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Pulmonary arterial hypertension is associated with skeletal muscle myopathy and
atrophy and impaired exercise tolerance. Aerobic exercise training has been
recommended as a non-pharmacological therapy for deleterious effects
imposed by pulmonary arterial hypertension. Aerobic physical training induces
skeletal muscle adaptations via reduced inflammation, improved anabolic
processes, decreased hypoxia and regulation of mitochondrial function. These
benefits improve physical exertion tolerance and quality of life in patients with
pulmonary arterial hypertension. However, the mechanisms underlying the
therapeutic potential of aerobic exercise to skeletal muscle disfunctions in
patients with pulmonary arterial hypertension are not well understood yet. This
minireview highlights the pathways involved in skeletal muscle adaptations to
aerobic exercise training in patients with pulmonary arterial hypertension.
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1 Introduction

Aerobic exercise training (AET) is recommended for the general population, including
patients with cardiovascular diseases, due to its numerous benefits already reported (Gielen
et al., 2015). Studies have demonstrated that moderate-to high-intensity AET causes
beneficial adaptations to the cardiovascular system of individuals affected by pulmonary
arterial hypertension (PAH), as it maintains the right ventricular function (RV), which in
turn preserves stroke volume and cardiac output (Nogueira-Ferreira et al., 2018; Soares et al.,
2018).

The circumstances imposed by PAH impair the individual’s quality of life and develop
intolerance to physical effort (Riou et al., 2020). The underlying mechanisms involved are
complex as it includes central (i.e., stroke volume and cardiac output) and peripheral
(i.e., blood flow, endothelial and skeletal muscle functions) adverse adaptations (Moreira-
Gonçalves et al., 2015b; Soares et al., 2018). Although studies indicate benefits of AET to the
cardiovascular system and consequent improvement in physical effort tolerance (Nogueira-
Ferreira et al., 2018; Soares et al., 2018), there are few studies addressing the underlying
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mechanisms involved in skeletal muscle adaptation of individuals
with PAH. Therefore, this mini-review aimed to highlight cellular
and molecular pathways involved in the skeletal muscle adaptations
to aerobic exercise training in patients with pulmonary arterial
hypertension.

2 Pulmonary arterial hypertension

Pulmonary hypertension is a disorder that involves multiple
clinical conditions and may aggravate most cardiovascular and
respiratory diseases (Hoeper et al., 2014). Pulmonary arterial
hypertension, the most common subtype of pulmonary
hypertension, has an incidence of 1.1–17.6 per million adults per
year and prevalence of 6.6–26.0 per million adults (Wilkins et al.,
2018). Pulmonary arterial hypertension has a poor prognosis, with a
mortality rate of approximately 15% in the first year after diagnosis,
even with treatment (McLaughlin et al., 2009). Pulmonary arterial
hypertension typically manifests in the third to fourth decade of life
but can also be diagnosed in children, in whom prognosis is more
severe (Ivy, 2016). Until 2019, PAH was defined clinically as mean
pulmonary arterial pressure >25 mmHg at rest with normal left
atrial pressure, but this definition has since been revised to mean
pulmonary arterial pressure >20 mmHg, normal left atrial pressure
and pulmonary vascular resistance ≥3 Wood units (Simonneau
et al., 2019). Pulmonary arterial hypertension is caused by
restricted blood flow in the pulmonary arterial circulation, a
combination of endothelial dysfunction and increased
contractility of the small pulmonary arteries. These changes are
due to proliferation and remodeling of smooth endothelial muscle
cells, thrombosis in situ, resistance to apoptosis, inflammation, and
fibrosis, which results in elevated pulmonary vascular resistance
(Ryan et al., 2015).

The chronic increase in pulmonary vascular resistance leads to
augmented right ventricular afterload. This overload generates an
adaptive response with adverse remodeling of the right ventricle.
Thus, the right ventricle exhibit hypertrophy associated with
elevated passive tension of the sarcomeres, collagen deposition in
the extracellular matrix, fibrosis, inflammation, cellular apoptosis
and, consequently, contractile dysfunction (Sandoval, 2018). These
structural and functional damages lead to right ventricular failure
(Taylor et al., 2020), the major cause of death in patients with PAH
(De Alvaro et al., 2004).

The most commonly symptoms reported in PAH are dyspnea
and fatigue, which limit the physical capacity and the quality of life
(Malenfant et al., 2015). Intolerance to physical exercise is a
fundamental characteristic of PAH and has traditionally been
attributed to low cardiac output and respiratory dysfunction
(Marra et al., 2015). However, several studies have already
highlighted a wide range of abnormalities in skeletal (Bauer et al.,
2007) and respiratory (Meyer et al., 2005) muscles in patients with
PAH that can contribute to physical exercise limitation.

In fact, PAH decreases exercise tolerance. On the other hand,
it was verified that aerobic physical exercise increases the
maximum consumption of oxygen (McCullough et al., 2020),
as well as increases the cross-sectional area of the skeletal muscle,
which improves exercise tolerance (Moreira-Gonçalves et al.,
2015a).

3 Pulmonary arterial hypertension and
skeletal muscle

Traditionally, the loss of muscle mass leads to physical effort
intolerance and is attributed to low cardiac output and consequent
reduction in the availability of oxygen and other nutrients to
peripheral systems (Taylor et al., 2020). It is also hypothesized
that elevated inflammatory response, inhibition of anabolic
pathways, hypoxemia and abnormalities in mitochondrial
function contribute to explain muscle loss and dysfunction
(Marra et al., 2015), despite being tested to a limited extent.
Therefore, contrary to initial understanding, reduced exercise
capacity is not triggered solely by cardiopulmonary compromises
(Riou et al., 2020). It has been observed that the skeletal muscle
impairments contribute to limiting exercise capacity, increasing
sedentary behavior, and reducing activities of daily living.

Pulmonary arterial hypertension is also reported to cause an
imbalance between synthesis and degradation of structural and
contractile proteins in the myofibrils (Sandri, 2008). Although
protein degradation occurs through multiple proteolytic systems,
it has been shown in animal model that proteolysis mediated by the
ubiquitin-proteasome system (UPS) is the system predominantly
activated inmuscle atrophy (Marra et al., 2015). In fact, high levels of
atrogin-1 and muscle RING-finger protein-1 (MuRF1) were
observed in the quadriceps of patients with PAH, suggesting that
UPS-mediated proteolysis contributes to skeletal muscle atrophy in
these patients (Batt et al., 2014).

Furthermore, it has been observed increments in the circulation
of proinflammatory cytokines in individuals with PAH, which may
damage muscle contractile proteins, induce proteolysis and necrosis,
and lead to atrophy and decreased physical performance (Li et al.,
2005; Marra et al., 2015). Such damages have already been associated
with augmented levels of interleukins (IL) (IL-1β, IL-2. IL-4, IL-6,
IL-8 and IL-10) and tumor necrosis factor alpha (TNF-α) in the
muscle (Hassoun et al., 2009; Soon et al., 2010; Marra et al., 2015). It
is suggested that the elevated circulation of pro-inflammatory
markers alters the insulin receptor substrate -
phosphatidylinositol 3-kinase - protein kinase B (IRS-PI3K-Akt)
pathway, which is related with insulin resistance and damages to
skeletal muscle (Rotter et al., 2003; De Alvaro et al., 2004; Weigert
et al., 2006; Bouzakri and Zierath, 2007; Wei et al., 2008; Odegaard
and Chawla, 2013).

Another proposed mechanism is the inhibition of anabolic
pathways. The systemic inflammation may damage the insulin
signaling, the most explored anabolic axis, in individuals with
PAH (Marra et al., 2015). Thus, the IRS/PI3K/Akt axis
undergoes greater inhibition and diminishes signaling for protein
synthesis (Meyer et al., 2005). Moreover, it has been observed that, in
heart failure, there is a decline in the levels of testosterone, which
reduces the activation of the insulin-like growth factor (IGF-I) in the
muscle and hence loss of muscle mass and exercise capacity
limitation (Volterrani et al., 2012).

Hypoxemia has also to be considered in PAH-related myopathy.
It is well established that PAH impairs microcirculation in skeletal
muscle (Marra et al., 2015). This modification dwindles the
availability of oxygen in the musculature, hence limiting the
aerobic and augmenting the anaerobic metabolism. For instance,
impairment of oxidative enzyme activity, elevated activity of
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glycolytic enzymes, hypercapnia and metabolic acidosis have been
observed in PAH (Tran et al., 2018).

Beside these mechanisms, abnormalities in mitochondrial function
can contribute to the development of PAH-related myopathy. The
study by Kue et al. (2017) reported that the soleus muscle of animals
with PAH showed a reduction in the expression of the coactivator-1
alpha of the receptor activated by gamma peroxisome proliferators
(PGC1α) and mitochondrial DNA (mtDNA), without alteration in
OPA1, thus, impairing mitochondrial biogenesis. Additionally,
McCullough et al. (McCullough et al., 2020) demonstrated that
PAH induced by Sugen/Hypoxia promoted negative changes in the
expression of electron transport chain supercomplexes in the
gastrocnemius of rats. Mitochondrial supercomplexes are dynamic
sets of individual complexes in the electron transport chain that can
lead to more efficient respiration (Genova and Lenaz, 2014).

Although the underlying mechanisms of skeletal muscle
dysfunction in PAH is still not completely known, the effect of
this pathology on skeletal muscle and on the quality of life of patients
is undeniable. Therefore, studies seeking to clarify the mechanisms
involved, as well as therapies capable of reversing or mitigating the
damage to the muscular system are of interest and of clinical
relevance.

4 Pulmonary arterial hypertension and
physical exercise

The current pharmacological therapies for the treatment of PAH
have positive effects, however such drugs are not always available
and some patients are non-responders (Sandoval, 2018).
Consequently, the search for efficient therapies are of interest to
treat this disease and improve the quality of life of patients.

Aerobic exercise training has been recommended as a valuable
non-pharmacological therapeutic tool for the treatment of several
chronic diseases, such as pulmonary, cardiovascular, and
musculoskeletal disorders (Pedersen and Saltin, 2015). Current
reviews (Nogueira-Ferreira et al., 2018; Soares et al., 2018)
presented evidences in humans and in animal models that AET
triggers positive adaptations in individuals with PAH, such as
enhanced functional and exercise capacity, ventilatory efficiency,
global cardiac function, arterial and myocardial elasticity,
antioxidative and anti-inflammatory defense, and cardiopulmonary
remodeling (Souza-Rabbo et al., 2008; De Man et al., 2009; Handoko
et al., 2009; Shoemaker et al., 2009; Moreira-Gonçalves et al., 2015a;
Buys et al., 2015; Natali et al., 2015; Brown et al., 2017; Soares et al.,
2019; De Jesus Silva et al., 2021).

Non-etheless, according to Nogueira-Ferreira et al. (2018), there
are few clinical and experimental studies on the effects of AET on the
skeletal muscle in PAH, which limits the understanding of the
underlying mechanisms for such effects. As mentioned above
reported, it is conceivable that damages caused to the skeletal
muscle by PAH due to increases in circulating proinflammatory
cytokines (Marra et al., 2015), though, we found no study showing
the effects of AET on the inflammatory state of skeletal muscle in
patients with PAH. On the other hand, some studies demonstrated
the ability to AET in inducing the synthesis and secretion of
myokines such as IL-6, IL-8, IL-10 and IL-15 (Benatti and
Pedersen, 2015; Hoffmann and Weigert, 2017). It is suggested

that the main function of myokines is to protect the functionality
of the musculature against the altered inflammatory state
(Hoffmann and Weigert, 2017). For instance, Benatti and
Pedersen. (2015) pointed out that myokines (e.g., IL-6) can
induce an acute anti-inflammatory response after each exercise
session. According to Steensberg et al. (2003) after IL-6 is
released into the bloodstream, it induces a subsequent increment
in the production of the IL-1 agonist receptor (IL-1ra) and IL-10 by
mononuclear leukocytes in the blood, hence generating an anti-
inflammatory. In addition to acute exercise, long-term aerobic and
resistance training also augment the synthesis other myokines such
as IL-15, which may mitigate some cardiovascular risk factors and
thus having indirect anti-inflammatory effects (Pedersen and
Febbraio, 2012). Therefore, it is conceivable that physical training
has important anti-inflammatory effects on skeletal muscle that
contribute to greater tolerance to physical exertion, since the
deposition of fibrous tissue can be reduced, as well as the loss of
muscle mass.

Experimental studies indicate that AET can prevent or even
attenuate the inhibition of anabolic hormone pathways. For
example, Gonçalves et al. (Gonçalves et al., 2012) showed that
AET for 4 weeks before monocrotaline-induced PAH, followed
by 4 weeks of sedentary behavior, prevented the reduction of
myosin heavy chain I (MHC-I) isoform expression in
gastrocnemius of rats, in addition to preventing the reduction of
the cross-sectional area of muscle fibers. AET before PAH also
increased phosphorylated forms of Akt and themammalian target of
rapamycin (mTOR), involved in the protein synthesis pathway,
while restricting atrogin-1 expression. Atrogin-1 is a cardiac and
skeletal muscle specific F-box protein that has anti-hypertrophic
capacity and is a crucial player in skeletal muscle atrophy events
(Gomes et al., 2001). Furthermore, Moreira-Gonçalves et al. (2015b)
reported that 4 weeks of AET performed after MCT application in
rats resulted in increased weight and gastrocnemius cross-sectional
area. The aforementioned results show that AET is able to increase
skeletal muscle hypertrophy, collaborating to increase strength and,
consequently, leading to greater physical independence.

Regarding hypoxemia, a clinical study on patients with
idiopathic PAH, demonstrated that 12 weeks of exercise training
(i.e., cycling and quadriceps strength and endurance) increased the
muscular resistance of these individuals (De Man et al., 2009). This
improvement was explained by the 30% increase in the number of
blood capillaries and the 39% augment in the absorbance of the
oxidative enzyme succinate dehydrogenase in the quadriceps. In
addition to these findings, Vieira et al. (Vieira et al., 2020) showed
that rats treated with monocrotaline and trained on a treadmill
increased the cross-sectional area of type IIX muscle fibers. These
results suggest that physical training induces mechanisms that could
attenuate muscle hypoxemia caused by PAH, leading to improved
muscle oxygenation and lower production of reactive oxygen
species. However, the mechanisms still need to be better explored.

Concerning muscle metabolism, McCullough et al.
(McCullough et al., 2020), reported recently that AET after
experimental PAH induced by Sugen/Hypoxia increased
mitochondrial supercomplexes in the electron transport chain in
the oxidative portion of the gastrocnemius in rats. Thus, it is
suggested that AET enhances both function and structure of
mitochondria. In this way, the skeletal muscle would have better
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use in the generation of energy, which leads to the improvement of
movement mechanics.

Other conditions such as chronic obstructive pulmonary disease
(COPD) and heart failure, which may result from PAH, induce the
aforementioned skeletal muscle impairments, with increases in
atrogin-1 (Bodine and Baehr, 2014; Yoshida and Delafontaine,
2015), pro-inflammatory cytokines (Barnes, 2016), reduced
capillarization and increased number of type II muscle fibers
(Jobin et al., 1998) and mitochondrial dysfunction (Mathur et al.,
2014; Kinugawa et al., 2015). As with PAH, physical exercise
attenuates the deleterious effects of COPD and heart failure
(Cunha et al., 2012; Zhang et al., 2019; Broxterman et al., 2021).

Finally, Figure 1 resumes the proposed mechanisms reported in
the literature that helps to the skeletal muscle structural and
functional changes in patients with PAH undergoing AET.

5 Perspectives

In this mini-review, we highlighted the main cellular and
molecular adaptations reported in the literature that could
explain in part the skeletal muscle structural and functional
changes in patients with PAH undergoing AET. Despite the lack
of studies addressing the skeletal muscle adaptations AET in these
patients, it is observed that AET can provide protection and reduce
muscle atrophy, increased muscle capillarization and improvement
in mitochondrial function. Nevertheless, studies on the effects of
physical exercise on skeletal muscle structural (i.e., morphology and
muscle mass), cellular (i.e., changes in the type of muscle fiber and
connective tissue) and molecular (i.e., alterations in contractile units
of muscle fibers; muscle inflammatory state; stress oxidative;

signaling pathways for cell survival and death; biogenesis and
mitochondrial metabolism; and epigenetic analyzes, specifically of
miRNAs linked to contractile mechanics) adaptations in patients
with PAH are of interest for the understanding the mechanisms that
involve the adaptations of the skeletal muscle AET and thus obtain
important tools to mitigate the damage imposed by the disease.
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FIGURE 1
Potential mechanisms underlying the effects of aerobic exercise training on skeletal muscle atrophy and weakness in PAH.
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