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Introduction: The similarity between ankylosing spondylitis (AS) and ulcerative
colitis (UC) in incidence rate and pathogenesis has been revealed. But the
common pathogenesis that explains the relationship between AS and UC is still
lacked, and the related genetic research is limited. We purposed to explore shared
biomarkers and pathways of AS and UC through integrated bioinformatics.

Methods:Gene expression data of AS and UCwere obtained in the GEO database.
We applied weighted gene co-expression network analysis (WGCNA) to identify
AS-related and UC-related co-expression gene modules. Subsequently, machine
learning algorithm was used to further screen hub genes. We validated the
expression level and diagnostic efficiency of the shared diagnostic gene of AS
and UC in external datasets. Gene set enrichment analysis (GSEA) was applied to
analyze pathway-level changes between disease group and normal group. Finally,
we analyzed the relationship between hub biomarker and immune
microenvironment by using the CIBERSORT deconvolution algorithm.

Results: 203 genes were obtained by overlapping AS-related gene module and
UC-related gene module. Through SVM-RFE algorithm, 19 hub diagnostic genes
were selected for AS in GSE25101 and 6 hub diagnostic genes were selected for
UC in GSE94648. KCNJ15 was obtained as a common diagnostic gene of AS and
UC. The expression of KCNJ15 was validated in independent datasets, and the
results showed that KCNJ15 were similarly upregulated in AS samples and UC
samples. Besides, ROC analysis also revealed that KCNJ15 had good diagnostic
efficacy. The GSEA analysis revealed that oxidative phosphorylation pathway was
the shared pathway of AS and UC. In addition, CIBERSORT results revealed the
correlation between KCNJ15 gene and immune microenvironment in AS and UC.

Conclusion: We have explored a common diagnostic gene KCNJ15 and a shared
oxidative phosphorylation pathway of AS and UC through integrated
bioinformatics, which may provide a potential diagnostic biomarker and novel
insight for studying the mechanism of AS-related UC.
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1 Introduction

Spondyloarthritis (SpA) is a set of autoimmune-related chronic
inflammatory rheumatic diseases, including ankylosing spondylitis
(AS), inflammatory bowel disease (IBD), undifferentiated spinal
arthritis and juvenile chronic arthritis (Sharip and Kunz, 2020). AS
is the prototype of SpA, which mainly involves the spine and
sacroiliac joints, and is characterized by pain and stiffness in the
lower back or buttocks (Ritchlin and Adamopoulos, 2021). IBD is
characterized by abdominal pain, diarrhea, bloody stool and weight
loss (Stolwijk, Essers, et al., 2015; Fragoulis et al., 2019).

IBD is one of the most common extra-articular manifestations of AS
(Fragoulis et al., 2019; Sharip and Kunz, 2020). The prevalence of
clinically evident IBD in AS patients is about 6%–14% (Essers et al.,
2015; de Winter et al., 2016). Besides, studies have reported that more
than 50% of AS patients have occult subclinical intestinal inflammation
(Van Praet et al., 2013; Stolwijk, van Tubergen, et al., 2015; Cypers et al.,
2016). Meanwhile, studies revealed that intestinal inflammation had an
important impact on the pathogenesis of AS, which may not only
progress to more severe IBD manifestations, but also have a certain
impact on the prognosis of arthritis (Rogler et al., 2021). It is estimated
that about 2%–16% of IBD patients have combined with AS (Stolwijk
et al., 2013). In addition, the expertise of the therapist determines the
clinical and laboratory tools used for disease assessment, which in turn
guides treatment decisions that may ignore the affected system or even in
the opposite direction (Gionchetti and Rizzello, 2016). Increasing
awareness of intestinal and musculoskeletal manifestations among
rheumatologists and gastroenterologists will lead to early diagnosis
and multidisciplinary approaches, especially in the field of
pharmacologic therapy.

However, the common pathogenic mechanism that explains the
relationship between IBD and AS is still unclear (Zioga et al., 2022), and
the related genetic research is also limited. The purpose of this study is to
explore shared biomarkers and molecular mechanisms of AS and UC.
We have analyzedmRNA expression data published onGene Expression
Omnibus (GEO). Finally, KCNJ15 was obtained as a common diagnostic
biomarker of AS and UC by combining weighted gene co-expression
network analysis (WGCNA) and machine learning algorithm. Besides,
Gene set enrichment analysis (GSEA) results revealed that oxidative
phosphorylation pathway may associated with intestinal involvement in
AS. CIBERSORT results revealed that KCNJ15 participated in the
changes of immune microenvironment in AS and UC. In words, we
have explored a commondiagnostic geneKCNJ15 and a shared oxidative
phosphorylation pathway AS and UC, which provided a potential
diagnostic biomarker and novel insight for studying the mechanism
of AS-related UC.

2 Materials and methods

2.1 Gene expression profile data

We searched RNA-seq profiles of AS and UC published in GEO
database. The number of samples in the normal group and the

disease group should more than 15. Finally, the microarray datasets
of AS (GSE25101 and GSE73754) and UC (GSE94648 and
GSE38713) were downloaded. Details of the above datasets
showed in Table 1. Among them, GSE73754 and GSE38713 were
selected as independent validation set for AS and UC respectively.

2.2 Weighted gene co-expression network
analysis

“WGCNA” R package was used to construct weighted gene
co-expression networks and identify gene modules related to AS
and UC (Langfelder and Horvath, 2008). We used the
“pickSoftThreshold” function to analyze the scale
independence and average connectivity of modules under
different power values, and determine the optimal soft
threshold β. We calculated co-expression similarity and
adjacency, and further constructed topological overlay matrix
(TOM). We used the hierarchical clustering function to classify
genes with similar expression into the same module. The
minimum gene number of modules was 50, and the module
merging threshold was 0.25. The dynamic tree was used to cut
and identify co-expression modules, and then the modules with
similar expression patterns were merged. Then, we evaluate the
correlation between modules and clinical characteristic by
Pearson correlation analysis. p < 0.05 were considered
statistically significant. We identified the module with highest
correlation coefficient as AS-related and UC-related module. The
online Venn diagram tool was used to obtain their potential
common genes by overlapping the AS-related and UC-related
modules.

2.3 Identification and validation of
diagnostic biomarkers

As an effective characteristic selection algorithm, SVM-RFE has
been widely used to select hub diagnostic genes (Lin et al., 2012). We
applied SVM-RFE to further select core diagnostic genes from the
above intersected genes of the AS-related module and UC-related
gene module by using the “e1071” R package (Yoon and Kim, 2009).
We calculated the area under the ROC curve (AUC) to evaluate the
diagnostic performance of core diagnostic genes by using the
“pROC” R package.

TABLE 1 Details of the datasets.

Datasets Disease Study samples Control samples

GSE25101 AS 16 16

GSE94648 UC 17 22

GSE73754 AS 52 20

GSE38713 UC 15 13
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2.4 Gene set enrichment analysis

We performed GSEA to analyze pathway-level changes between
disease group andnormal group using “ClusterProfiler”Rpackage. GSEA
annotated gene set (c2. Cp. Kegg. v7.5.1. symbols. gmt) was downloaded
from MSigDB database (Liberzon et al., 2015). The enrichment KEGG
pathways with p < 0.05 were considered statistically significant. The
results were visualized using “enrichplot” package in R software.

2.5 Immune analysis algorithm

For performing immune cells infiltration analysis, we applied the
CIBERSORT deconvolution algorithm to analysis the proportion of
22 types of immune cells in AS samples (GSE73754) and UC samples
(GSE38713) on the basic of immune cell-related genes expression levels
(Chen et al., 2018). The “vioplot” R package was applied to study the
infiltration level of immune cells between different groups. The
correlation between hub gene and immune cells infiltration level was
explored by Spearman correlation analysis.

3 Results

3.1 Construction of weighted gene co-
expression networks

All samples in GSE25101 and GSE94648 were clustered and
included in the subsequent analysis (Figure 1A; 2A). The optimal

soft threshold power β was 9 for GSE25101 with scale-free R2 =
0.9 (Figure 1B). A total of 17 modules were identified after
merging modules with similar expression patterns using
dynamic tree cutting (Figure 1C). In GSE94648, as the soft
threshold power β = 13 with scale-free R2 = 0.85, the
connectivity between genes follows a scale-free network
distribution (Figure 2B). According to the TOM matrix, a
hierarchical clustering tree was constructed among genes, and
the total number of gene modules after merging was 20 using
dynamic tree cutting. Each module has a unique color as an
identifier (Figure 2C). Then, the correlations between clinical
characteristic and modules were calculated. The brown module
had the strongest relationship with AS (correlation coefficient =
0.6) in GSE25101 (Figure 1D). The black module had the
strongest relationship with UC (correlation coefficient = 0.64)
in GSE94648 (Figure 2D). Then, 203 common genes were
obtained by overlapping AS-related module and UC-related
module (Figure 2E).

3.2 Identification of common diagnostic
gene by machine learning algorithm

SVM-RFE was performed to further screen diagnostic genes
based on the above 203 intersected genes of the AS-related module
and UC-related module. The SVM-RFE analysis results show that
19 candidate diagnostic genes (NEDD8; DDIT3; RHOA; TXN;
TNIP2; COP1; GTPBP3; TRIM32; HOXC4; LSM10; CLEC3B;
HTATIP2; BCOR; VPS25; SART3; KCNJ15; HSBP1; TSPAN18;

FIGURE 1
Construction of weighted gene co-expression networks in GSE25101. (A) Clustering dendrogram of samples. (B) Network topology analysis of
different soft threshold power. (C) Dendrogram of the gene modules. (D) The correlation coefficients between gene modules and AS occurrence.
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SCCPDH) were screened out in GSE25101 and 6 candidate
diagnostic genes (SLC22A4; ANKRD22; MAPK14; MR1;
KCNJ15; RABGAP1) were screened in GSE94648 (Figures 3A,B).
Finally, KCNJ15 was identified as the common diagnostic gene of AS
and UC (Figure 3C).

3.3 Validation of hub diagnostic genes

We validated the expression level of KCNJ15 in GSE25101,
GSE94648 and external independent datasets (GSE73754 and
GSE38713). KCNJ15 was similarly upregulated in AS and UC
samples (Figures 4A–D). In addition, the ROC analysis results
showed that KCNJ15 had good diagnostic efficacy in GSE2510
(AUC = 0.723) and GSE94648 (AUC = 0.963) (Figures 4E, F). In
the external independent datasets, KCNJ15 also showed potent
diagnostic efficacy in GSE73754 (AUC = 0.757) and GSE38713
(AUC = 0.892) (Figures 4G, H).

3.4 Gene set enrichment analysis

The GSEA results showed that the oxidative
phosphorylation and ribosomal pathway were positive
enrichment in AS samples (Figure 5A), and the oxidative
phosphorylation, pathogenic Escherichia coli infection,
systemic lupus erythematosus and Toll-like receptor pathway

were positive enrichment in UC samples (Figure 5B). Oxidative
phosphorylation pathway was the shared enrichment signaling
pathway of AS and UC.

3.5 Immune cells infiltration analysis

We further explored the relationship between KCNJ15 gene
and immune microenvironment. We analyzed the percentages of
22 kinds of immune cells in AS and UC samples (Figure 6A; 7A).
The ratio of Neutrophils in AS samples was higher. However, the
ratios of resting NK cells, CD8 (+) T cells and activated memory
CD4 (+) T cells in AS samples were lower (Figure 6C). The ratios
of Neutrophils, M0 and M1 macrophages in UC samples were
markedly higher compared to normal control samples, and the
ratio of resting memory CD4 (+) T cells in UC samples was lower
than that normal control samples (Figure 7C). Moreover, we
analyzed the correlation between KCNJ15 gene and immune
cells content. KCNJ15 was positively correlated with
Neutrophils cells content (R = 0.72), and negatively
correlated with resting NK cells (R = −0.58) and CD8 (+)
T cells (R = −0.46) in AS (Figure 6B). In UC, KCNJ15 had a
positive relation to Neutrophils cells content (R = 0.75) and a
negative relation to follicular helper T cells content (R = −0.63)
(Figure 7B). The above results were statistically significant (p <
0.05), revealing the relationship between KCNJ15 and immune
activity.

FIGURE 2
Construction of weighted gene co-expression networks in GSE94648. (A) Clustering dendrogram of samples. (B) Network topology analysis of
different soft threshold power. (C) Dendrogram of the gene modules. (D) The correlation coefficients between gene modules and UC occurrence. (E)
Venn diagram of AS-related genes and UC-related genes.
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FIGURE 3
Identification of diagnostic genes using SVM-RFE algorithm. (A) Feature genes selection in GSE25101. (B) Feature genes selection in GSE94648. (C)
Venn diagram of overlapping feature genes.

FIGURE 4
Validation of the expression level and diagnostic efficacy of KCNJ15 gene. The box plots of KCNJ15 gene in GSE25101 (A), GSE73754 (B), GSE94648
(C) and GSE38713 (D). The ROC curves of KCNJ15 gene in GSE25101 (E), GSE73754 (F), GSE94648(G) and GSE38713 (H).
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4 Discussion

AS is a chronic inflammatory disease, mainly involving the spine
and sacroiliac joint. It is the most common subtype of SpA (Garcia-

Montoya, Gul, and Emery, 2018). IBD is a group of chronic
inflammatory diseases involving the gastrointestinal tract, including
UC andCD. Studies have revealed the similarity betweenAS and IBD in
incidence rate and pathogenesis (Gracey et al., 2020). There is overlap in

FIGURE 5
(A) GSEA analyses results of AS samples. (B) GSEA analyses results of UC samples.

FIGURE 6
Immune infiltration analysis of KCNJ15 gene in AS. (A)Histogram of proportion of immune cells. (B) Correlation between KCNJ15 and immune cells
content. (C) Proportion of 22 kinds of immune cells in a violin diagram.
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the drugs used to treat AS and IBD, although themain symptoms of AS
and IBD are low back pain and intestinal symptoms respectively
(Feagan et al., 2016).

The comorbidity of AS and IBD brings great challenges to the
doctors in the department of digestion and rheumatism. AS and
IBD are usually managed as separate diseases, which has a
profound impact on diagnosis and treatment. In one survey,
more than 30% of patients with IBD as the first symptom had SpA
related symptoms, but 50% of patients had never been to the
rheumatic department. Researchers found that insufficient
diagnosis or delayed treatment of these patients often led to
disease progression and decreased quality of life. With the wide
application of IL-17 inhibitors in patients with AS, people are
increasingly worried that IL-17 inhibitors may aggravate
intestinal inflammation in IBD patients (Penso et al., 2022).
Therefore, it is urgent to clarify the disease mechanism
between the two. At present, the etiological mechanism of AS-
related UC is still unclear.

The completion of the Human Genome Project in 2003 marks
that human beings have stepped into the era of bio-information
technology. In the following decades, mining massive genetic
data has become a research hotspot. Among them, the
application of microarray and high-throughput gene
expression profiling technology to analyze the transcriptome
of diseases has been widely spread in the research of chronic
inflammatory diseases. We reanalyzed the RNA-seq profiles of

AS and UC obtained from the GEO database. Ultimately, a
common diagnostic gene KCNJ15 and a shared oxidative
phosphorylation pathway of AS and UC were explored
through integrated bioinformatics. We further validated that
KCNJ15 had potent value as diagnostic biomarker for UC
and AS.

Both AS and UC are immune-mediated chronic
inflammatory diseases (Du and Ha, 2020; Voruganti and
Bowness, 2020; Mauro et al., 2021). In this study, we have
explored the role of immune cell infiltration in the
pathogenesis of AS and UC. “CIBERSORT” algorithm was
applied to estimate the composition of immune cells. The
results showed that compared with the normal group,
Neutrophils cells were increased in AS, while resting NK cells,
CD8 (+) T cells and activated memory CD4 (+) were decreased.
Neutrophils cells, M0 and M1 Macrophages cells in UC samples
were increased in UC samples, while resting memory CD4 (+)
T cells in UC samples were decreased. In addition, the correlation
analysis results showed that KCNJ15 was significantly correlated
with the above immune cells with different immune infiltration
levels.

Oxidative phosphorylation plays an important role in many
cancer subtypes (Sica et al., 2020). It not only provides energy
for tumor cell growth, but also promotes the occurrence and
development of various tumors. Oxidative phosphorylation is a
key process that connects the tricarboxylic acid cycle with

FIGURE 7
Immune infiltration analysis of KCNJ15 gene in UC. (A)Histogram of proportion of immune cells. (B)Correlation between KCNJ15 and immune cells
content. (C) Proportion of 22 kinds of immune cells in a violin diagram.
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adenosine triphosphate (ATP) production, and it is also the
final biochemical pathway of ATP production (Papa et al., 2012;
Nolfi-Donegan, Braganza, and Shiva, 2020). In our study,
oxidative phosphorylation pathway was the shared
enrichment signaling pathway of AS and UC samples.
Studies have shown that metformin can inhibit oxidative
phosphorylation (He, 2020). In a long-term follow-up study,
a significant reduction in the incidence rate of IBD was found in
T2DM patients treated with metformin (Tseng, 2021). Besides,
metformin also has therapeutic effect on autoimmune
inflammatory rheumatic diseases, such as osteoarthritis
(OA), rheumatoid arthritis (RA) and AS (Lee et al., 2015;
Zheng et al., 2021; Kim, Choe, and Park, 2022). Therefore,
we speculated that metformin may slow down ankylosing
spondylitis and ulcerative colitis by reducing oxidative
phosphorylation.

There are also some limitations in this study. First of all, the
function of hub gene KCNJ15 needs to be further verified in vitro
and in vivo, which will be the focus of our future work. Secondly, the
sample size in the expression profile datasets used in the study is
small. More samples are needed to further verify the diagnostic value
of key genes in the future.

5 Conclusion

This study has identified KCNJ15 gene as a common diagnostic
gene of AS and UC by combining WGCNA and machine learning
algorithm. We further validated the diagnostic efficacy of
KCNJ15 gene in the independent datasets. Moreover,
CIBERSORT results revealed the relationship between
KCNJ15 and immune cells infiltration. GSEA results revealed
that oxidative phosphorylation pathway was the shared
enrichment pathway of AS and UC samples. This study provided
a potential diagnostic biomarker and novel insight for studying the
mechanism of AS-related UC.
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