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The potential toxicity of flupyradifurone (FPF) to honey bees has been a subject of
controversy in recent years. Understanding the effect of pesticides on nurse bees
is important because the fitness of nurse bees is critical for in-hive activities, such
as larval survival and performing hive maintenance. In order to evaluate the acute
oral toxicity of flupyradifurone on nurse bees, flupyradifurone at five different
concentrations was selected to feed both larvae and nurse bees. Our results
showed that nurse bees were more sensitive to flupyradifurone than larvae (LD50

of the acute oral toxicity of flupyradifuronewas 17.72 μg a.i./larva and 3.368 μg a.i./
nurse bee). In addition, the apoptotic rates of neurons in mushroom bodies of
nurse bees were significantly induced by flupyradifurone at sublethal
concentrations (8 mg/L, 20 mg/L, and 50mg/L) and the median lethal
concentration LC50 (125 mg/L). The expression of immune-related genes
(Hsp90, Toll-8/Tollo, and defensin) was significantly changed in exposed nurse
bees at the field-realistic concentration of flupyradifurone. However, three
detoxifying enzyme genes (CYP9Q1, -2, and -3) were not affected by pesticide
exposure. Our data suggest that although flupyradifurone had a relatively lower
acute oral toxicity than many other common pesticides, exposures to the field-
realistic and other sublethal concentrations of flupyradifurone still have
cytotoxicity and immune-responsive effects on nurse bees. Therefore,
flupyradifurone should be considered for its application in crops.
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Introduction

Flupyradifurone (FPF) is a systemic butenolide insecticide that was first registered
commercially in 2014. It has a lower binding affinity to insect nAChRs than neonicotinoids,
and it is effective against numerous neonicotinoid-resistant insects (Glaberman and White,
2014; Nauen et al., 2014; Chen et al., 2017). In the wild, honey bee foragers may carry
pesticide-contaminated nectar or pollen back to the colony. These pesticide-laden foods can
harm not only the foragers themselves, but also the larvae through the nurse feeding behavior
(Medrzycki et al., 2003; Forfert and Moritz, 2017; Abou-Shaara et al., 2021; Chen et al., 2021;
Wueppenhorst et al., 2022). Young bees (hive bees) between 3 and 13 days old were termed
as nurse bees, whose tasks were mainly processing food and provisioning bee larvae. They
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feed pure royal jelly to the queen larva and a mixture of pollen,
honey, and jelly to the worker and drone larvae (Lindauer and
Watkin, 1953; Metz et al., 2021). Pesticides would affect nurse bees
and cause larval deaths due to insufficient care (Yang et al., 2012;
Guo et al., 2021). Moreover, previous studies indicated that the
toxicity of several pesticides (imidacloprid, thiamethoxam, and
formetanate) to adult bees was higher than that to larvae (Yang
et al., 2012; Laurino et al., 2013; Tavares et al., 2015; Dai et al., 2017;
Staroň et al., 2017). Nurse bees in the early stages of adulthood
seemed to be more sensitive to pesticides. Comparison of the acute
toxicity of FPF to honey bee larvae and nurse bees was imperative.

In addition to acute toxicity, the cytotoxicity of pesticides to
honey bees could also be detected by an apoptotic assay. The
TUNEL [terminal deoxynucleotidyl transferase (TdT)-mediated
dUTP Nick-End Labeling] method was used to detect apoptosis,
which enabled visualization and quantification of apoptotic cells.
In our previous study, significant neuronal apoptosis was
observed in the honey bees’ brains after exposure to the
sublethal doses of imidacloprid for 3–12 days (Wu et al.,
2015). Chakrabarti et al. (2020) reported a significant increase
in the activity of caspase-3 protein (an indicator of the onset of
apoptosis) in honey bees after FPF treatment (a 10-day contact
exposure of formulated FPF at the field rate) but not for 6-h
treatment. However, there were some pesticide adjuvants in the
formulated FPF which affected the exact effect of FPF. Little has
been reported on the effect of pure FPF in the central nervous
system of nurse bees.

Certain sublethal effects were not apparent or external, but they
could cause molecular-level damage. Potential toxic effects of
pesticides included changes in gene and protein expressions, as
had been reported in previous studies (Wu et al., 2015; McKinstry
et al., 2017; Tavares et al., 2019; Hou et al., 2020; Naggar and Paxton,
2020; Guo et al., 2021). In our previous research, after 6-day
exposure on colonies and 12-h exposure of acute toxicity on
newly emerged honey bees, FPF at field-realistic concentrations
was reported to induce immune challenge, detoxification response,
and olfactory learning deficits through different expression of
certain genes in adult bees, especially in young bees (Wu et al.,
2015; Guo et al., 2021).

Given the importance of nurse bees, this study was first
designed to investigate the acute oral toxicity of FPF to nurse
bees and rearing larvae in vitro, with the goal of determining
whether FPF was more toxic to nurse bees than to larvae. The
apoptosis of neurons in the mushroom bodies of nurse bee brains
was measured in order to investigate the effects of FPF on the target
site of nurse bees. After that, the effects of FPF on the expression of
genes related to detoxification and immune response were
detected.

Methods and materials

All experiments were conducted in the Institute of
Apicultural Research, Chinese Academy of Agricultural
Sciences (Beijing, China). Also, 10 healthy and strong colonies
(A. mellifera) used in this study were maintained in an apiary of
the institute (it was 8 weeks from the time bees were treated with
chemical substances).

Acute oral toxicity test on larvae

Larval diets and chemical preparation: There are three different
larval diets (diets A, B, and C) (OECD, 2013; Schmehl et al., 2016).
Each diet components were mixed in the following order until they
were dissolved completely: 4.43 g of filtered ddH2O, 0.53 g of
D-fructose and D-glucose, 0.09 g of yeast extract, and 4.43 g of
royal jelly for diet A. Diet B comprised 4.40 g of filtered ddH2O,
D-fructose and D-glucose (0.64 g), yeast extract (0.13 g), and royal
jelly (4.30 g); and diet C comprised 15.00 g of filtered ddH2O,
D-fructose and D-glucose (4.50 g), yeast extract (1.00 g), and
royal jelly (25.00 g).

Flupyradifurone (purity 99.5%, Chem Service Inc., West
Chester, PA, United States) was dissolved in sterilized ddH2O to
prepare stock solutions (stored at 4°C), and the rate of the tested
solution in diet C was 2% of the final volume. The following
concentrations of FPF used for the larval assay were 125, 250,
500, 1,000, and 2000 mg L−1 (FPF is a water-miscible compound).

Larval rearing and FPF exposure: The protocol for the in vitro
rearing of honey bee larvae was according to OECD (2013) and
Schmehl et al. (2016). Five queens were kept on an empty comb in
five hives for 24 h, and newly laid eggs were tagged. Then, 72 h after
the queens were released, the successfully hatched eggs were grafted
in the laboratory. For the sterile tissue culture plates (STCPs), 20 μL
of diet A was added to the bottom of each cell cup. Then, 12 young
larvae of the same day (hatched within 24 h) on each comb were
randomly transferred to the STCP as one replicate, and they were
quickly transferred to incubators at 35°C ± 0.5°C and 94% relative
humidity. There were five replicates (colonies) per treatment, with
12 larvae per replicate (60 larvae per treatment). After 48 h (days
1 and 2) of feeding on diet A, each larva was fed 20 μL diet B on day
3. On day 4, each larva was fed 30 μL diet C containing FPF at five
different concentrations (final concentration of FPF in diet C was
125, 250, 500, 1,000, and 2000 mg L−1; control was fed FPF-free diet
C), and each larva on days 5 and 6 was fed 40 μL and 50 μL diet C.
The number of dead larvae was examined and recorded at the same
timepoints on days 5, 6, and 7 (the larvae at the termination of the
test were before the pre-pupal stage). The aforementioned
operations are carried out in a positive flow-sterilized hood. The
cumulative mortality of larvae on day 7 was calculated. LC50 was
obtained according to the method of Dai et al. (2017). The
concentration–response curves at 72 h were used to determine
the median lethal concentration by probit analysis (Finney,
1971). Then, the median lethal dose was calculated since each
larva was fed with a 30 μL diet containing FPF on day 4.

Acute oral toxicity test on nurse bees

Chemical preparation: A total of five FPF concentrations (31.25,
62.5, 125, 250, and 500 mg/L) were based on our previous
experiments. The FPF stock solutions were gradually diluted with
50% sucrose solution into the aforementioned final concentrations
and stored at 4°C.

Rearing of nurse bees and FPF exposure: The protocol was
modified from the OECD (1998) for A. mellifera. To obtain the
nurse bees of similar age, three broods along with sealed worker bees
from three colonies, which were different from those in the larval
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assays, but the same in apiary, were placed in an incubator at 30°C
and 65% humidity. The newly emerged bees within 12 h were
randomly captured into cages on the next day. Each cage
contained 20 bees as a group of replicates, and each treatment
contained four replicates (80 bees for each test concentration). The
bees were fed with 50% (w/v) sucrose solution (changed every day)
ad libitum for 1 week. The bees were starved for 2 h before the
initiation of the experiment.

The treatment groups were fed with 50% sucrose solution
containing the aforementioned five FPF concentrations. The
control groups were fed with sucrose solution without FPF. After
feeding for 24 h, the number of dead bees was checked and recorded.
Adjusted mortality and the median lethal concentration were
obtained by referring to the larval experiment. Then, a food
consumption assay for FPF exposure at LC50 was conducted to
obtain LD50.

Apoptosis detected by TUNEL

The procedure was modified from previous studies (Chen et al.,
2014; Wu et al., 2015). In brief, brains of anesthetized honey bees
were dissected into 4% paraformaldehyde for 4 h, dehydrated in 30%
sucrose solution for 12–15 h, embedded in tissue freezing medium,
and then cut into frozen tissue slices (7–10 μm thick). The slices
were fixed on the Superfrost Excell slides, permeabilized with 0.2%
Triton X-100 for 10 min, and then incubated with fetal bovine serum
for 30 min. The frozen slides were incubated with TUNEL solution
in the dark at 37°C for 4 h and then stained with DAPI for 6 min.
They were washed twice in PBS (10 min × 2) between each two steps
mentioned previously. Fluorescence was observed using a Leica
fluorescence microscope. ImageJ 1.53f51 software was used to
count the neurons in blue color and the apoptotic cells in green
color on the slices (Gahm et al., 2021).

Apoptosis rate analysis: Three bees were randomly selected
from each treatment, and five slices were cut from each brain, that
is, each replicate (brain) contained five slices, which were added
up to 400–500 neurons in the mushroom bodies, and more
than 1,000 neurons were counted per treatment. The
percentage of apoptotic cells was determined by comparing the
number of DAPI-stained neurons to that co-labeled with TUNEL
staining.

qRT-PCR analysis

The effects of FPF on the relative expression of genes related
to immune pathways and detoxification were examined. Based on
the previous study, six genes for AMPs related to immune
pathways (defensin, hymenoptaecin, abaecin, Toll, Toll-8/Tollo,
andHsp90) and three genes for detoxification (CYP9Q1, CYP9Q2,
and CYP9Q3) were selected (Akhouayri et al., 2011; Wu et al.,
2015; McKinstry et al., 2017; Yao et al., 2018; Balakrishnan et al.,
2021; Guo et al., 2021). The methods for bee rearing, chemical
exposure, and sample collection were the same as those used in
the 4-mg/L treatment group of the apoptotic assay. After 24 h FPF
exposure, the anesthetized survival bees were frozen with liquid
nitrogen and stored at −80°C. The mixed tissues of five bees from

each cage were set as one replicate for total RNA extraction, and a
total of 15 bees were in each treatment. qRT-PCR procedures
referred to our previous study (Wu et al., 2015; Guo et al., 2021).
Briefly, total RNA was isolated using the TRIzol reagent; first-
strand cDNA was synthesized following the manufacturer’s
instruction. Quantitative RT-PCR and amplification were
followed, as described by Guo et al. (2021). The relative
expression was analyzed by the ΔΔCT method using β-actin as
a reference gene (Livak and Schmittgen, 2001). Primers are shown
in Table 1.

Statistical analysis

All data are presented as mean ± SEM. Mortality was analyzed
by the probit method (Finney, 1971). The median lethal
concentrations (LC50) with 95% confidence interval limits used
the least-squares regression analyses of relative growth rates with
the logarithm of the FPF concentration (Dai et al., 2017). The
apoptotic rate of neurons was converted into square root arcsine.
Therefore, significance for the apoptotic rate and the relative
expression of genes were analyzed using ANOVA and Tukey
HSD for multiple comparisons with IBM SPSS Statistics version
26.0, and the significance was defined as p < 0.05.

TABLE 1 Sequences of primers for the genes tested.

Gene name Primer (5′ to 3′) Reference

defensin F: TGCGCTGCTAACTGTCTCAG Evans (2006)

R: AATGGCACTTAACCGAAACG

hymenoptaecin F: CTCTTCTGTGCCGTTGCATA Evans (2006)

R: GCGTCTCCTGTCATTCCATT

abaecin F: CAGCATTCGCATACGTACCA Evans (2006)

R: GACCAGGAAACGTTGGAAAC

Hsp90 F: CATGGCTAATGCCGGAGAGG McKinstry et al.
(2017)

R: CTGCACCAGCTTGAAGAGC

Toll F: TCTATGTTTTGAGCACCGAGT Ratiu et al. (2016)

R: CAACGGATAGTTATTCGGCCT

Toll-8/Tollo F: ACAATCAGAGGACCACGCAG This study

R: AAGCAACGAAACGAAGGTGC

CYP9Q1 F: TCGAGAAGTTTTTCCACCG Mao et al. (2011)

R: CTCTTTCCTCCTCGATTG

CYP9Q2 F: GATTATCGCCTATTATTACTG Mao et al. (2011)

R: GTTCTCCTTCCCTCTGAT

CYP9Q3 F: GTTCCGGGAAAATGAATC Mao et al. (2011)

R: GGTCAAAATGGTGGTGAC

β-actin F: TTGTATGCCAACACTGTC
CTTT

Deng et al. (2020)

R: TGGCGCGATGATCTTAATTT
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Results

Acute oral toxicity of FPF

We detected the LD50 value for bees at two early
developmental stages (uncapped larva and nurse bees) and
referred to the methods of OECD (OECD, 1998; OECD, 2013)
to test the hypothesis that FPF was more toxic to nurse bees than
to larvae. Five different FPF concentrations were separately fed to
larvae (day 4 after the eggs hatched) in different treatment
groups, and the adjusted mortality of larvae was calculated
72 h after exposure. The LC50 value for acute oral toxicity of a
bee larva was 590.59 mg/L (y = 1.80x + 0.02 and R2 = 0.9913), and
its corresponding LD50 was 17.72 μg a.i./larva.

According to the adjusted mortality of nurse bees (7 days after
emergency) and another five different FPF concentrations exposed
for 24 h, the LC50 value for nurse bees was 125.92 mg/L (y =
3.94x−3.28 and R2 = 0.9853). Since the average food
consumption at this concentration was 26.75 μL/bee/day, the
corresponding LD50 was 3.368 μg a.i./bee. Therefore, nurse bees
were more sensitive and susceptible to FPF than larvae.

Apoptotic rate of neurons in the mushroom
bodies of nurse bees induced by FPF

Neurotoxin affects the central nervous system of insects. The
mushroom bodies were the multi-functional center of the brain. The
TUNEL method was used to detect the apoptosis of neurons in the
mushroom bodies of nurse bees induced by FPF. The pesticides at
4 mg/L (field-realistic concentration), 8 mg/L, 20 mg/L, 50 mg/L,
and 125 mg/L (LC50) were fed to nurse bees, which were reared as
described in the acute toxicity assay. The neurons in blue color were
stained using DAPI, as shown in Figure 1A, which showed the
neurons in the mushroom bodies of nurse bees, and the neurons in
green color, as shown in Figure 1B, were TUNEL-positive (apoptotic
cells). After calculating the apoptotic neurons against the observed
neurons, there was no significant difference between the apoptotic
rate of FPF treatment groups at 4 mg/L and the control group (p >
0.05), while the apoptotic rates of other treatment groups (8 mg/L,
20 mg/L, 50 mg/L, and 125 mg/L) were 26–30 folds and were
significantly higher than that of the control group. There were no
significant differences among the last four treatment groups
(Figure 1C).

FIGURE 1
Flupyradifurone-induced apoptosis in neurons in the mushroom bodies of Apis mellifera. (A) Neurons stained by DAPI. (B) Apoptotic cells: TUNEL-
positive cells. (C) Apoptotic rate of neurons in the mushroom bodies of A. mellifera induced by flupyradifurone.
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Different expressions of genes related to
immune pathways and detoxification in
nurse bees after FPF exposure

There was no significant difference between the 4-mg/L
treatment group and the control group in the apoptotic assay,
while this concentration was that to which bees could actually be
exposed to. The relative expression of nine genes related to immune
pathways and detoxification at this FPF concentration in nurse bees
was measured by qRT-PCR. Hsp90 and defensin were significantly
upregulated, which were 1.65 folds and 1.51 folds higher than those
of the control groups, respectively. Toll-8/Tollo was significantly
downregulated, which was 0.63 times less than that of the control
group. There were no significant differences between the expression
of the rest genes, including Tollo, two antibacterial peptide genes
(hymenoptaecin and abaecin), and three detoxification genes
(CYP9Q1, CYP9Q2, and CYP9Q3), and the control groups after
FPF exposure at the field-realistic concentration (Figure 2).

Discussion

Due to the hypothesis that FPF is more toxic to nurse bees than
larvae, the FPF toxicity on two early developmental stages of bees
(nurse bees and larvae) was compared through two acute oral tests.
Mushroom bodies were the key target of nAChR for neonicotinoids
(Bicker and Kreissl, 1994; Goldberg et al., 1999; Déglise et al., 2002).
FPF has a similar mechanism of action with neonicotinoids in the
mushroom bodies of insects (Nauen et al., 2014). Then, the TUNEL
method was used to assess the effect of FPF on nervous apoptosis in
mushroom bodies of nurse bees, using a field-realistic concentration

of FPF that could be encountered in nature. Since FPF at this
concentration had no significant effect on the mortality and
apoptosis of nurse bees in the previous two assays, qRT-PCR was
carried out to determine the different expressions of immune and
detoxification genes in nurse bees induced by FPF at the field-
realistic concentration.

Nurse bees were more sensitive to FPF than
larvae

A total of five different FPF concentrations were exposed on
in vitro rearing of bee larvae (4 days after hatching), and the results
here were that the acute oral LD50 was 17.72 μg a.i./larva. Another
five different FPF concentrations were fed to nurse bees (7 days after
emergence) in the laboratory, and the value of acute oral LC50 was
125.92 mg/L; the corresponding LD50 was 3.368 μg/bee (3,368 ng/
bee) in this study. Therefore, the nurse bees were more sensitive to
FPF than larvae, which was consistent with other studies where
larvae were more tolerant to imidacloprid, thiamethoxam, and
formetanate than adult honey bees (Yang et al., 2012; Laurino
et al., 2013; Tavares et al., 2015; Dai et al., 2017; Staroň et al.,
2017). Larvae had more insect fat body than nurse bees, which
played an important role in an innate immune response, and had
less Kenyon cells than adults, which were the main targets of
neurotoxic pesticides (Farris et al., 1999; Blacquière et al., 2012;
Palmer et al., 2013; Staroň et al., 2017; McAfee et al., 2022). These
might account for the different sensitivities between nurse bees and
larvae. Moreover, imidacloprid-exposed nurse bees showed less
activity and social interaction (Medrzycki et al., 2003; Forfert and
Moritz, 2017). Nurse bees were specifically critical for honey bee
larvae, which relied on nurse bees for their growth and survival
(Lindauer andWatkin, 1953; Metz et al., 2021). Sufficient larvae and
nurse bees were essential to maintain colony strength and size. Thus,
significant attention should be paid to nurse bees to maintain the
fitness of the bee colony.

The toxicity of FPF on bees was lower than
some of the widely used pesticides

In our previous study, the LD50 value was 4.17 μg/larva for
imidacloprid, 5.65 μg/larva for acetamiprid, 4.17 μg/larva for
carbaryl, 14.83 μg/larva for amitraz, 0.46 μg/larva for chlorpyrifos,
2.70 μg/larva for coumaphos, and 0.83 μg/larva for fluvalinate(Dai
et al., 2017; Yang et al., 2019), and Kim et al. (2022) found that the
values of sulfoxaflor and cyantraniliprole were 11.404 and 0.047 μg/
larva, respectively. LD50 for FPF on larvae here was observed to be
higher than that of the common pesticides listed previously.
Moreover, the NOED (no observed effect dose) of repeated FPF
exposure on larvae was 1.32 μg a.i./larva (EFSA, 2015). Therefore,
the larvae (A. mellifera) showed more tolerance to FPF than some of
the widely used pesticides.

The LD50 value for FPF observed in this study was consistent
with a value of 2.995 μg/bee reported by Tosi andNieh (2019), which
was 2.5–2.8 times higher than the value (1.2 μg/bee) reported by the
US EPA (Glaberman and White, 2014). Previous studies have
reported oral LD50 for imidacloprid that ranged from 3.7 to

FIGURE 2
Relative expression levels of mRNA.
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40.9 ng/bee (Schmuck et al., 2001), with a highly toxic value of 5 ng/
bee reported by Suchail et al. (2010). Also, the corresponding value
for clothianidin was 3.53 ng/bee and that for thiamethoxam was
4.40 ng/bee in the study of Laurino et al. (2013). Similar to the results
of the larval assay in this study, FPF had less acute oral toxicity to
adults when compared to some other common pesticides. Therefore,
the application of FPF in the field with the same dose for pest control
might cause less mortality of larval and adult bees than the other
pesticides mentioned previously.

FPF at a sublethal concentration significantly
increased the apoptosis of neurons in nurse
bee brains

In this study, the TUNELmethod was used to detect the effect of
FPF on the apoptosis of neurons (Kenyon cells) in the mushroom
bodies of nurse bees. The results showed that there was no difference
in the apoptotic rate between the FPF treatment group at a field-
realistic concentration and the control group, in which the rate of
nervous apoptosis in the two groups was less than 10%. However,
the apoptotic rate of the FPF treatment groups at the other sublethal
concentrations (8 mg/L, 20 mg/L, and 50 mg/L) and the medium
lethal concentrations (125 mg/L) was significantly increased
(26–30 times), when compared to the control
group. Furthermore, the apoptotic rate increased significantly
when the concentration began with 8 mg/L. It was observed that
8 mg/L might be close to the lowest concentration of FPF, which
could induce massive apoptosis in honey bee mushroom bodies. In
our previous study, significantly increased apoptosis in dose- and
time-dependent manners was found in bees’ brains after exposure to
imidacloprid, and it was related to the caspase-dependent apoptotic
pathway and autophagy (Wu et al., 2015). The results suggested that
neurotoxicity (e.g., FPF and neonicotinoid) at the sublethal dose/
concentration might cause damage to the neurons within bees’
brains when it exceeded a certain threshold.

The mushroom bodies served as the cognitive center for
olfactory information processing, storing, and retrieving, which
was required for sensory integration, memory and motor control,
visual navigation, olfactory association and context-dependent
learning, and memory in adult insects (Farris, 2005; Peng and
Chittka, 2017). Kenyon cells are the major neuronal component
of the mushroom bodies. Pesticides that target cholinergic
neurotransmission (including nicotinic receptor agonists
neonicotinoids and FPF) can disrupt honey bee cognition and
behavior related to the function of Kenyon cells in mushroom
bodies (Goldberg et al., 1999; Déglise et al., 2002; Dupuis et al.,
2011; Belzunces et al., 2012; Blacquière et al., 2012; Palmer et al.,
2013). Given the important roles of nurse bees and their sensitivity
to pesticides, the impact of FPF on the mushroom bodies in nurse
bee brains needed further investigation.

FPF at the field-realistic concentrations
induced immune responses in nurse bees

The concentrations of FPF exposed to bees were mainly field-
realistic (Glaberman and White, 2014; Tosi and Nieh, 2019;

Harwood et al., 2022). Although FPF at the field-realistic
concentration had no evident adverse effect in acute toxicity and
apoptotic assay, Hsp90 was significantly upregulated after 24 h of
exposure, which was consistent with that in newly emerged bees
after 12-h exposure of FPF (Wu et al., 2015) and 72-h exposure of
nicotine (Rand et al., 2015).Hsp90 (heat-shock protein 90) acted as a
protective function under stress and positive conditions related to
the immune response in insects. In addition, it had anti-apoptotic
properties in tumor cells (Wojda, 2017; Xu et al., 2017). Thus, it
suggested that honey bees might respond to FPF toxicity by
upregulating Hsp90 in this study. However, McKinstry et al.
(2017) discovered that heat shock (as a stress) represses multiple
immune genes (defensin, hymenoptaecin, and abaecin), and
wounding the cuticle of the abdomen results in the decreased
expression of multiple HSR genes (including Hsp90) in bees,
while defensin was significantly upregulated in this study. The
relationship between Hsp90 and antimicrobial peptides, as well as
apoptosis, in nurse bees should be determined in the future.

Defensin was significantly upregulated in our results, which was
consistent with that of newly emerged bees exposed by FPF at the
colony level. The expression of defensin and apidNT was
significantly higher than that of the control bees (Guo et al.,
2021). Defensin was reported to be regulated by the Toll pathway
in bees (Lourenço et al., 2018). Akhouayri et al. (2011) reported that
the production of AMPs in the Drosophila was negatively regulated
by Toll-8/Tollo. Toll-8/Tollo, in this study, was significantly
downregulated, when defensin was significantly upregulated. It
suggested that nurse bees might use Toll-8/Tollo to negatively
regulate the production of defensin (or other undetected AMPs),
which was one of the immune responses to acute toxicity of FPF.

There were no significant changes in the expression of three
P450-related genes (CYP9Q1, CYP9Q2, and CYP9Q3) in this study.
On the contrary, the expression of CYP9Q2 and CYP9Q3 was
significantly upregulated in bee foragers, which were fed by FPF
for 6 days. In addition, the survival rate of larvae in FPF-treated
colonies was significantly lower than that in control colonies (Guo
et al., 2021). Tan et al. (2017) also reported that the exposure of FPF
affected the learning and memory ability of adult bees (Apis cerana),
which were fed with FPF at a field-realistic dose during the bee larval
stage. Although some genes related to immune pathways and
detoxification were not affected by acute toxicity of FPF here,
attention should be paid to the effect on the nervous system,
immune, and detoxification responses in bee larvae and nurse
bees when exposed by repeated field-realistic or higher sublethal
concentrations/doses of FPF.

Conclusion

We found that nurse bees were more sensitive to FPF than larvae
and that the acute oral toxicity of FPF on nurse bees or larvae was
lower than some of the widely used pesticides. Although the
apoptotic rate in the mushroom bodies was not affected by FPF
at the field-realistic concentration (4 mg/L, 24 h), Hsp90 and Toll
pathway-related genes (Toll-8/Tollo and defensin) in nurse bees were
significantly modified. Moreover, FPF at other sublethal
concentrations (8 mg/L, 20 mg/L, and 50 mg/L) could induce
significant apoptosis in nurse bee mushroom bodies. Therefore,
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the relationship between cytotoxicity, immune responses, and
behavioral abnormalities of nurse bees induced by FPF at
sublethal concentrations/doses needs reassessments.
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