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Angiotensin-converting enzyme (ACE) is canonically known for its role in the
renin-angiotensin system (RAS) where its conversion of angiotensin I (Ang I) to the
bioactive peptide angiotensin II (Ang II) helps to regulate blood pressure,
electrolyte, and volume homeostasis. Further studies on ACE have shown that
its enzymatic activity is relatively non-specific and functions outside of the RAS
axis. Of the multiple systems it has been implicated in, ACE has been found to play
an important role in the development and modulation of hematopoiesis and the
immune system, both through the RAS and independently of the RAS axis.
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Introduction

Angiotensin-converting enzyme (ACE) is a type-I cell surface zinc metallopeptidase with
two functional catalytic domains towards the N- and C-terminal and is a crucial component of
the renin-angiotensin system (RAS). ACE is responsible for conversion of angiotensin I (Ang I)
to the bioactive peptide angiotensin II (Ang II) (Peart, 1975; Nishimura, 2017). Angiotensin II
binds to angiotensin II type 1 (AT1) and type 2 (AT2) receptors, as well as G protein-coupled
receptors, which increases sodium reabsorption in the kidney, stimulates release of aldosterone
in the adrenal cortex, vasoconstriction in systemic arterioles, and triggers thirst, release of
antidiuretic hormone, and suppresses baroreceptor response in the brain (Fountain and
Lappin, 2022). Not only is ACE critical for maintaining blood pressure through these complex
interactions, the RAS has many additional functions including roles in apoptosis and fibrosis
(Laghlam et al., 2021). Further studies on ACE have shown that its enzymatic activity is
relatively non-specific and additionally functions outside of the RAS axis. Through both its role
in the RAS and independent of the RAS pathway, ACE has been found to play an important
role in the development and modulation of hematopoiesis and the immune system.

ACE’s role in myelopoiesis

ACE has been shown to be involved in the development of hematopoiesis in humans.
ACE expression in embryonic body cells is linked with hematopoietic potential, even
more so than other markers such as CD34 (Jokubaitis, 2008). ACE is continually
expressed in hematopoietic stem cells from all human embryonic, fetal, and adult
hematopoietic tissues.

Part of ACE’s regulation over myelopoiesis is invoked through the RAS. Action of Ang
II through the AT1 receptors is important for terminal myeloid differentiation and
proliferation of CD34+ hematopoietic stem cells. ACE knock-out mice shows
decreased segmented neutrophils but increase in progenitor cell types, suggesting
issues with terminal granulopoiesis (Lin, 2011). Blockage of AT1 receptors interferes
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with dendritic cell maturation while addition of Ang II stimulates
dendritic cell maturation (Nahmod, 2003). Consequently, ACE
inhibition has been shown to cause myelosuppression (Chisi et al.,
1999).

Angiotensin-(1-7) (Ang 1-7), another component of the RAS
system produced through breakdown of Ang I or Ang II, has also
been shown to cause pan-lineage proliferation which accelerated
hematopoietic recovery in mice after irradiation (Ellefson, 2004;
Heringer-Walther, 2009). Ang 1-7 role in myelopoiesis has led to
pharmaceutical formulations being tested for accelerated
engraftment in post-stem cell transplantation in humans.

ACE can additionally exert influence over myelopoiesis through
its non-RAS related enzymatic function. ACE is capable of
degrading substance P and thereby can regulate its level within
the bone marrow (Skidgel and Erdös, 2004). While typically
associated with its role in pain sensation, substance P is
present in bone marrow both through transport from
terminals of projected neurofibrils and production by native
bone marrow cells such as macrophages and eosinophils
(Johnson and Torres, 1988; Weinstock and Blum, 1989;
Pascual and Bost, 1990; Bost et al., 1992; Rameshwar et al.,
1997). Substance P’s primary endogenous receptor, neurokinin
1 (NK-1), is expressed on lymphocytes, macrophages, CD34 cells,
and endothelial cells (Payan et al., 1984; Scicchitano et al., 1987;
Greeno et al., 1993; Rameshwar et al., 1996). Through these cells,
substance P has been shown to stimulate many growth factors,
including IL-1, IL-3, and GM-SCF, with recent evidence
showing that substance P may be able to function
independently as a myeloid growth factor (Rameshwar et al.,
1993; Rameshwar et al., 1995).

Acetyl-Ser-Asp-Lys-Pro (Ac-SDKP) is another substrate
degraded by ACE. Studies looking at both ACE knock-out and
ACE inhibitors have shown that decreased ACE activity significantly
increased the serum and bone marrow levels of Ac-SDKP (Azizi,
1996; Li, 1997). Ac-SDKP has an inhibitory effect on hematopoietic
progenitor proliferation; ACE, through its hydrolysis of Ac-SDKP,
has been shown to recruit stem cells into S-phase (Lenfant, 1989;
Bonnet, 1993; Rousseau-Plasse et al., 1996).

Many studies looking at the global effect of ACE inhibition on
hematopoiesis have occurred in the setting of radiation, in which
ACE inhibition leads to bi-phasic modulation of ACE inhibition
on hematopoiesis. Short-term ACE inhibition, on the scale of
days, impairs the G0 to G1 transition, delaying hematopoiesis
which has radioprotective effects and is at least partially
modulated through the inhibition of the RAS and increased
AcSDKP concentration. Longer inhibition, on the scale of
weeks after radiation exposure and initiation of ACE
inhibitors, leads to increased progenitor proliferation compared
to untreated controls (Charrier, 2004; Davis, 2010). Outside of
radiation, ACE inhibition and hematopoiesis have been studied in
the setting of myocardial infarction. This study showed that ACE
inhibition led to retention of myeloid precursors in the bone
marrow and reduction in circulating inflammatory cells,
particularly monocytes/macrophages, even weeks after
treatment (Rudi, 2021). The variable effect of ACE inhibition
on hematopoiesis depending on time frame and injury etiology
emphasizes the complex and multifactorial role of ACE in
myelopoiesis.

ACE’s modification of immune cell
function and maturation

ACE has many interactions with the different immune cell types
and, through them, is an important modulator of the immune
response (Figure 1). In general, ACE is a pro-inflammatory
modulator which regulates chemokines and adhesion molecules
(Ruiz-Ortega, 1998). This explains why ACE levels are increased
in some conditions with chronic inflammation, such as sarcoidosis
and other granulomatous diseases. ACE’s importance in modulating
the immune response can be seen in recent studies showing that
lower serum ACE levels are associated with impaired host antiviral
response to COVID-19 as well as studies showing increased risk of
infection with ACE inhibitor use (Pouwels et al., 2013; Dial et al.,
2014; Pouwels et al., 2014; Chen, 2021).

ACE is near ubiquitously expressed in tissues throughout the body
including mononuclear cells in the peripheral blood, although
expression is relatively low compared to other sites such as the
small intestine and testes (Harmer et al., 2002). There is trace ACE
expression in monocytes which drastically increases to high expression
as they differentiate into macrophages (Costerousse et al., 1993). T-cells
have intermediary expression of ACE with increased expression during
processes associated with inflammation (Costerousse et al., 1993;
Ulrich, 2006; Coppo, 2022). While previous studies suggested that
ACE was not expressed in B-cells, recent studies using flow cytometry
have shown expression of ACE in nearly all B-lymphocytes, although
the relative level of expression is not known. While T-cells also showed
near complete expression of ACE, in non-lymphoid cells only around
57% of cells expressed ACE (Bueno et al., 2023).

Neutrophils are hallmark cells of acute inflammation and a key
component of the innate immune response. Numerous studies show
that ACE plays a crucial and multifunctional role in neutrophil
response. Inhibition of ACE leads to a reduction in neutrophil

FIGURE 1
Summary of ACE’s effect on immune cell function.
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recruitment to sites of injury. Studies showed that, in response to
methicillin-resistant Staphylococcus aureus (MRSA) challenge, ACE
knocked-out mice had lower bacterial resistance as indicated by
larger skin lesions and higher bacterial burden. Conversely, a line of
mice which had overexpression of ACE in neutrophils (NeuAce
mice) showed enhanced bacterial resistance. An explanation for
these differences is that ACE expression is directly correlated to
neutrophil production of reactive oxygen species (ROS) (Khan,
2017). Interestingly, these differences were nullified through use
of ACE inhibitors but persisted through use of losartan, suggesting
that these effects are mediated independently of the RAS axis.

Macrophage function is influenced significantly by ACE. ACE is
upregulated during monocyte differentiation into macrophages and
seems to have an important role in macrophage functional
maturation (Kohlstedt et al., 2011). Studies in ACE10/10 mice,
which have increased ACE expression in macrophages, showed
that these mice had increased bacterial resistance, as seen by
smaller lesions and lower wound bacterial counts after exposure
to MRSA. Macrophages from these mice showed increased nitric
oxide (NO) production (Okwan-Duodu, 2010). The role of the RAS
in this process is not well-defined—studies have shown that, like
neutrophils, the difference in bacterial resistance is abrogated with
ACE inhibitor use but persist with losartan use, suggesting a
mechanism independent of the RAS; however, other studies show
that losartan use led to functional immaturity of macrophages
leading to bacterial susceptibility which was rescued with Ang II
supplementation (Lin, 2011). Interestingly enough, the ACE10/
10 mice also showed increased tumor resistance which seemed to
be mediated by tumor epitope-specific CD8+ T-cells. Studies looking
at mice with independently knocked out N- and C-domains of ACE
in myeloid cells revealed that this tumor resistance could be
attributed to the ACE C-domain, which seemed to induce
macrophages to assume an M1 phenotype (Khan, 2019). ACE
10/10 macrophages significantly mitigated cognitive defects in
Alzheimer’s disease mouse models through proposed increased
ability to cleave and clear Aβ peptides (Bernstein, 2014).

ACE also has important functions in mediating endocytosis and
T-cell stimulation properties of dendritic cells; however, empiric
observations on ACE’s role in both dendritic cells and macrophages
is likely linked to its shared role on preparing antigens for presentation
on major histocompatibility complex (MHC) class I peptides. Studies
have shown that knocking out or inhibiting ACE in mice significantly
altered the repertoire of MHC class I peptides, suggesting that the non-
specific peptidase activity of ACE functions in trimming peptides for
display andmight explain why there is impaired T-cell stimulation with
decreased ACE activity (Shen et al., 2008; Shen, 2011).

An important mediator of ACE is through its influence over
cellular ATP. Recent studies have shown that ACEC-domain catalytic
expression is associated with upregulation of numerous proteins,
including electron transport chain proteins NDUFB8, ATP5A, and
ATP5β and has been associated with an increase in ATP production.

This increase in ATP has subsequently been linked to increase in
phagocytosis and superoxide production, providing a mechanism for
the functional maturation of these myeloid cells. ATP-upregulation in
this context is counteracted by use of ACE-inhibitor but not
angiotensin II AT1 receptor antagonists, likewise suggesting that
this change is mediated outside of the RAS axis (Cao, 2020).

Despite its near universal expression in lymphocytes, ACE’s
effect in lymphocytes has not been extensively studied (Bueno et al.,
2023). Beyond its role as a peptidase in activation of T-cells through
antigen presenting cells (APCs), Ang II production through the RAS
have been shown to activate T-lymphocytes, increase expression of
tissue homingmarkers, and induce lymphocytic production of TNF-
alpha (Hoch, 2009).

Conclusion

ACE is an exceptionally important enzyme for its role in
mediating homeostasis and blood pressure; however, as more
studies are performed, ACE has become deeply implicated in the
immune response due to regulation of myelopoiesis and immune
cell functional maturation. ACE accomplishes this both through its
role in the RAS as well as its independent peptidase functions.
Although there are complex and multifactorial interactions with
ACE and the immune system, understanding of the mechanisms
and extent of ACE’s influence has yet to be fully explored.
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