong et al., 2018;
Sasaki et al., 2019). Non-linear features are extracted using non-linear
methods, such as fractal dimension, approximate entropy, and sample
entropy (Li et al., 2018; Zhou and Li, 2020). Thesemethods are used to
capture the complex and non-linear dynamics of the EEG signals.
However, studies have shown better classification results using
spectral features with temporal correlation (Awais et al., 2017).

The channel selection approach to reduce the number of
measurement electrodes is effective in reducing the intrusiveness of
pBCI. EEG channel selection is the process of selecting specific
electrodes on the scalp to measure brain activity from spatially
localized regions. It is an important step in EEG-based drowsiness
detection systems as it can affect the accuracy and reliability of the
detection results. There are multiple methods for EEG channel
selection, including statistical methods which use statistical
significance tests to select the most informative EEG channels, such
as mutual information, entropy, or variance (Alotaiby et al., 2015; Min
et al., 2017). Feature-based methods use features extracted from the
EEG signal, such as PSD, to select the most relevant channels with
maximum information gain (Arif et al., 2021a). ML-based methods use
ML algorithms to learn the relationship between the EEG signals and
the drowsiness state to select the most relevant channels based on the
model performance (Hu, 2017a). The commonly selected channels
used in drowsiness detection include the electrodes located over the
prefrontal cortex (PFC) (Fp1, Fp2), the central region of the scalp (C3,
C4), frontal cortex (FC) (F7, F8), occipital cortex (OC) (O1, O2), and
parietal region of the scalp (P3, P4) (Quercia et al., 2018; Kim et al.,
2022). These regions are known to be associated with sleep and
wakefulness and are commonly used in drowsiness detection studies
(Hong and Khan, 2017; Tanveer et al., 2019).

In the preview of the aforestated introduction, this study aimed to
develop an EEG-based pBCI scheme that is capable of effective
drowsiness detection with less intrusion for drivers and is
computationally inexpensive. For this purpose, the primary focus is
on feature selection to reduce the feature extraction cost and channel
selection to reduce the number of required EEG channels while
obtaining higher classification results with ML-based classifiers. In
this research work, raw EEG data are collected from drowsy drivers
during simulated driving tasks. In a post-hoc analysis of

neurophysiological signals, spectral features are extracted from multi-
channel EEG data. Then, various feature selection approaches are
applied to find the optimal features that are best representative of
drowsy and alert brain states. After feature selection, extensive
classification is carried out to find the single EEG channel of interest
(COI), which is the significant contribution of this study. The
experimental setup and adopted methodology are explained in
Section 2, with detailed results presented in Section 3 and discussion
in Section 4. Section 5 concludes the study with the main findings of
the work.

2 Materials and methods

2.1 Participants/subjects

This experimental study was conducted on the EEG dataset
collected from 12 right-handed male subjects. The average age of the
recruited healthy subjects was 30 ± 2 years. All the participants had
developed driving skills with experience of more than 2 years. The
subjects were briefed about the study and experimental procedures
before the data collection and enquired about their mental and
physical fitness. None of the participants had any neurological,
psychological, or mental disorders, and all had normal vision.
The subjects willingly consented to participate in this study and
gave written informed consent. All experiments were conducted
according to the latest version of the Declaration of Helsinki. The
study was reviewed and approved by the research ethics committee
of HITEC University Taxila, Pakistan.

2.2 Experimental procedure

The experimental setup includes a driving simulator with a
vehicle-like hardware controller to get a more realistic driving
environment and subject responses. All the neurophysiological
data acquisition experiments were conducted around 3 AM when
sleep-deprived subjects felt most drowsy (Chaput et al., 2020). For all
the subjects, data were recorded in multiple sessions on different
days with similar environmental conditions to minimize the
environmental effects on driving drowsiness. Figure 1 shows the
flow diagram of the drowsiness detection scheme and details of the
experiment. The subjects were required to experience and
familiarize the whole experimental procedure with initial trials of
15 min at least until they got completely accustomed to the controls
and environment. The later period of initial trials was used for
baseline adjustment and thresholding of EEG signals subject-wise.
The experiment was initiated after 5 min of rest. Subjects were
assigned the lane-keeping task during simulated driving for at least
45 min, during which synchronous EEG signal recordings were
performed for 30 ± 2 min. The pedestrian and traffic densities
were kept at minimum in the driving environment. User display
and room lighting were kept fairly dim along with quietness in the
experiment room to further enhance the drowsiness-inducing
conditions for the subjects. The room was vacant so that the
subjects could focus on the experiment and their attention would
not be diverted. The complete experiment was synchronously
recorded for post-hoc data labeling and validation of drowsy/alert
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biomarkers. The subjects’ faces and physical responses were
recorded with multiple cameras from different view angles and
with screen recordings of driving performance. The state biomarkers
were recorded for significant changes in facial expressions, eye
closures, head nodding, lane deviations, abrupt physical
responses, etc. The subjects were instructed to minimize
unnecessary head and body motions to avoid artifacts in the
neurophysiological signals.

2.3 Signal acquisition and processing

2.3.1 Data acquisition
An OpenBCI Ultracortex Mark-IV EEG headset in a 16-channel

configuration is used to acquire neuronal activity from anterior and
posterior brain regions, as shown in Figure 2A. The raw EEG signals
are recorded at a 125 Hz sampling rate. Figure 2B shows the
locations of 16 dry EEG electrodes placed according to the
international 10–20 system. This referential montage acquires
time-series data from both the right and left hemispheres of the
brain in the PFC, FC, OC, temporal, central, and parietal cortices,
with references set at the ear lobes. Out of these 16, only six

promising channels are selected for detailed analysis based on
results from previous studies. Two channels per cortex and one
in each hemisphere are selected from the PFC (Fp1, Fp2), FC (F7,
F8), and OC (O1, O2) for experimental dataset preparation. One of
the main objectives of this study is to find the most promising brain
region for drowsiness detection. A single COI is to be determined
out of these six selected channels. Such localization of a single COI
effectively reduces the sensory hardware, computational cost, and
intrusiveness in the normal driving operation. Designed
methodology and detailed analysis are performed for this
localization task with promising results of drowsiness
classification metrics.

2.3.2 Signal processing
Signal processing with Gaussian filters was performed to remove

the artifacts within certain frequency ranges and at specific
frequencies. Notch reject filters were used to remove 50 Hz and
60 Hz frequencies, which are caused due to electrical interference
from equipment circuits, amplifiers, and sensing boards. Artifacts
due to Mayer waves and breathing were removed using band reject
filters in frequency ranges of <0.01 Hz and 0.3–0.4 Hz, respectively.
Higher frequency artifacts >40 Hz were removed from the data

FIGURE 1
(A) Process flow diagram for BCI module. (B) Experiment details.
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using a third-order Butterworth low-pass filter to retain the EEG
frequency bands between 0.5–40 Hz. All the subjects are healthy,
and none have any myogenic disorders, such as Parkinson’s disease
or tremors, which indicates the absence of electromyographic
artifacts in the brain signals.

2.4 EEG spectral signatures

2.4.1 Spectral bands
The filtered frequency range of 0.5–40 Hz is further subdivided

into five EEG frequency bands which are indicative of the specific
physiological conditions of the human body. These are the delta (δ:
0.5–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–14 Hz), beta (β: 14–25 Hz),
and gamma (γ: 25–40 Hz) bands. δ and θ bands dominate in deep
and medium sleep, respectively. α rhythms are dominant in states of
light sleep, closed eyes, and relaxation (Croce et al., 2018; Liu et al.,
2021), while β band is indicative of alertness, focus, and wakefulness
states with cognition processes (Arif et al., 2021a). The transition
from alert to drowsy state can be captured by the transition from β to
α band along with the slow-wave bands (θ and δ) (Abidi et al., 2022;
Li and Chung, 2022). The higher magnitude of spectral band powers
and PSD estimates in these EEG bands for all the selected channels
are analyzed to measure the patterns of alert and drowsy states of
drivers.

2.4.2 Power spectral density
The PSD estimates with Welch’s method for all the selected

channels are computed to find the channel ranking in terms of
promising representation of significant band powers over the entire
band range under consideration (0.5–25 Hz). It computes the
modified periodograms of overlapping segments with averaging

estimation to subdue the overall spectral noise distribution and
to avoid spectral information leakage. A hamming window with a
50% overlap between segments is used to calculate power
distribution among frequency bins. The non-parametric spectral
estimation with Welch’s PSD is computed with the following
equations:

Px,m ωk( ) � 1
N.fs

∑N−1

n�0
xm n( )w n − τ( )e− i2πnk

fs

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
2

(1)

Ŝx,ch ωk( ) � 1
K

∑K−1
m�0

Px,m ωk( ) (2)

wherefs is the sampling rate,w(n − τ) is the averaging windowwith
the overlap of τ samples, xm(n) is the time domain signal epoch for
themth segment of lengthN, Px,m(ωk) is the periodogram of themth

segment of signal x over ωk normalized frequencies, and Ŝx,ch(ωk) is
Welch’s PSD estimate computed by averaging the periodograms of
K number of segments over the entire normalized frequency range
for each selected channel ch. The PSD estimates are computed using
the pwelch built-in function of MATLAB 9.12 (MathWorks, USA)
with the aforementioned input parameters. The PSD estimates of
each channel helped in establishing the inter-channel comparison in
terms of spectral information distribution.

2.4.3 Time-encoded spectral power
Another important spectral signature is the spectral band power

synchronized with the occurrence time information. It is computed
using the spectrograms which represent the time-series signals in
frequency and time-frequency domains. Spectrograms computed
the individual EEG band dominance in terms of spectral band power
for the complete length of the experiment. They are beneficial for
observing the band rhythm variations and transitions in discrete

FIGURE 2
(A) OpenBCI Ultracortex Mark-IV EEG headset in a 16-channel configuration. (B) EEG referential montage according to the 10–20 system of
electrode placement with selected channels highlighted in red.
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time windows synced with the driver’s state labels (Ruffini et al.,
2019; Arif et al., 2021a). The spectrograms are computed using the
short-time Fourier transform for all the selected channels according
to the following relationship:

Xch τ,ω( ) � ∫
∞

−∞
xch t( )w t − τ( )e−iωtdt (3)

where xch(t) is the time-series signal of the selected channel ch,
w(t − τ) is the averaging Gaussian window function with
specified overlap τ, and Xch(τ,ω) is the time-dependent
Fourier transform value over the specified time and
normalized frequency resolution. The spectrograms are
computed using the pspectrum function of MATLAB
9.12 with frequency ranges of δ, θ, α, and β bands and
window time of 10 s, along with other input parameters.

2.5 Feature extraction

2.5.1 EEG power spectrum
A total of eight spectral features are extracted from the spectral

data according to the promising spectral signatures of EEG bands
obtained from the spectrograms. The frequency band powers of δ, θ,
α, and β bands are representative of subjects’ physiological brain
states during active and passive tasks (Radüntz, 2017), so they are
taken as primary features for this classification scheme. These
features are extracted from the time–frequency representation of
the experiment along with drowsy and alert labels by carefully
synching them over time. For this purpose, the short-time power
spectrum estimation is performed over the windowed segments of
EEG signals for all channels over the entire duration of the
experiment. A dataset is created with the mean power of each
spectral band averaged out in a 10-s time window, along with
weighted average-based thresholding of class labels for each
observation/sample. The average spectral power of each band in
each windowed segment of 10 s is calculated by the following
equation:

�PB,m,ch � ∫ωh

ωl

Sx,m,ch ωB( )dω s.t. ωB � ωh,ωl[ ], B � δ, θ, α, β[ ]
(4)

where ωB is the normalized frequency range of the EEG band in B
with ωh as the higher and ωl as the lower frequency value of the band
range, respectively, S is the PSD estimate of segmented EEG signal x,
and �P is the mean band power of the windowed segment m for each
selected channel ch.

2.5.2 Band power ratio
The other four spectral features are the band power ratio

(BPR) indices between the four EEG bands, which are used for
drowsiness detection in many studies (Ahn et al., 2016; Diaz
et al., 2016). These BPR indicators are computed to capture the
inter-band variations during physiological state transitions. The
mostly used ratios are given as follows, which are regarded as
promising predictors to classify the drowsy and alert shifts with
the help of relative band power changes in each windowed
segment of the experiment.

R1 � α + θ

β
R2 � α

β
R3 � α + θ

α + β
R4 � θ

β
(5)

These BPR indices are computed for each observation in the
dataset of spectral band powers to complete the feature set. Hence,
this feature set is collected for the complete length of the experiment
for all the selected channels individually.

2.5.3 Feature rescaling
Feature rescaling/normalization is performed when feature

extraction is complete. It is performed to support the data
regularization in minimizing the loss function and to achieve
faster convergence during classifier model training. All the eight
spectral features in the dataset are rescaled using the min-max
normalization as follows:

Xp,ch
′ � a + Xp,ch −min(Xp,ch)

max(Xp,ch) −min(Xp,ch) b − a( ) (6)

where Xp,ch is the extracted value of the feature p in the dataset
of the channel ch, X′

p,ch is the rescaled or normalized value of the
feature which will be supplied to the classifier for training, b is
the upper and a is the lower limit of the normalization range,
respectively, which is defined as a b[ ] � 0 1[ ] for all the
features in the dataset.

The feature space for this BCI scheme comprises all the
possible two- to five-dimensional feature combinations of all the
spectral features. The combination of all eight features is also
included in the feature space. The complete feature space is used
for extensive experimentation to find the optimal combination
of features, resulting in the best accuracy of drowsiness
detection. Figure 3 shows the scatter plots for promising 2D
feature pairs of spectral band powers and BPR indices in selected
channels. From top to bottom, each row shows the plots for Fp1,
Fp2, O1, O2, F7, and F8 channels, respectively. Figure 4 shows
the 3D scatter plots for all the possible ternary combinations of
five selected features which resulted from the global feature
selection approach, as described in the next section. The red
and blue data samples from drowsy and alert classes,
respectively, are plotted against the respective band power
magnitudes on the axes in these feature space plots. The
feature values are displayed over a logarithmic scale for better
visualization of class dispersion. These plots are analyzed to
visually observe the data dispersion and assess the degree of non-
linearity involved in class separation boundaries between
drowsy and alert states.

2.6 Feature selection approaches

Multiple feature selection methods are used in this study to find
the most representative and optimum number of features which give
the best prediction results. Feature selection approaches are used to
aid the reduction in data dimensionality and computational costs.
The classifier training process becomes faster, and convergence is
achieved earlier with the optimum number of features used.
Primarily, three filter-type feature ranking approaches are applied
to this spectral EEG feature set. The embedded-type feature selection
approach is also used by training multiple classifiers with developed
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feature space. The primary feature ranking approaches are discussed
in the following section.

2.6.1 Minimum redundancy maximum relevance
method

The minimum redundancy maximum relevance (MRMR)
feature selection method ranks all the features in the feature set
in order of maximum inter-feature dissimilarity to subdue the
redundant features. Meanwhile, it also checks the maximum
relevance of ranked features with the target variable. It ranks the
features with a balanced ratio of both these aspects to end up with an
optimized feature set ordered by descending predictor importance
score (Fathima and Kore, 2021; Pudjihartono et al., 2022). For this
purpose, this algorithm performs the redundancy check on all the
possible 2D feature pairs of the feature space. The entropy-based
mutual information index I(pi, pj) is computed for each feature
pair with pi and pj as mutual predictors under consideration. Based
on these values of all the pairs, the objective is to find such an

optimal feature set F which has minimum redundancy valueWF, as
described by the following equation:

min WF � min
1

F| |2∑pi,pj∈F
I pi, pj( )( ) (7)

Furthermore, the algorithm also performs the relevance check
between all the features and responses in the dataset. The obtained
optimal feature set F must have maximum mutual relevance value
VF of predictors pi and response variable y based on their entropy-
based mutual information index I(pi, y), as shown in the following
equation:

max VF � max
1
F| |∑pi∈F

I pi, y( )( ) (8)

The final predictor importance score is computed by
maximizing the mutual information balance for each feature
which is the ratio of feature relevance to the feature redundancy.

FIGURE 3
2D scatter plots on a log scale for feature pairs between band power ratios (top three rows), and spectral band powers (bottom three rows). Fp1, Fp2,
O1, O2, F7, and F8 channels in each row from top to bottom, respectively. Red and blue data points represent drowsy and alert states, respectively.
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The MRMR method-based predictor importance scores are
computed using the fscmrmr built-in function of MATLAB 9.12.

2.6.2 Chi-square (χ2) test
The χ2 test is the statistical analysis-based univariate feature

importance calculation method. It computes the predictor
importance scores based upon the p-values of the statistical
dependence test between each predictor and the response
variable. p-values less than the alpha value of 0.05 effectively
reject the null hypothesis, indicating that those predictors are
important to classify this response variable (Khan et al., 2020). A
negative logarithmic function is applied to the achieved p-value of
each test, which gives the feature importance score for feature
ranking. The χ2 statistics are calculated with the following formula:

χ2p � ∑k
i�1

Oi − Ei( )2
Ei

(9)

where Oi and Ei are the observed and expected frequency
distributions, respectively, of the ith pair between the discrete bin
of predictor p and a single class of the response variable y, and k is
the total number of such combinations between the 10 discretized
bins of the continuous predictor and two classes of the response

variable. The chi-squared statistics are calculated for each feature,
and the features which effectively reject the null hypothesis of feature
and response dependency, with a 95% confidence interval, are taken
as important features. These important features are then ranked
based on the magnitude of their test statistics scores. The χ2 test-
based feature selection is implemented using the fscchi2 built-in
function of MATLAB 9.12.

2.6.3 ReliefF algorithm
This filter-type feature selection method measures the quality of

features in terms of their ability to effectively differentiate the
neighboring samples when they belong to different classes.
Unlike other feature selection approaches which measure the
dependence of features and the response variable, this method
determines the feature importance by examining the number of
observations. This algorithm increases or decreases the weight of
each feature based on the comparative variance in its value for the
same and different class neighboring samples (Fathima and Kore,
2021; Pudjihartono et al., 2022). All feature weights are initialized
with zero and updated after each iteration of the algorithm. In each
iteration, the algorithm selects a random observation and finds the k
number of nearest neighboring observations from each class of the
response variable using the Manhattan distance metric or L1 norm.

FIGURE 4
3D scatter plots on a log scale for all the ternary combinations of five top-ranked features. Red and blue data points represent drowsy and alert states,
respectively (channel F8, all subjects).
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After neighbor selection, the feature vectors of all the observations
are compared feature-wise, and the cumulative magnitude of
difference in each predictor’s value is computed. If a feature
shows less variance for observations in the same class as
compared to those from different classes, then its weight is
updated with an increase. The weight update of the feature is
penalized with a decrease if its value shows comparatively higher
variance for the neighboring observations of the same class.
Similarly, the weights of all the features get updated at each
iteration of the algorithm. The following relationships represent
the feature weight updating criteria of the algorithm:

i
∀fW � i−1

∀fW −∑k
j�1

Δ∀f ri, hj,p( )
t( ) k( ) +∑

∀n

P n( )
1 − P p( )∑

k

j�1

Δ∀f ri, mj,n( )
t( ) k( )

⎡⎢⎢⎣ ⎤⎥⎥⎦
(10)

Δ∀f ri, hj,p
∣∣∣∣mj,n( ) � fr − fh

∣∣∣∣fm

���� ����
max f( ) −min f( ) s.t. i � 1, 2, . . . , t, f ∈ F

(11)
where i

∀fW is the updated weight of the feature f in the ith iteration
of the algorithm and is being computed for all the features of the
complete feature vector F, k is the total number of nearest
neighboring observations set as 10 here, t is the total number of
ReliefF iterations, ri is the randomly sampled observation with the
nearest neighbor hj,p, and both belong to the same class p having
P(p) occurrence probability,mj,n are the nearest neighbors of ri but
belong to different class n having P(n) probability of occurrence in
the dataset, Δ∀f(ri, hj,p|mj,n) is the difference in feature value of
observation r with the same class neighbor h and with the different
class neighbor m.

The ReliefF algorithm performs such iterations for all the
observations to increase its reliability with the highest probability
estimates, particularly for smaller datasets having a lesser
number of observations. This exhaustive computation is well
suited for smaller datasets but incurs computational penalties
with larger datasets (Pudjihartono et al., 2022). In that case, the
choice of random sampling for observations is best with the
significant number of iterations by keeping in view the
computational cost admissibility. Generally, the number of
algorithm iterations is dependent upon the probability
estimates of the required reliability level. Finally, the features
are ranked according to their weights after complete iterations of
the algorithm. The predictor importance score is calculated with
this algorithm using the relieff built-in function of
MATLAB 9.12.

2.6.4 Global predictor importance
The global predictor importance (GPI) is calculated to find

the global feature ranking influenced by each of the
aforementioned feature selection methods. As all three
approaches give predictor importance scores in different
ranges with different means and variances, they cannot be
averaged out to get their cumulative effect. Normalizing the
importance scores in the same range with typical normalization
methods and calculating their mean is not a viable solution
either because this approach results in altering the skewness
and kurtosis of the original shape distribution (Nazeer et al.,
2020b; Singh and Singh, 2020). The considerable drop in the

feature importance score of adjacent ranked features is a
considerable factor in feature selection as it shows the
decrease in response predictive power of low-ranked
features. Skewness and kurtosis of the original distribution
must be retained when getting the cumulative effect. For this
purpose, the GPI is calculated as follows, using the Ζ-score-
based standardization of feature importance scores to gauge all
the results on the same basis and then averaging out to get
the GPI:

GPI � 1
3
∑3
i�1
Ζ∀f,i � 1

3
∑3
i�1

x∀f,i − μ∀f,i
σ∀f,i

( ) (12)

where xf,i is the feature importance score of a feature f in the ith

feature selection method, μ and σ are the mean and standard
deviation of the feature importance score, respectively, and Ζ is
the Ζ-score-based standardized value of the feature importance
score. In this way, all the feature scores of all schemes are
represented with zero mean value and score spread in the same
standard deviation bounds. The Ζ-score standardization is
performed in MATLAB 9.12 using its built-in function
normalize. All the feature selection methods are applied to the
channel-wise combined EEG data of all the subjects.

2.7 Classification

Multiple supervised learning-based classification methods are
used to perform binary classification of drowsiness and alert
neurophysiological states of driving subjects. Seven classifiers are
used in this study: decision trees (DT), discriminant analysis (DA),
logistic regression (LR), naïve Bayes (NB), support vector machines
(SVM), k-nearest neighbor (kNN), and ensembles. All the classifiers
are trained, tested, and validated on a complete feature set and a
GPI-based selected feature set. In addition, 10-fold cross-validation
is incorporated in all training sessions to overcome the overfitting
issues and maintain the generalization in predictions of the
classifiers. An exhaustive approach is used for activity
classification to achieve optimum results using various variants of
all the classifiers and multiple feature sets. An analysis is performed
independently for all the selected EEG channels to find the most
promising brain region in terms of COI to achieve the best results for
drowsiness detection. Furthermore, the hyperparameters of the best-
performing classifier are optimized with the Bayesian optimization
technique to achieve optimum performance of classification results.

2.7 1 Decision trees
The classification DT algorithm expands the flowchart-like tree

structure with features at branches, feature split tests at nodes, and
classification decisions at leaf nodes. The tree data structure expands
to include features with minimum entropy and maximum
information gain, leading to zero entropy leaf nodes which are
class labels. This classifier is implemented using the fitctree built-in
function of MATLAB with three sets of hyperparameters. The tuned
hyperparameter is the maximum number of splits which is the tree
depth controlling factor, while the other hyperparameter is the split
criterion which is fixed to Gini’s diversity index. The tree depth
controlling factor is a significant parameter that should be increased

Frontiers in Physiology frontiersin.org09

Arif et al. 10.3389/fphys.2023.1153268

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1153268


to increase the classification accuracy at the expense of increased
training time. The increase in the predictive power of the DT also
increases its complexity level. Highly blended data dispersion of
distinct classes requires a greater number of tree splits to draw fine
class-distinction boundaries. The increase in non-linearity of class
separation boundaries requires a greater number of splits to achieve
better classification accuracy. Three presets of DT are tested here
with 100, 20, and 4 splits at maximum and are known as fine,
medium, and coarse trees, respectively.

2.7.2 Discriminant analysis
The DA classifier tends to establish a linear or quadratic

combination of features to make simpler decision boundaries
between different class data. Generally, it has a linear and a
quadratic variant, known as linear discriminant analysis (LDA)
and quadratic discriminant analysis (QDA), respectively, along
with diagonal linear and diagonal quadratic variants. LDA draws
linear class separation boundaries with the assumption of Gaussian
distribution of the classes, while QDA draws non-linear class
separation boundaries of parabolic, hyperbolic, or elliptical trends
for blended data dispersion. These methods use the full covariance
structure of the data and converge rapidly. They have good
classification accuracy for distinctive data scatters. Both variants
are implemented using the fitcdisc function of MATLAB.

2.7.3 Logistic regression
The LR classifier uses the logistic or sigmoid function to classify

the class probabilities for binary classification problems. The
binomial LR classifier is implemented here using the generalized
linear regression model fitglm function of MATLAB. Like DA
methods, LR is also faster to train, but classification accuracy
may degrade when data scatter plots do not have distinctive class
separation boundaries. The binomial logistic regression function is
represented by the following equation:

p x( ) � e a1x+a0( )

1 + e a1x+a0( ) (13)

where x is the input feature value, a1 and a0 are the binomial
coefficients, and p(x) is the probability of the feature being mapped
to either of the binary classes of the response variable.

2.7.4 Naïve Bayes classifier
The NB classifier performs probabilistic classification based on

Bayes’ theoremwith an assumption of inter-feature independence. It
works on prior and posterior probabilities of features with
probability density estimation functions. The two presets for
numeric predictors are the Gaussian NB and kernel NB which
are applied here using the fitcnb function of MATLAB. The
Gaussian NB works on the assumption of normal distribution of
the data among response classes. The kernel NB applies the kernel
distribution function on numeric predictors with Gaussian-type
kernel smoother. The NB classifiers are generally faster in
training convergence but achieve good classification accuracy
with the categorical predictors as compared to numeric features.

2.7.5 Support vector machines
The SVM classifier establishes the hyperplanes for class

separation boundaries using the polynomial kernel function and

radial basis function (RBF) kernels. The objective of the algorithm is
to find the hyperplane with the maximum margin. The linear,
quadratic, and cubic polynomial kernel functions are used to
generate respective hyperplanes, but they are computationally
expensive for higher dimensional data and take a significant
amount of training time without a significant increase in
accuracy (Qureshi et al., 2016). On the other hand, the RBF
kernel-based Gaussian SVM achieves better classification
accuracies with less training time for higher dimensional data as
well. They are also effective for classifying the non-linear boundaries
of mixed-class data dispersions. The SVM is applied using the
fitcsvm function of MATLAB for this binary classification
problem. Three Gaussian SVM presets are used here, namely,
fine, medium, and coarse Gaussian SVM, which differ by
Gaussian kernel scale of values

�
P

√
4 ,

��
P

√
, and

��
P

√
× 4, respectively,

where P is the number of features. The hyperparameter of respective
kernel scale values is 0.71, 2.8, and 11 for the drowsiness detection
scheme with eight features. The SVM variants accordingly create
fine, medium, and coarser distinctions and separation hyperplanes
between detection classes. Fine Gaussian SVM is preferred over
other variants with highly non-linear and blended data dispersion of
different classes. The other hyperparameter is the box constraint
parameter level C, which is set to 1 to allow the flexible soft margin
penalty due to highly non-linear data dispersion.

2.7.6 k-nearest neighbor
The kNN algorithm classifies the data points in respective classes

based on the classes of their k-nearest neighbors found with different
distance metrics. This classifier is implemented using the fitcknn
function of MATLAB with its presets. The available hypermeters are
the number of nearest neighbors, distance metrics used to find
nearest neighbors, and distance weights which make multiple
presets with different combinations. The fine, medium, and
coarse kNN made fine, mid-level, and coarser distinctions and
class separation boundaries with 1, 10, and 100 numbers of
nearest neighbors, respectively, while classifying the neighboring
new data points in the neighborhood of their respective classes.
These three presets use the Euclidean distance metric with unbiased
and equal-distance weighting function, with the only difference
being the number of nearest neighbors. The other three
presets—cosine, cubic, and weighted kNN—are the subtypes of
medium kNN (10 number of nearest neighbors) with the
difference of distance metric and distance weighting functions.
Cosine and cubic kNN use cosine and Minkowski (cubic)
distance metrics, respectively, with no distance weighting
function or equal weights. Weighted kNN is the same as medium
kNN, with the only difference in biased distance weights. Distance-
weighting functions used in weighted kNN are inverse ( 1D weight) or
squared inverse ( 1

D2 weight), where D is the distance between
neighboring data points. Among all these presets, weighted kNN
ismore likely to outperform due to highly non-linear data dispersion
between feature pairs of both the EEG feature spaces. kNN
algorithms are among the classifiers with higher classification
accuracy, relatively faster convergence, and less training time.

2.7.7 Ensemble classifier
The ensemble classifier aggregates the cumulative performance

of various weak learners to achieve higher accuracy. It is
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implemented using the fitcensemble function of MATLAB with
various hyperparameters like the ensemble method, the
maximum number of splits for DT learners, the number of weak
learners, and the learning rate. The number of learners is set to 30 to
avoid delayed convergence and yet achieve higher detection
accuracy. The adaptive boosting (AdaBoost) and random under-
sampling boost (RUSBoost) ensemble methods with a learning rate
of 0.1 and 20 maximum splits are the boosted trees and RUSBoosted
trees, respectively. The bootstrap aggregating (bagging) ensemble
method with random forest DT and 3002 number of splits is bagged
trees. The subspace discriminant (DA learner) and subspace kNN
(kNN learner) ensemble methods use randomly selected 4D
subspace of features in datasets with a large number of
predictors. The bagged and boosted trees tend to achieve higher
accuracies for datasets with a smaller number of predictors due to
fine DT learners performing well in non-linear class separation
boundaries and blended data dispersion (Ali et al., 2023).

2.8 Performance evaluation metrics

The confusion matrix-based classification performance
evaluation metrics are used to show the results of this study. In
this driving drowsiness detection scheme, the drowsy brain state is a
positive class (P) with the class label “1,” and alert is the negative
class (N) with the class label “0.” True positive (TP) is the count of
instances in which the actual drowsy state or positive class is
correctly predicted as positive, while true negative (TN) is the
count of correct predictions of alert state or negative class. False
negative (FN) is the count of observations in which the drowsy
subject is wrongly identified as alert orN, while false positive (FP) is

the count of alert states which are incorrectly predicted as drowsy or
P. Based on this set of observations, the following performance
evaluation metrics are calculated for this binary classification
problem.

Classification accuracy gives the measure of the correct
prediction power of the classifier with the ratio of correct
prediction of both the brain states to the total population of the
dataset. It is calculated as

Accuracy � TP + TN

TP + FN + FP + TN
(14)

Precision or positive predictive value (PPV) measures the
effective drowsiness prediction capability of the classifier with the
ratio of accurate drowsy predictions to the total number of drowsy
predictions.

Precision, PPV � TP

TP + FP
(15)

Recall, sensitivity, or true-positive rate (TPR) is the measure of
probability or percentage of correct drowsiness detections out of all
the observations which are labeled as drowsy in the dataset.

Recall, Sensitivity, TPR � TP

TP + FN
(16)

F1-score gives the harmonic mean of the sensitivity and
precision of the classifier to find a balanced measure of correct
identification of drowsiness out of all the positive predictions and all
actual positive states in the dataset.

F1 score � 2 × TP

2 × TP + FP + FN
(17)

FIGURE 5
Welch’s power spectral density estimates for selected PFC, FC, and OC channels over the spectral range of four EEG bands (subjects 1–5).
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Specificity, selectivity, or true-negative rate (TNR) is the
capability of the classifier to accurately identify the alert states
which gives the performance measure of the classifier to correctly
reject the negative class. It ascertains the balanced efficiency of the
trained model with an increased confidence level of classification
results.

Specificity, Selectivity, TNR � TN

FP + TN
(18)

Matthews correlation coefficient (MCC) represents the
relationship between the actual and predicted responses in
the presence of a class imbalance in the dataset (Akhtar
et al., 2022). It overcomes the bias effect in the predictions
caused by the probability shift due to class imbalance and gives a
reliable and balanced measure of the classifier’s prediction
capability.

MCC � TP × TN( ) − FP × FN( )�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (19)

Cohen’s kappa coefficient (κ) is the statistical test to measure the
degree of reliability or agreement between two raters (Akhtar et al.,
2021). The kappa score κ ≈ 1 shows that both the performance
evaluation raters are in complete agreement about their
performance, and their results are reliable, while κ ≈ 0 indicates
the disagreement in raters and such results happen by chance (Ali
et al., 2023).

κ � 2 × TP × TN − FP × FN( )
TP + FP( ) × TN + FP( ) + TP + FN( ) × TN + FN( ) (20)

Fall-out or false-positive rate (FPR) shows the probability of
false detection, which is the ratio of those alert states which are
wrongly predicted as drowsy to the total number of alert state
observations.

Fall out, FPR � 1 − TNR � FP

TN + FP
(21)

In addition to the aforementioned metrics, the overall
performance of the trained classifiers is shown by the receiver
operating characteristics (ROC) curve and area under the curve
(AUC), which is plotted between the recall and fall-out. The well-
trained models have higher TPR and lower FPR with AUC near 1.

3 Results

3.1 EEG spectral analysis

In the initial testing of the data, Welch’s PSD estimates were
analyzed to observe the spectral information gain among selected
EEG channels. Figure 5 shows the PSD distribution over the
complete frequency range of δ, θ, α, β EEG bands in the selected
PFC, FC, and OC channels. The magnitude of spectral power
distribution shows which channels contain comparatively more

FIGURE 6
Spectrograms for the complete experiment over the frequency range of all EEG bands for the selected channels (subject 2).
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spectral density so that they could be targeted for spectral feature
extraction and activity classification. In inter-cortex comparison, the
FC (F7, F8) contains comparatively more power in each frequency

band ranging from 40 to 80 dB/Hz for most of the subjects. For other
selected channels, this range varies among many subjects and drops
to 10 dB/Hz in some cases. In lateral brain regions, the right

FIGURE 7
Spectrograms showing spectral band powers in individual EEG frequency bands in the F8 channel (subject 4).

FIGURE 8
Channel-wise feature ranking with MRMR, chi-square, and ReliefFmethods with predictor importance scores over all subjects’ data. The cumulative
effect of all feature selection methods is shown with a global feature ranking scheme with predictor importance in terms of Z-score.
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hemisphere is comparatively more dominant, with Fp2, F8, and
O2 having higher power magnitudes in all the bands as compared to
their left hemisphere counterparts. This observation indicates the
reliability of FC for spectral analysis.

After the PSD estimates, the spectrograms were visually
analyzed to access the effectiveness of the selected channels in
representing the frequency distribution among the EEG bands.
Figure 6 represents the spectrograms computed for each selected
channel over the complete length of the experiment showing the
spectral band power distribution. The vertical orange spikes rising
above 20 Hz are the time instances of alert states when subjects
were engaged in mental computation during the driving task. In
such scenarios, band powers are higher among all the bands,
especially in the β band, as can be seen more clearly in PFC
and FC. In drowsy instances and eye closures, higher band power
can be observed in the α band, as shown in O2 at about 10 Hz, and
in the δ band at various individual frequencies in O2 and F7 (Arif
et al., 2021a). Here, the F8 channel is the most promising in
distinguishing intermittent brain states as it shows more crisp and
differentiable peaks of alert states from the drowsy periods. Inter-
band power variations can be seen more distinctively in this
channel, and it distinguished relatively more alert instances
among all. This spectral analysis declares the F8 channel as the
best candidate for COI.

The F8 channel was further investigated band-wise to ascertain
the individual band powers as representative features for brain state
classification. The subject was alert at the start and end of the
experiment, with intermittent alert states at the 16th, 17th, and 19th
minutes, as shown in Figure 7. During these instances, the higher
band power spikes in all the bands can be observed with up to 35 dB,

40 dB, 45 dB, and 50 dB magnitudes in β, α, θ, and δ bands,
respectively. There is a significant loss in β band power
magnitude in drowsy periods, while total band power magnitude
is only contained in the drowsiness-related bands (Cui et al., 2022).
Even the α band power significantly drops in more drowsy instances
like the 9th and 10th minutes, with all the power contained only in
the θ and δ bands (Awais et al., 2017). These inter-band power
variations with changing neurophysiological states support the
confidence in using spectral band power and BPR indices as
features for drowsiness classification.

3.2 Feature selection scores

The results of the three feature selection approaches and their
cumulative effect on global feature ranking are shown in Figure 8.
According to the MRMR algorithm, only the δ and θ band powers
are significant features with good predictor importance scores in all
the channels except Fp2. Similarly, the χ2 test also rated δ and θ band
powers with significantly higher importance scores but also rated
other features with promising scores in contrast to MRMR, which
almost subdued the other features. The ReliefF method rated δ, α,
and β band powers as more important features in most of the
channels, with θ band power and all ratio-based features having
equal importance. The overall feature selection is somewhat
ambiguous in these results, but Ζ-score-based global feature
ranking made this selection very distinctive with efficient
stacking of the three methods. All four band powers are
important features according to the GPI score, with δ band
power as the most significant feature. The other three band

FIGURE 9
(A) Classification performance comparison among feature combinations of spectral feature space for the F8 channel with ensemble classifier over
all subject’s data. (B) Classification performance comparison among various classifiers for the F8 channel over all subject’s data with variance bounds
obtained with varying feature combinations.
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TABLE 1 Average classification accuracies (%) obtained with all spectral features, for all channels, and all the classifiers with best-performing presets (subjects 1–5).

Subject Classifier (preset) EEG channel

Fp1 Fp2 O1 O2 F7 F8

S1 DT (F-DT) 70.4 74.6 75.8 71.8 76.5 78.3

DA (LDA) 61.5 61.4 58.2 57.1 61.3 56.0

QDA QDA

LR 61.1 61.9 57.6 60.6 63.1 60.3

NB (K-NB) 62.6 61.9 61.7 60.4 62.5 64.0

SVM (FG-SVM) 61.8 63.1 66.1 67.8 67.6 67.6

kNN (W-kNN) 70.4 79.4 78.1 73.8 74.6 80.7

M-kNN F-kNN

Ensemble (Ba-T) 75.1 76.1 79.7 79.3 80.6 82.9

S2 DT (M-DT) 69.0 71.6 75.4 80.3 79.7 86.7

F-DT C-DT F-DT

DA (LDA) 67.5 67.1 67.5 67.1 67.5 68.4

LR 67.5 66.5 67.3 66.9 67.1 72.4

NB (K-NB) 67.7 66.7 67.5 68.8 66.4 73.7

G-NB G-NB

SVM (FG-SVM) 68.4 71.6 67.9 68.0 69.5 78.2

MG-SVM

kNN (W-kNN) 71.8 77.4 76.9 77.1 81.2 79.3

Ensemble (Ba-T) 70.1 73.7 77.1 81.6 82.7 86.8

RBo-T Bo-T Bo-T

S3 DT (M-DT) 81.4 77.9 77.9 76.2 74.0 79.0

F-DT C-DT

DA (QDA) 71.3 68.8 73.3 71.5 70.3 67.5

LDA

LR 68.6 64.8 74.2 70.4 72.4 71.0

(Continued on following page)
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TABLE 1 (Continued) Average classification accuracies (%) obtained with all spectral features, for all channels, and all the classifiers with best-performing presets (subjects 1–5).

Subject Classifier (preset) EEG channel

Fp1 Fp2 O1 O2 F7 F8

NB (K-NB) 72.9 71.3 73.8 69.8 74.0 71.5

SVM (FG-SVM) 71.5 76.8 71.5 76.4 76.2 70.4

kNN (W-kNN) 77.1 83.7 83.0 82.2 77.9 84.9

F-kNN F-kNN F-kNN

Ensemble (Bo-T) 81.9 81.5 81.1 80.5 76.8 81.2

Ba-T Ba-T

S4 DT (F-DT) 88.2 87.3 89.0 86.9 86.5 88.2

C-DT C-DT

DA (QDA) 85.2 82.7 81.9 84.0 85.2 81.4

LDA

LR 84.0 82.3 81.9 83.5 84.4 82.7

NB (K-NB) 87.3 89.5 81.4 83.1 87.3 85.7

G-NB

SVM (FG-SVM) 89.0 87.3 85.2 86.1 89.0 87.3

C-SVM Q-SVM Q-SVM

kNN (W-kNN) 89.9 89.0 89.9 89.0 89.5 91.1

F-kNN F-kNN

Ensemble (S-kNN) 89.0 91.1 90.3 90.7 90.3 92.4

RBo-T Ba-T RBo-T

S5 DT (M-DT) 75.2 80.5 85.2 84.2 79.7 90.5

F-DT

DA (LDA) 72.0 71.4 81.6 75.1 71.6 83.5

QDA

LR 72.0 71.8 84.1 76.7 71.5 84.4

NB (K-NB) 73.2 73.8 83.4 75.9 77.0 85.4
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powers and R3 BPR lie in the ± 0.3 standard deviation band of zero
mean, which ascertains them as good candidates for the important
feature set.

To ensure the results of global feature ranking, the exhaustive
embedded-type feature selection is performed based on the
maximum relevance of the feature set to the response variable
and is evaluated with the help of detection accuracy. Figure 9A
shows the ensemble classification accuracy for all 2D feature pairs
and higher-order combinations. All combinations of δ band power
achieved higher classification accuracies (≥70%) than other feature
combinations. This aspect validates the highest significance of the δ
band power, as shown by its highest GPI score in Figure 8. The
ternary combinations of δ with other band powers achieved almost
79% accuracy. The tertiary combination of all band powers achieved
a classification accuracy of almost 82%, whereas the inclusion of the
fifth significant feature (R3 BPR) did not further increase the
accuracy significantly. The results of this approach agree with the
global feature ranking. To minimize the feature extraction cost and
yet achieve promising results, only the four most significant features
(band powers) are selected.

3.3 Classification performance

Figure 9B shows the channel-wise average classification
accuracies obtained using the seven classifiers under
consideration over all subjects’ data. Error bars in each classifier
were obtained with the use of different feature sets. Upper and lower
bounds mark the accuracy obtained with the classification using; all
eight spectral features, and the four band powers, respectively. In
inter-classifier comparison, ensemble, kNN, SVM, and DT
performed significantly well as compared to DA, LR, and NB
classifiers for all the selected channels. The average classification
accuracy with the ensemble is highest for all channels, followed by
the kNN, except for Fp1, while DT and SVM also performed
similarly after the two aforementioned classifiers. This variation
in the classifier’s performance exists due to the use of different
presets.

A similar classification process is also performed for all the
subjects individually. Table 1 tabulates the subject-wise average
classification accuracies obtained using all spectral features in all
the selected channels. The best-performing variant of each
classifier is also mentioned. The maximum accuracy achieved
by a classifier with its preset is highlighted with bold values.
Results are shown here for five subjects only, and statistical
significance test results are discussed to conclude the entire
population. All the classifiers achieved the highest accuracies
in the F8 channel most of the time, with few exceptions of very
insignificant differences, whereas the ensembles of bagged and
boosted trees achieved the highest accuracies among all the
classifiers in each EEG channel. There is a minor difference in
the performance of ensemble, kNN, and DT for some of the
subjects. The statistical significance test of 2-way ANOVA with
replication is applied to all subjects’ data for validation of results.
Test results show p< 0.05 for both the inter-channel and inter-
classifier comparisons, which effectively rejects the null
hypothesis and indicates the significance of the obtained
differences. So, conclusively, the bagged and boosted tree-TA
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based ensembles can be used for further binary classification of
EEG signals in drowsy and alert brain states.

Figure 10A presents the heat map chart showing the best
classification accuracies obtained for all the classifiers using the
four most important spectral features (EEG band powers). These
accuracies were obtained over five classification trials of each
method in each channel. In addition, 10-fold cross-validation was
used in each trial. All the classifiers achieved 60% and above
classification accuracy, which is the minimum confidence
threshold for BCI applications. Overall, the ensemble method
achieved the best classification results among all the classifiers in
all channels, with 85.6% highest accuracy obtained in the F8 channel
of the right FC. The Fp2 is ranked second, followed by OC, and the
left hemisphere is the last in this channel ranking. Figure 10B shows
the execution time in milliseconds (ms) for all the classifiers. The LR
classifier has the minimum execution time but achieved the
minimum accuracies among all. In the best-performing
classifiers, the ensemble model took the least execution time of
76 ms. The statistical significance of these results is validated with 2-
way ANOVA tests. The inter-classifier comparison shows the

statistically significant performance of the ensemble classifier
(p< 0.05) for both the accuracy and execution time. In inter-
channel comparison, significantly higher accuracies are achieved
in F8 as compared to the others (p< 0.05), while there is an
insignificant difference observed among them for classifier
execution time (p> 0.05). These results recommend the
F8 channel as COI for single channel-based drowsiness detection.

The corresponding confusion matrices and ROC curves for
binary classification in each channel with the optimized ensemble
are shown in Figure 11. Class labels “1” and “0” are assigned to
drowsy and alert brain states, respectively. In Figure 11A, the
diagonal and off-diagonal entries represent the correct and false
classification percentages, respectively, with the normalized
sample distribution in each class. The overall false detection
rate is less in the range of 14%–18% against the higher accuracies.
In Figure 11B, the ROC curves between sensitivity and fall-out
represent the well-trained classifiers with 0.90 AUC, 88%
sensitivity, and 23% fall-out on average for the drowsy class.
The complete performance of the trained models is assessed with
the help of other metrics too.

FIGURE 10
(A) Heat map chart for performance comparison with percentage accuracy of all the classification methods using δ, θ, α, β band powers only and
channel ranking for the best classifier. (B)Classification computation time (ms) for all the classifiersmentioning their computational complexity for driving
drowsiness assessment.
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Table 2 shows the channel-wise results of confusion matrix-based
performance assessment metrics obtained with the optimized ensemble
classifier. Mainly, the optimized ensemble method is selected along with
other hyperparameters’ tuning using Bayesian optimization. Multiple
optimization sessions supported the confidence in using bagged trees to
obtain the best classification results. All these reported results are
obtained with bagged tree-based ensemble classifier and GPI ranked
features, for all subjects’ data. The best results of all the metrics are
obtained in the F8 channel, with 85.6% accuracy and precision, 89.7%
sensitivity, 87.6% F1-score, 80% selectivity, 70.3% MCC, 70.2% kappa
score, and 91% AUC. The single COI selection is validated with multiple

paired Student’s t-tests between the results of F8 and all other channels.
Formultiple hypotheses testing (m � 5), Bonferroni correction is applied
to obtain the new significant alpha threshold (α � 0.01). All t-statistics
validated the statistical significance of F8 channel metrics (p< 0.01)
compared to highly correlated metrics of other EEG channels (r> .5).

4 Discussion

This EEG-based neurophysiology study is focused on achieving
multiple objectives like feature selection to minimize the feature

FIGURE 11
(A)Classification results in terms of confusion matrices. (B) Receiver operating characteristics curves over all subjects’ data in each selected channel
with Bayesian optimization-based ensemble classifier. Class labels: 1 = drowsy, 0 = alert.

TABLE 2 Confusionmatrix-based performance evaluation metrics over all subjects’ data with globally ranked features and Bayesian optimization-based ensemble
classifier.

Channel Accuracy Precision Recall F1-score Specificity MCC Cohen’s kappa AUC

Fp1 0.816 0.820 0.869 0.844 0.746 0.622 0.621 0.890

Fp2 0.847 0.853 0.884 0.868 0.797 0.686 0.686 0.910

O1 0.827 0.835 0.869 0.852 0.772 0.645 0.645 0.900

O2 0.828 0.827 0.884 0.854 0.753 0.647 0.645 0.910

F7 0.816 0.816 0.876 0.845 0.737 0.622 0.620 0.890

F8 0.856 0.856 0.897 0.876 0.800 0.703 0.702 0.910

Note: Statistical significance of the results is validated with paired t-test (p< 0.01: Bonferroni corrected) for inter-channel comparison. The highest value of each metric is shown in bold.
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extraction cost at runtime, achieving higher drowsiness detection
accuracy, and EEG channel selection to spatially localize the
promising brain location for drowsiness detection. Reducing the
number of electrodes up to one is achieved with channel selection.
The single COI makes the pBCI hardware ergonomic by minimizing
intrusion into normal driving tasks with accurate detection of
passive brain activity. Various studies have investigated EEG-
based drowsiness detection, but very few studies have worked
upon all these objectives together to the best of the authors’
knowledge. The proposed pBCI scheme is compared with a few
existing studies on various aspects, and the comparison results are
summarized in Table 3. These works are similar and comparable as
they have presented the offline driver drowsiness detection scheme
based on physiological data collected during the lane-keeping task in
a simulated driving environment.

The feature extraction process significantly increases the processing
time and computational cost during real-time classification tasks when a
large number of features are involved. Predictor importance-based

feature selection methods greatly optimize the feature extraction
process by selecting only the promising and important features which
are best representative of the response variable. Cui et al. (2021), Shen
et al. (2021), Cui et al. (2022), and Kim et al. (2022) used DL models for
feature extraction and classification, which incur higher computational
costs, but they used spectral features, which are more effective and
representative of physiological brain states. On the other hand, Awais
et al. (2017), Wei et al. (2018), and Choi et al. (2019) used self-extracted
spectral features and conventional ML classifiers for drowsiness
detection, similar to this study. It is to be noted that the mentioned
ML-based studies achieved higher classification accuracies and other
metrics as compared to DL-based works. A possible reason for this
difference is the use of hybrid physiological measures as Awais et al.
(2017) and Choi et al. (2019) used ECG in addition to EEG
measurements; Awais et al. (2017) also used statistical temporal
features in their work. Both these studies used t-tests to find an
important feature in the feature selection process. The proposed
hybrid feature ranking scheme used in this study achieved the best

TABLE 3 Detailed comparison of proposed drowsiness detection scheme with existing studies.

Reference Subjects Features Classifier Performance Channels (location)

Awais et al. (2017) 11 Statistical temporal measures, spectral band powers,
and HRV

SVM Acc = 80.90% 2 (O2 and ECG)

Wei et al. (2018) 10 θ, α, and β spectral powers LDA, kNN, SVM Acc = 83.30% 4 (F7, F8, A1, and A2)

AUC = 87.59%

Choi et al. (2019) 8 MPSD XGBoost Acc = 78.51% 7 (Fp1, Fp2, T3, T4, O1, O2,
and ECG)

Acc-S = 91.32%

AUC = 86.80%

Sen = 78.51%

Spec = 78.51%

Cui et al. (2021) 11 α spindles, spectral powers CNN-LSTM Acc = 72.97% Single (Oz)

Acc-S = 88.31%

Shen et al. (2021) 11 δ, θ, α, and β spectral powers MSSA-TN Acc = 71.97% 30 (Multiple)

Acc-S = 84.81%

Cui et al. (2022) 11 α spindles and θ burst CNN Acc = 73.22% Single (Oz)

Acc-S = 88.25%

Kim et al. (2022) 11 δ, θ, and α spectral powers ResNet1D-18 Acc = 77.26% 32 (Multiple)

Sen = 68.13%

F1-score = 62.66%

Proposed 12 δ, θ, α, and β spectral powers Ensemble (bagged
trees)

Acc = 85.50% Single (F8)

Acc-S = 92.40%

AUC = 90.20%

Sen = 88.00%

Spec = 76.80%

F1-score = 85.70%

Note: CNN: convolution neural network; LSTM: long short-termmemory; MSSA-TN: multi-source signal alignment via tensor network; MPSD: multitaper PSD; Acc: accuracy; Acc-S: subject-

wise highest accuracy; Sen: sensitivity/recall; Spec: specificity. The highest value for each metric is shown in bold.
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results among all, with only four spectral features extracted from time-
correlated spectral data and classified by ML classifiers with the
least execution time. The minimum execution time of the overall
scheme also resulted from reducing the number of channels required to
be processed for activity classification. Shen et al. (2021) and Kim et al.
(2022) used≥30 EEG channels frommultiple cortices, while other studies
mentioned in Table 3 used fewer EEG channels (1–7) from selected
cortices of the brain (PFC, FC, OC, TC, and mastoids). It is to be noted
that all the studies have includedOCchannels (O1,O2,Oz) in theirwork,
while FC channels (F7, F8) are among the selected channels inWei et al.
(2018), Choi et al. (2019) and this study. PFC channels (Fp1, Fp2) are also
included in the analysis of this work and that of Choi et al. (2019). All the
findings of the channel-wise performance of this study are positively
correlated with all these comparative works. Awais et al. (2017), Cui et al.
(2021), and Cui et al. (2022) effectively performed channel reduction up
to a single COI for drowsiness detection in OC, whereas Awais et al.
(2017) achieved higher accuracy due to hybrid physiology measures
(EEG + ECG). In this study, these selected OC channels are promising
and second in performance with comparatively better classification
accuracy. However, our work has revealed significantly better results
in FC channels which also performed better individually as compared to
OC channels (Wei et al., 2018; Choi et al., 2019). These aspects support
the confidence in our channel selection approach, which selected F8 as a
single COI for drowsiness detection. In the comparison of performance
assessment metrics, the proposed study achieved the best results with
only a single COI andML-based classifier. Overall accuracy, subject-wise
highest accuracy, AUC, sensitivity, and F1-score are significantly higher
than those in other works. The only exception is the specificity, which is
higher in Choi et al. (2019) by 1.71%. The reason for the lower specificity
of our work is the class imbalance in the dataset, as shown in Figure 11A.
Additionally, the use of ECG (Choi et al., 2019) also contributed to the
change in specificity results as HRV significantly varies in alert and
drowsy states. The dataset of the proposed work contains 57.1% drowsy
state and 42.9% alert state samples. This class imbalance of 7% induced
bias in state detection probabilities, resulting in lower specificity.
However, the performance results are still promising, with 76.8% and
88% correct detection rates of alert and drowsy states, respectively, with
only a single EEG channel. As the number of subjects in our work is
higher than in other studies, itmay be a reason for achieving better results
due to the availability of bigger training data. This aspect is promising as it
provides more generalization effect and applicability for a bigger
population.

The experimental procedure, collected dataset, used feature set, and
time of drowsiness detection window have posed a few limitations in this
study. As the dataset is collected during a simulated driving environment
with offline data processing of the experiment, real driving experience
may pose different issues for the proposed work. The participants belong
to a certain age group with less frequent driving experience, so the
proposed scheme should be adaptive for different classes of subjects. This
study is focused on EEG spectral signatures only, so limited feature
domains may have performance limitations. This work is effective for
drowsiness detection in a 10-s timewindow, which should be reduced for
earlier detection. In our ongoing research, neurophysiological data in
controlled real driving experiments are being collected from
comparatively aged subjects with higher commute frequencies as they
are more likely to experience driving drowsiness. Furthermore, a new
pBCI scheme is being developedwith a significantly shorter timewindow
for earlier drowsiness detection. The time domain characteristics of EEG,

hybrid physiological measures, and DL-based classifiers are also being
explored for further performance enhancement.

5 Conclusion

This study is aimed at designing a passive brain–computer
interface (pBCI) scheme for driving drowsiness detection with
minimum disruption to the driving task. As all the physiological
states originate from the human brain, it is a promising location for
earlier drowsiness detection in objective methods than that of
behavioral and vehicular measures. The objective is to develop
such a pBCI system that must be ergonomically less intrusive and
easy to wear or place at the driver’s brain. It is possible if the pBCI
scheme uses a fewer number of electrodes. To find out the single
channel of interest is the main objective of this work.

The computational cost and algorithm execution time are
minimized by introducing the feature ranking scheme in the
feature extraction process. Multiple filter-type feature selection
methods are ensembled with Ζ-score-based global feature
ranking, and exhaustive embedded-type feature selection
validated the feature ranking results. δ, θ, α, and β band
powers were the most promising spectral features, with 85.6%
best classification accuracy in a 10-s detection window. Multiple
machine learning classifiers were tested for drowsiness
classification in which bagged tree-based ensemble classifiers
achieved the best results of confusion matrice-based
performance assessment metrics. It reduced the execution time
to 76 milliseconds, with the highest performance as compared to
deep learning-based models. In inter-channel comparison, the
best accuracy, precision, recall, F1-score, specificity, Matthews
correlation coefficient, Cohen’s kappa, and area under the curve
are achieved for the F8 channel of the frontal cortex in the right
hemisphere of the brain. All the results are validated with
statistical significance tests (t-tests and ANOVA), which
ascertained the F8 electrode position as COI having maximum
spectral information gain and utility.

The presented single COI-based EEG neurophysiology scheme has a
minimal ergonomic design which is easy to wear and less disruptive to
normal driving tasks and practically detects the drowsiness correctly at an
earlier stage to avoid life loss in vehicular driving scenarios. Improving the
detection results with statistical temporal and spatiotemporal features in a
smaller detection window or deep learning-based automatic feature
extraction methods is the future direction of this study.
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