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Purpose: The purpose of this study was to train and validate machine learning
models for predicting rapid decline of forced expiratory volume in 1 s (FEV1) in
individuals with a smoking history at-risk-for chronic obstructive pulmonary
disease (COPD), Global Initiative for Chronic Obstructive Lung Disease (GOLD
0), or with mild-to-moderate (GOLD 1–2) COPD. We trained multiple models to
predict rapid FEV1 decline using demographic, clinical and radiologic biomarker
data. Training and internal validation data were obtained from the COPDGene
study and prediction models were validated against the SPIROMICS cohort.

Methods: We used GOLD 0–2 participants (n = 3,821) from COPDGene (60.0 ±
8.8 years, 49.9% male) for variable selection and model training. Accelerated lung
function decline was defined as a mean drop in FEV1% predicted of > 1.5%/year at
5-year follow-up. We built logistic regression models predicting accelerated
decline based on 22 chest CT imaging biomarker, pulmonary function,
symptom, and demographic features. Models were validated using n =
885 SPIROMICS subjects (63.6 ± 8.6 years, 47.8% male).

Results: The most important variables for predicting FEV1 decline in GOLD
0 participants were bronchodilator responsiveness (BDR), post bronchodilator
FEV1% predicted (FEV1.pp.post), and CT-derived expiratory lung volume; among
GOLD 1 and 2 subjects, they were BDR, age, and PRMlower lobes fSAD. In the
validation cohort, GOLD 0 and GOLD 1–2 full variable models had significant
predictive performance with AUCs of 0.620 ± 0.081 (p= 0.041) and 0.640 ± 0.059
(p < 0.001). Subjects with higher model-derived risk scores had significantly
greater odds of FEV1 decline than those with lower scores.

Conclusion: Predicting FEV1 decline in at-risk patients remains challenging but a
combination of clinical, physiologic and imaging variables provided the best
performance across two COPD cohorts.
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Introduction

Chronic obstructive pulmonary disease (COPD) is characterized
by a variety of clinical phenotypes and disease courses that are often
difficult to predict (Miravitlles et al., 2013; Mathioudakis et al.,
2020). There is a pressing need to create actionable tools to assist
clinicians and researchers in identifying patients who are at higher
risk for accelerated lung function decline so that early, directed
therapies can be appropriately initiated. In addition to conventional
markers of lung function decline using pulmonary function testing
(PFT) metrics, novel advanced chest imaging analytic techniques are
currently being explored to identify high risk patients. Among these
techniques are Parametric Response Mapping (PRM), which co-
registers inspiratory and expiratory images to distinguish between
normal lung, emphysema, and non-emphysematous air trapping
(functional small airways disease, fSAD). Prior studies using PRM
have demonstrated the association between fSAD and 5-year forced
expiratory volume in 1 s (FEV1) decline, progression of emphysema
and exacerbation risk (Bhatt et al., 2016; Han et al., 2017; Labaki
et al., 2019).

Vascular remodeling is also prevalent among COPD patients
and believed to be part of the pathogenesis of this disease. CT scans
have been used to visualize changes in distal pruning of blood vessels
(Rahaghi et al., 2019). The ratio of blood volume in vessels with a
cross-sectional area < 5 mm2 to total blood vessel volume (TBV) has
been proposed as an imaging biomarker and, consistent with this
theory, has been shown to decrease as COPD progresses (Estepar
et al., 2013). Increased airway wall thickness (AWT) has also been
associated with more frequent COPD exacerbations (Han et al.,
2011) and with greater FEV1 decline and development of airflow
limitation in smokers (Mohamed et al., 2015). AWT is often
measured using Pi10, the square root of an airway wall area with
a 10 mm lumen perimeter (Nakano et al., 2005).

Predictive models have been widely used for prediction of
clinically meaningful outcomes in subjects with COPD. These
models have been used to identify factors that place patients at-
risk-for exacerbations and hospital admissions and readmissions
and to demonstrate the effect of smoking reduction on FEV1 decline
(Simmons et al., 2005; Bahadori et al., 2009; Bertens et al., 2013).
Predictive models have also been combined with deep learning
methods to assist in staging COPD severity and predict disease
progression using automated CT staging to quantify the degree of
emphysema and air trapping visualized on images (Hasenstab et al.,
2021). Predicting risk of mortality, both in patients admitted to the
ICU with exacerbations (Jain et al., 2018) and those in the outpatient
primary care setting using a variety of predictive modeling methods
(Kiddle et al., 2020) has been extensively studied. However,
prediction of FEV1 decline has remained challenging with
currently available risk models.

The purpose of this study was to train and evaluate logistic
regression prediction models for rapid FEV1 decline over a 5-year
time span in ever-smoking participants of the Genetic Epidemiology
of Chronic Obstructive Pulmonary Disease (COPDGene) study who
were either at-risk-for COPD (smoking history but normal

spirometry, GOLD 0) or with mild-moderate COPD (GOLD
1–2). We used a variable importance methodology to select and
rank a subset of variables that were important for prediction of rapid
FEV1 decline (defined as a drop in FEV1% predicted of > 1.5%/year).
Models using only imaging biomarkers and data readily available
from the Digital Imaging and Communications in Medicine
(DICOM) header (i.e., age, sex) were also trained and compared
to full data models to determine if data captured only in a CT scan
has adequate predictive value. Finally, we externally validated these
prediction models in the large Subpopulations and Intermediate
Outcome Measures in COPD (SPIROMICS) cohort.

Materials and methods

This study is a retrospective analysis of prospectively acquired
data obtained from two large North American cohorts. Both studies
were IRB-approved at all clinical centers, elicited written informed
consent from all participants, and were compliant with the Health
Insurance Portability and Accountability Act (HIPAA).

COPDGene (ClinicalTrials.gov Identifier: NCT 00608764) is an
ongoing NIH-sponsored, prospective, multicenter (n = 21),
observational cohort study starting in November 2007 and
consisting of more than 10,000 individuals who were current or
former smokers at the time of enrollment. COPDGene aims to
understand the etiology, progression, and heterogeneity of COPD
(Regan et al., 2010). Inclusion criteria were age 45–80 years old at
baseline visit, > 10 pack-years cigarette smoking history, and non-
Hispanic white or African American race. Exclusion criteria were
other lung diseases, pregnancy, cancer other than skin cancer in the
5 years prior to study entry, receiving antibiotics for a COPD
exacerbation in the month prior to study enrollment, and relative
of a previously enrolled participant.

SPIROMICS (ClinicalTrials.gov Identifier: NCT 01969344) is an
ongoing NIH-sponsored prospective, multicenter (n = 12),
observational cohort study starting in November 2010 and
consisting of 2,981 current, former, and never-smokers at the
time of enrollment (Couper et al., 2014). Inclusion criteria were
age 40–80 years old at baseline visit, >20 pack-year cigarette
smoking history for current or former smokers, and meeting
lung function criteria based on spirometry without
bronchodilators. An extensive list of exclusion criteria can be
found on the ClinicalTrials.gov website (https://clinicaltrials.gov/
ct2/show/NCT01969344).

Analysis utilized inspiratory and expiratory chest CT scans
from both COPDGene (Regan et al., 2010; Han et al., 2011) and
SPIROMICS cohorts (Sieren et al., 2016). In COPDGene, CT
scanning occurred at three phases between 2007 and 2022. The
intervals between phases were Phase 1–2 5.68 ± 0.89 (mean ±
standard deviation, SD) years, Phase 2-3 4.60 ± 0.63 years, and
Phase 1–3 10.09 ± 0.40 years. In SPIROMICS, CT scanning
occurred at five timepoints between 2010 and 2022, with the
baseline and fifth timepoint used in this analysis occurring 6.13 ±
1.05 years apart.
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For both studies, COPD was defined by a post-bronchodilator
FEV1/FVC (forced vital capacity) < 0.7 at the baseline visit, as
specified in the GOLD guidelines at the time of study inclusion
(Rabe et al., 2007). GOLD grades 1–4, based on post-bronchodilator
spirometry, were used to define disease severity (GOLD 1, FEV1 ≥
80% predicted; GOLD 2, FEV1 50%–79% predicted; GOLD 3, FEV1

30%–49% predicted; and GOLD 4, FEV1 < 30% predicted), with
GOLD 0 classification defined by a post-bronchodilator FEV1/
FVC ≥ 0.7 and FEV1% predicted ≥ 80%. We performed risk
modeling based on GOLD category on the following numbers of
participants: in COPDGene, GOLD 0 (n = 2,298) and GOLD 1–2
(n = 1,523), and in SPIROMICS, GOLD 0 (n = 385) and GOLD 1–2
(n = 500) (Figure 1; Tables 1, 2).

Image processing

For all scans, Imbio Inc. Lung Density Analysis version 3.1
(Minneapolis, MN, United States) was used to perform PRM, lung
volume measurements, TBV, and tBV5 (the ratio of vascular tree
length in vessels with a cross-sectional area less than 5 mm2 to total
vascular tree volume). PRMemphysema is defined as the percentage of
lung voxels less than −950 Hounsfield units (HU) on the inspiratory
CT scan and less than −856 HU on the expiratory CT scan following
deformable registration; PRMfSAD is defined as the percentage of
lung voxels greater than or equal to −950 HU on the inspiratory CT
scan but less than −856 HU on the expiratory CT. PRMmetrics were
binarized into clinically significant (PRMemphysema > 2.0%,
PRMfSAD >10.0%) and non-clinically significant categories. The
2% and 10% thresholds were chosen by finding the thresholds
that had the highest combination of sensitivity and specificity for
univariate prediction of rapid decline in GOLD 0–2 subjects. Bone
Mineral Density Analysis v.0.1 (Imbio Inc.) was used to compute the
average HU value within the trabecular region of the T12 vertebral

body (BMDT12). Airway analysis metrics such as mean segmental
AWT and AWT for all airways with an internal perimeter of
10 mm (Pi10) were computed and analyzed in the feature
selection step, but could not be used because different
software vendors processed data for COPDGene (Thirona)
and SPIROMICS (Vida Diagnostics), and thus, the high inter-
software variability associated with airway measurements
precluded comparisons of models using this data.

At the time this study was conducted, co-author CH, who
performed the following statistical analysis and developed the
machine learning models, was employed by Imbio Inc. Neither
Imbio nor CH had influence over participant inclusion.

Definition of accelerated FEV1 decline

There is no universally accepted definition of accelerated FEV1

decline. Martinez et al. defined it as 60 mL/year, roughly double the
normal rate of decline in non-smokers (Martinez et al., 2018).
However, in the COPDGene cohort, significantly more men than
women fit this categorization. To develop sex-agnostic models, we
instead categorized rapid progression as a drop of more than 1.5%
FEV1 percent predicted per year (Δ FEV1%pred), which roughly
corresponds to the top quartile of decline. Because a competing risk
for accelerated decline is mortality, models were trained to classify
participants at-risk-for rapid FEV1 decline given survival.

Feature selection

We initially considered a set of K = 29 features consisting of
symptoms, spirometry, demographic, and CT imaging biomarker data
(Figure 2). To simplify the models and to increase reliability of the
inputs, we chose to not use self-reported data. A 29 × 29 table of

FIGURE 1
Consolidated Standards of Reporting Trials (CONSORT) diagram for model training. (COPDGene Phase 1), 5-year internal validation (COPDGene
Phase 2–3), 10-year internal validation (COPDGene Phase 1–3), and external validation (SPIROMICS) datasets.
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Spearman correlations between each feature was generated to assess
feature redundancy (Parr et al., 2020) using data from GOLD
0–2 subjects. Features that had a Spearman correlation > 0.80 with
any other variables were considered for removal due to information
redundancy. For example, we retained weight and height but removed
body mass index (BMI) because weight and height were independent
from each other, but weight was highly correlated to BMI. Forced mid-
expiratory flow (FEF25.75) was removed because it correlated strongly
with FEV1/FVC. Finally, of the PRM imaging biomarker variables,
PRMupper lobes emphysema and PRMlower lobes fSAD had the lowest
correlation and thus were retained.

Following manual feature pruning, we conducted a “drop-
column” feature-importance ranking and data-driven pruning
procedure for the remaining 22 parameters. Classification models
were trained using COPDGene Phase 1 data, with the outcome Δ
FEV1%pred variable measured between Phase 1 and Phase 2. We
generated an initial model using all K = 22 features to arrive at a
baseline model performance based on the receiver operating
characteristic area under the curve (ROC-AUC). To arrive at
AUC distribution, model performance was assessed using repeat
cross-validation (M = 5,000 cross-validations with a train/test ratio
of 80%/20%). The same procedure was repeated K = 22 times, each

TABLE 1 Summary statistics for COPDGene Phase 1, COPDGene Phase 2, and SPIROMICS cohorts for GOLD 0 subjects.

COPDGene
P1

COPDGene
P2

p-value
COPDGene
P2 vs.
COPDGene P1

COPDGene
P3

p-value
COPDGene
P3 vs.
COPDGene P1

SPIROMICS p-value
SPIROMICS vs.
COPDGene P1

GOLD 0 totals 2,298 665 839 385

Rapid decline
(>1.5% Δ FEV1%
pred)

26.5% 27.4% *p = 0.62 12.8% *p = 0.94 14.0% *p = 0.71

Male 51.8% 55.0% *p = 0.47 52.7% *p = 0.58 55.8% *p = 0.27

White 31.0% 25.6% *p = 0.68 30.9% *p = 0.68 49.3% *p = 0.22

Current smokers 48.9% 33.5% *p = 0.69 48.5% *p = 0.61 42.9% *p = 0.38

Lower lobe
PRMfSAD > 10%

10.6% 7.4 *p = 0.85 10.5% *p = 0.81 6.2% *p = 0.79

Upper lobe
PRMemphysema > 2%

14.4% 11.9 *p = 0.78 15.7% *p = 0.75 10.1% *p = 0.7

Age (years) 58.0 ± 8.5 63.6 ± 8.3 p < 0.001 57.6 ± 8.3 p = 0.26 61.9 ± 9.3 p < 0.001

Height (cm) 169.9 ± 9.4 168.4 ± 9.2 p < 0.001 169.7 ± 9.2 p = 0.73 169.1 ± 9.4 p = 0.13

Weight (kg) 84.4 ± 18.4 83.4 ± 19.0 p = 0.25 83.8 ± 17.7 p = 0.39 84.0 ± 17.6 p = 0.68

FVC% predicted 97.5 ± 11.5 98.2 ± 11.7 p = 0.2 98.0 ± 11.5 p = 0.25 97.0 ± 12.4 p = 0.25

Post-
bronchodilator
FEV1/FVC

0.8 ± 0.1 0.8 ± 0.5 p = 0.16 0.8 ± 0.1 p = 0.58 1.0 ± 0.1 p < 0.001

SGRQ score 14.8 ± 16.7 12.8 ± 15.3 p = 0.01 14.2 ± 16.3 p = 0.36 22.9 ± 17.1 p < 0.001

6MWD (m) 469.6 ± 106.5 448.9+-120.7 p < 0.001 474.8 ± 110.2 p = 0.23 438.3 ± 90.2 p < 0.001

Smoking pack-years 37.1 ± 20.3 38.1 ± 20.3 p = 0.25 36.5 ± 19.4 p = 0.51 44.0 ± 27.8 p < 0.001

Inspiratory CT
volume (mL)

5318.8 ± 1237.7 5273.9 ± 1261.7 p = 0.41 5325.2 ± 1251.6 p = 0.90 5226.4 ±
1253.5

p = 0.18

Expiratory CT
volume (mL)

2639.3 ± 649.8 2600.3 ± 621.2 p = 0.17 2597.6 ± 652.4 p = 0.11 2685.6 ± 684.1 p = 0.2

TBV (mL) 172.9 ± 38.9 169.3 ± 35.8 p = 0.03 175.7 ± 40.6 p = 0.08 171.0 ± 35.7 p = 0.35

tBV5 (%) 77.8 ± 4.0 79.9 ± 4.1 p < 0.001 77.8 ± 4.1 p = 0.74 79.4 ± 3.3 p < 0.001

trabecular.T12
(HU)

162.7 ± 50.5 143.9 ± 41.8 p < 0.001 162.9 ± 48.7 p = 0.95 151.4 ± 49.8 p < 0.001

cortical.T12 (HU) 332.7 ± 57.2 316.4 ± 55.8 p < 0.001 333.6 ± 54.2 p = 0.69 320.1 ± 54.8 p < 0.001

*The z-proportions test was used to compute p-values for binary variables. The unpaired t-test was used to compute p-values for continuous data. Bolded text indicates a p-value < 0.05.

Abbreviations: SGRQ, St. George’s Respiratory Questionnaire; 6MWD, 6-min walk distance; TBV, total blood vessel volume; tBV5, ratio of vascular tree length in vessels with a cross-sectional

area less than 5 mm2 to total vascular tree volume; trabecular.T12, average Hounsfield unit (HU) value within the trabecular region of the T12 vertebral body; cortical.T12, average Hounsfield

unit (HU) value within the cortical region of the T12 vertebral body.
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time removing a single feature, which produced a distribution of
AUC reductions for each instance of feature removal. Features that
resulted in a decrease in model AUC performance when “dropped”
were retained for use in the final model; all others were removed
(Figure 2). The drop-column procedure was performed separately
for GOLD 0 and GOLD 1–2 subjects, resulting in two distinct
variables sets for the final models.

In addition to a full variable model considering all variables that
survived feature selection, we also created limited models using only
imaging biomarkers (i.e., lung volumes, PRM, vascular, and bone
density measurements) and data readily available from the DICOM

header (i.e., age, sex), referred to hereafter as “CT-limited model.”
The purpose of this analysis was to determine the predictive value of
data that could only be obtained from a CT scan file within the
electronic medical record.

Machine learning methods and parameters

A wide variety of machine-learning techniques can be used to
predict biological outcomes from multiple sources of data
(Garavand et al., 2022). In this study, models were developed

TABLE 2 Summary statistics for COPDGene Phase 1, COPDGene Phase 2, and SPIROMICS cohorts for GOLD 1–2 subjects.

COPDGene
P1

COPDGene
P2

p-value
COPDGene
P2 vs.
COPDGene P1

COPDGene
P3

p-value
COPDGene
P3 vs.
COPDGene P1

SPIROMICS p-value
SPIROMICS vs.
COPDGene P1

GOLD 1–2 totals 1,523 425 511 500

Rapid decline
(>1.5% Δ FEV1%
pred)

29.8% 38.4% *p = 0.49 25.2% *p = 0.72 24.8% *p = 0.72

Male 46.9% 43.8% *p = 0.54 45.2% *p = 0.6 41.6% *p = 0.63

White 81.0% 80.9% *p = 0.68 81.2% *p = 0.73 70.0% *p = 0.56

Current smokers 44.5% 34.4% *p = 0.64 41.5% *p = 0.62 36.6% *p = 0.67

Lower lobe
PRMfSAD > 10%

59.8% 60.5% *p = 0.45 55.6% *p = 0.57 52.6% *p = 0.59

Upper lobe
PRMemphysema > 2%

55.7% 55.8% *p = 0.47 57.5% *p = 0.53 52.8% *p = 0.57

Age (years) 63.0 ± 8.5 67.8 ± 8.1 p < 0.001 62.5 ± 8.1 p = 0.23 65.6 ± 7.6 p < 0.001

Height (cm) 170.1 ± 9.7 170.3 ± 9.8 p = 0.68 170.6 ± 9.5 p = 0.31 170.8 ± 9.3 p = 0.15

Weight (kg) 82.3 ± 18.2 81.6 ± 18.3 p = 0.45 81.6 ± 17.8 p = 0.41 82.0 + 17.7 p = 0.70

FVC% predicted 72.8 ± 14.3 74.4 ± 15.8 p = 0.05 75.0 ± 15.4 p < 0.001 75.2 ± 14.8 p < 0.001

Post-
bronchodilator
FEV1/FVC

0.6 ± 0.1 0.6 ± 0.1 p = 0.79 0.6 ± 0.08 p = 0.84 0.8 ± 0.1 p < 0.001

SGRQ score 26.1 ± 20.7 23.0 ± 19.0 p = 0.01 23.4 ± 19.9 p = 0.01 29.9 ± 16.5 p < 0.001

6MWD (m) 431.2 ± 109.4 424.1 ± 115.2 p = 0.24 449.4 ± 105.5 p < 0.001 421.9 ± 98.3 p = 0.09

Smoking pack-years 49.1 ± 25.1 49.5 ± 23.7 p = 0.75 47.7 ± 23.0 p = 0.27 51.4 ± 25.3 p = 0.08

Inspiratory CT
volume (mL)

5788.4 ± 1384.2 5878.2 ± 1438.3 p = 0.24 5890.9 ± 1432.1 p = 0.15 5896.5 ±
1418.4

p = 0.13

Expiratory CT
volume (mL)

3312.9 ± 860.5 3311.7 ± 842.0 p = 0.98 3278.6 ± 856.8 p = 0.44 3425.1 ± 886.1 p = 0.01

TBV (mL) 179.0 ± 39.5 176.3 ± 37.8 p = 0.21 180.4 ± 38.8 p = 0.50 182.6 ± 38.0 p = 0.08

tBV5 (%) 78.2 ± 4.2 79.9 ± 3.9 p < 0.001 78.1 ± 4.3 p = 0.49 78.0 ± 3.4 p < 0.001

trabecular.T12
(HU)

141.4 ± 71.0 133.3 ± 44.6 p = 0.03 143.2 ± 47.6 p = 0.59 133.6 ± 42.1 p = 0.02

cortical.T12 (HU) 319.5 ± 62.4 312.5 ± 59.3 p = 0.04 320.3 ± 57.1 p = 0.8 313.5 ± 59.8 p = 0.06

*The z-proportions test was used to compute p-values for binary variables. The unpaired t-test was used to compute p-values for continuous data. Bolded text indicates a p-value < 0.05.

Abbreviations: SGRQ, St. George’s Respiratory Questionnaire; 6MWD, 6-min walk distance; TBV, total blood vessel volume; tBV5, ratio of vascular tree length in vessels with a cross-sectional

area less than 5 mm2 to total vascular tree volume; trabecular.T12, average Hounsfield unit (HU) value within the trabecular region of the T12 vertebral body; cortical.T12, average Hounsfield

unit (HU) value within the cortical region of the T12 vertebral body.

Frontiers in Physiology frontiersin.org05

Wang et al. 10.3389/fphys.2023.1144192

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1144192


and validated using logistic regression with an L1 regularization
penalty (a.k.a. LASSO) due to simplicity of implementation (i.e., few
hyper-parameters) compared to other popular machine learning
frameworks such as Random Forests or XGBoost. The
L1 regularization penalty was employed to learn models that
have a sparse set of significant predictor variables. We used the
scikit-learn software package v1.0.2 within Python version 3.8.10 for
all model development and validation. Model hyper-parameters
were optimized using a Randomized Cross Validation search
algorithm (sklearn.model_selection.RandomizedSearchCV). The
cross validation hyper-parameter search resulted in an optimal
inverse regularization penalty weight of C = 0.3.

Internal and external validation

Internal validation was performed in twoways. First, we applied the
models developed on the COPDGene Phase 1 training data to the
COPDGene Phase 2 data, where the output variable was the Δ FEV1%

pred between the Phase 2 and Phase 3 visits. Second, we validated the
model developed on the COPDGene Phase 1 data against the Δ FEV1%
pred between the Phase 1 and Phase 3 data, which were roughly
10 years apart. External validation was performed on data from the
SPIROMICS study. Differences in the distribution between data in the
training, internal validation, and external validation cohorts are shown
in Table 1. Confidence intervals were computed by computing 1.96 ×
SD of the AUC using bootstrapping with 5,000 resamples. Permutation
testing was used to generate AUC p-values.

Relative risk based on model output
probabilities

Following model generation, we recorded the logistic regression
output probabilities associated with the lower 25th (p25) and upper 75th
(p75) percentiles of the training data. We computed the relative risk
between participants with FEV1%pred decline risk > p75 and those with
risk < p25 for the training dataset (COPDGene Phase 1-Phase 2), the

FIGURE 2
Spearman correlation matrix for the initial 29 variables. Spearman correlations > 0.80 are highlighted in orange. Strong correlations exist between
PRM imaging biomarker variables, FEV1/FVC and FEF25-75, and BMI and weight. Abbreviations: bdr, bronchodilator responsiveness; sgrq, St. George’s
Respiratory Questionnaire; BMI, body mass index; FEV1.pp.post, post bronchodilator FEV1% predicted; FVC.pp.post, post bronchodilator FVC %
predicted; FEV1.FVC.post, post bronchodilator FEV1/FVC; FEF.25.75.post, post bronchodilator forced mid-expiratory flow; walk.dist, 6-min walk
distance; pi10.thirona, square root of an airway wall area with a 10 mm lumen perimeter, measured by Thirona software; awt.thirona, segmental airway
wall thickness, measured by Thirona software; prm.total.fsad, PRM total fSAD > 10%; prm.total.emphysema, PRM total emphysema > 2%; prm.upper.fsad,
PRM upper lobes fSAD > 10%; prm.lower.fsad, PRM lower lobes fSAD > 10%; prm.upper.emphysema, PRM upper lobes emphysema > 2%;
prm.lower.emphysema, PRM lower lobes emphysema > 2%; insp.ct.vol, CT-derived inspiratory lung volume; exp.ct.vol, CT-derived expiratory lung
volume; tbv, total blood vessel volume; t.bv5, ratio of vascular tree length in vessels with a cross-sectional area less than 5 mm2 to total vascular tree
volume; trabecular.T12, average Hounsfield unit (HU) value within the trabecular region of the T12 vertebral body; cortical.T12, average Hounsfield unit
(HU) value within the cortical region of the T12 vertebral body.
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internal validation dataset (COPDGene Phase 2-Phase 3), and the
external validation dataset. Additionally, we looked at the relative risk of
rapid decline over 10 years by examining subjects that had Δ FEV1%
pred data between COPDGene Phase 1 and Phase 3. Relative risk was
computed using the scipy.stats.contingency.relative_risk software
package v1.8.1.

Results

Results are separated into 3 broad sections: 1) feature selection to
create the training model, 2) within the COPDGene cohort cross

validation and 3) external SPIROMICS cohort validation, followed
by a section on relative risk.

Within cohort analysis

Figure 3 depicts all features that survived the variable selection
procedure during model training in models developed on
COPDGene Phase 1-Phase 2 data. In the full-variable model for
the GOLD 0 cohort, higher post bronchodilator FEV1% predicted
(FEV1pp.post), bronchodilator responsiveness (BDR), greater
expiratory CT volume, and a higher St. George’s Respiratory

FIGURE 3
Features that survived the drop-column variable selection procedure for each GOLD group andmodel type (top: GOLD 0; bottom: GOLD 1–2). The
mean ±1.96 × SD decrease in AUC related to dropping each feature is plotted only for features that significantly affected the model. Red bars indicate a
higher risk of rapid FEV1 decline with increasing value, having bronchodilator reversibility, African American race, and/or being a current smoker. Blue bars
indicate a higher risk of rapid FEV1 decline with decreasing value and male sex. Abbreviations: fev1.pp.post, post bronchodilator FEV1% predicted;
bdr, bronchodilator responsiveness; exp.ct.vol, CT-derived expiratory lung volume; sgrq, St. George’s Respiratory Questionnaire; tbv, total blood vessel
volume; fev1.fvc.post, post bronchodilator FEV1/FVC; walk.dist, 6-min walk distance; prm.lower.fsad, PRM lower lobes fSAD > 10%; cortical.T12, average
HU value in the cortical region of the T12 vertebra; prm.upper.emphysema, PRM upper lobes emphysema > 2%; t.bv5, ratio of vascular tree length in
vessels with a cross-sectional area less than 5 mm2 to total vascular tree volume.

Frontiers in Physiology frontiersin.org07

Wang et al. 10.3389/fphys.2023.1144192

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1144192


Questionnaire (SGRQ) score were the most important variables for
predicting rapid FEV1 decline. Less significant variables included a
lower TBV, male sex, and current smoking status.

In the full-variable model for the GOLD 1–2 cohort, BDR,
younger age, PRMlower lobes fSAD > 10%, and higher blood vessel
volume were the most important variables predicting rapid FEV1

decline. Less significant variables included higher SGRQ score, lower
weight, higher FEV1pp.post, current smoking status, higher
expiratory CT volume, shorter height and 6-min walk distance
(6MWD), African American race, and PRMupper lobes
emphysema > 2%.

Within cohort validation

Following model training, we validated the CT-limited
COPDGene models using the same training variables within the
COPDGene cohort. This process used data from both the 5-year
(P2–P3) and 10-year (P1–P3) follow-up periods. For the GOLD
0 models, AUCs were similar to those from the training dataset,
whereas the GOLD 1–2 models were still significant but had much
lower AUCs during the 5-year follow up (P2–P3) than during
training (Table 3).

Surprisingly, AUCs increased for all models in the 10-year
validation (P1–P3). This result is atypical in machine learning, as
model AUCs tend to be highest in training data. A possible
explanation is that we employed the same pool of independent
variables used for training to predict the same signal, but over a
longer period of time. This process might decrease the noise
inherent in serial FEV1 measurements, and thus increase the
prediction accuracy.

External cohort validation

External validation on SPIROMICS data resulted in trends
similar to COPDGene P2–P3 data, showing slight predictive
drops in performance. The full variable models were significant
(p < 0.05) for both the GOLD 0 and GOLD 1–2 groups; however, the
performance of the CT-limited models declined and were no longer
significant for GOLD 0 participants. A possible explanation is that
there were only roughly half as many SPIROMICS participants as in
the COPDGene P2–P3 analysis.

In general, GOLD 1–2 models consistently performed better
than GOLD 0 models. This finding suggests that accelerated lung
function decline can be predicted with greater accuracy in those who
already have spirometric evidence of airflow obstruction.
Additionally, the prediction accuracy of the CT-limited models
was much lower than the full variable models across all training
and validation groups.

Relative risk

We next computed relative risk between two groups: those with
rapid decline risk greater than the upper 75th (p75) versus those with
decline less than the lower 25th (p25) (Table 4). For this purpose, we
used the logistic regression output probabilities of the training data for
all four datasets. The highest relative riskwas consistently seen in the 10-
year internal validation group (COPDGene P1–P3), suggesting that
over longer follow-up, these predictive models can effectively
discriminate those at highest risk of accelerated lung function decline.

Focusing only on GOLD 1–2 participants in the COPDGene
P1–P3 group, the full model can predict an over 8-fold increased risk

TABLE 3 Cross-validation AUCs, listed as mean ± 1.96 standard deviation (SD).

Full model* CT-limited model**

5-year COPDGene P1–P2 (training)

GOLD 0 0.653 ± 0.025 (p < 0.001) 0.592 ± 0.027 (p < 0.001)

GOLD 1–2 0.713 ± 0.028 (p < 0.001) 0.650 ± 0.030 (p < 0.001)

5-year COPDGene P2–P3 (Internal validation)

GOLD 0 0.622 ± 0.048 (p < 0.001) 0.562 ± 0.048 (p = 0.028)

GOLD 1–2 0.644 ± 0.054 (p < 0.001) 0.591 ± 0.059 (p = 0.008)

10-year COPDGene P1–P3 (Internal validation)

GOLD 0 0.680 ± 0.053 (p < 0.001) 0.603 ± 0.057 (p = 0.005)

GOLD 1–2 0.753 ± 0.047 (p < 0.001) 0.679 ± 0.028 (p < 0.001)

SPIROMICS (external validation)

GOLD 0 0.622 ± 0.081 (p = 0.021) 0.571 ± 0.089 (p = 0.120)

GOLD 1–2 0.640 ± 0.059 (p < 0.001) 0.568 ± 0.059 (p = 0.056)

*GOLD 0 full model variables: post bronchodilator FEV1% predicted, BDR, CT-derived expiratory lung volume, SGRQ score, TBV, sex, smoking status, post bronchodilator FEV1/FVC, height,

6MWD, PRMlower lobes fSAD > 10%, cortical.T12, age.

*GOLD 1–2 full model variables: BDR, age, PRMlower lobes fSAD > 10%, weight, TBV, post bronchodilator FEV1% predicted, SGRQ score, CT-derived expiratory lung volume, race, smoking

status, height, 6MWD, PRMupper lobes emphysema > 2%, tBV5.

**GOLD 0 CT-limited model variables: CT-derived expiratory lung volume, TBV, sex, PRMlower lobes fSAD > 10%, cortical.T12, age.

**GOLD 1–2 CT-limited model variables: age, PRMlower lobes fSAD > 10%, TBV, CT-derived expiratory lung volume, PRMupper lobes emphysema > 2%, tBV5.
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of accelerated FEV1 decline among p75 versus p25 participants.
Relative risk was lower in all the tested cohorts when using the
CT-limited model, consistent with prior results in this analysis.

Overall, these relative risk profiles suggest that the full variable
models could effectively identify those at highest risk of lung
function decline with sufficient accuracy to provide clinical
relevancy and utility in decision making. By contrast, the CT-
limited models lack significantly increased relative risk in the
SPIROMICS data, despite promising results in the COPDGene
10-year analysis. This finding highlights the need for further
external validation using 10-year follow-up data to determine
more conclusively whether screening for rapid FEV1 decline will
be practically feasible using only data from DICOM files.

Discussion

We studied the important clinical question of whether machine
learning techniques can predict which ever-smokers, either at-risk-for
COPD or with mild-moderate disease, are at highest risk for accelerated
FEV1 decline. In an ideal world, one may imagine that identifying
individuals at-risk-for disease progression only from data available in
a chest CT would allow for increased availability of data to clinicians in a
potentially automated fashion. Using logistic regression models built
based on a combination of radiographic and clinical features, we show
that this approach is feasible.

We were able to identify the most relevant imaging biomarker
features predicting accelerated lung function decline, which
importantly differed between those with established disease and
those at-risk. Key variables in GOLD 1–2 participants included
PRMlower lobes fSAD and demographic information such as age,
expiratory lung volume in GOLD 0 participants, and pulmonary
function results, particularly BDR, in both groups. Our models
showed only modest decreases in predictive strength, as indicated
by AUC analysis, in the external validation cohort, and improved at
longer intervals in the training set (COPDGene), for which longer
follow-up data were available. In the latter group, the full variable
models were able to predict an 8-fold difference in relative risk
between those in the highest versus lowest quartile of lung function
decline. These findings support the use of combined radiographic

and clinical data models to select participants for therapeutic trials of
potentially disease-modifying agents in COPD.

A strength of this analysis is that the input variables in the full models
are objective, and most are readily available, due to the use of spirometry
rather thanmore complex pulmonary function testing and to the fact that
many individuals also have recent CT scans. In the CT-limited model,
additional variables, including TBV, were also found to be significant
contributors to prediction of accelerated FEV1 decline, though with
interesting differences based on COPD status. Thus, FEV1 decline was
associated with lower TBV in GOLD 0, but with higher TBV in GOLD
1–2. One possible explanation for this disparity is the known association
of distal pruning of pulmonary vessels with early COPD progression
(Estepar et al., 2013; Synn et al., 2019; Weatherald et al., 2019). However,
further studies are needed to understand why this relationship is reversed
in later disease stages, where there may be additional anatomic changes
associated with development of pulmonary hypertension (Elwing and
Panos, 2008).

Our finding of the strong predictive impact of BDR is also
noteworthy, as BDR has recently been associated with thicker airway
walls in COPD subjects and decline in lung function (Donaldson
et al., 2005; Kim et al., 2014). This may be due to active inflammatory
disease at the level of the distal, smaller airways, leading to loss of
lung function over time (Barjaktarevic et al., 2019).

Our results agree with a recent study that used similar
machine learning techniques to predict progression of FEV1 in
COPDGene (Boueiz et al., 2022) and that also utilized P1–P2 and
P1–P3 data for internal validation. Their machine learning
models, both logistic regression and random forest, were able
to predict an absolute cross-sectional FEV1 at follow-up visits
with excellent results (ROC-AUCs > 0.9). However, similar to
our work, they had greater difficulty predicting change in FEV1

over time, with ROC-AUCs around 0.7 for both types of their
models. This may be due to the fact that the relative changes in
FEV1 over a few years are small and result in low signal-to-noise
ratios. We extend those findings via use of novel PRM and
vascular biomarkers in our prediction models, as well as by
external validation in a separate cohort to improve their
performance despite these inherent limitations.

The overall modest AUCs across our models, ranging roughly
between 0.5–0.7, imply that FEV1 is an imprecise (i.e., noisy) dependent

TABLE 4 Relative risk of rapid FEV1 decline associated with risk score greater than the upper 75th percentile (p75) versus risk less than the lower 25th (p25).

Full model* CT-limited model**

GOLD 0 GOLD 1, 2 GOLD 0 GOLD 1, 2

Training data COPDGene P1–P2 2.6 (2.1, 3.3) 3.7 (2.8, 4.9) 1.9 (1.5, 2.3) 2.7 (2.1, 3.5)

Internal validation COPDGene P2–P3 (5 year) 2.0 (1.4, 2.9) 2.5 (1.8, 3.5) 1.5 (1.1, 2.2) 1.3 (1.0, 1.6)

Internal validation COPDGene P1–P3 (10-year) 5.8 (2.8, 12.0) 8.1 (3.8, 16.9) 2.4 (1.5, 3.6) 3.5 (2.0, 5.6)

External validation SPIROMICS 2.5 (0.99, 6.3) 1.8 (1.16, 2.8) 2.14 (1.1, 4.1) 1.6 (1.0, 2.4)

95% confidence intervals are in parentheses.

*GOLD 0 full model variables: post bronchodilator FEV1% predicted, BDR, CT-derived expiratory lung volume, SGRQ score, TBV, sex, smoking status, post bronchodilator FEV1/FVC, height,

6MWD, PRMlower lobes fSAD > 10%, cortical.T12, age.

*GOLD 1–2 full model variables: BDR, age, PRMlower lobes fSAD > 10%, weight, TBV, post bronchodilator FEV1% predicted, SGRQ score, CT-derived expiratory lung volume, race, smoking

status, height, 6MWD, PRMupper lobes emphysema > 2%, tBV5.

**GOLD 0 CT-limited model variables: CT-derived expiratory lung volume, TBV, sex, PRMlower lobes fSAD > 10%, cortical.T12, age.

**GOLD 1–2 CT-limited model variables: age, PRMlower lobes fSAD > 10%, TBV, CT-derived expiratory lung volume, PRMupper lobes emphysema > 2%, tBV5.
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variable.Models trained on noisy binary classification outcomes can still
converge upon an optimal solution, as long as noise is symmetric,
i.e., the same odds of false positive and false negativemeasurements, and
there are sufficient observations (Lugosi, 1992). That AUCs were
highest for GOLD 1-2 participants was expected, and in agreement
with the analysis of Boueiz et al. (2022), as FEV1 decline in COPD is
most rapid in this group, making the signal-to-noise ratio highest
(D’Amato et al., 2016). Also as expected, we found that pulmonary
function, symptoms, and more extensive demographic data improved
prediction accuracy over using imaging variables alone. In particular,
BDR was consistently the most important non-imaging variable, with
SGRQ score also providing significant information.

That some of our findings were no longer statistically significant in
the CT-limited model for GOLD 0 indicates that screening this group
using imaging data alone is inadequate. These findings further
emphasize the challenge of predicting FEV1 decline in ever-smokers
without airflow obstruction. While currently available clinical
parameters alone do not adequately predict risk in this group, it is
promising that when combined with radiographic variables, these novel
machine learning techniques can be harnessed to assist in clinical
decision making in a relatively short period of time. There remains
great potential to harness these techniques for a variety of clinical
applications to fill patient care gaps. For example, the ability to better
phenotype patients will allow researchers to identify suitable subjects for
clinical trials, target subjects at greatest risk for accelerated lung function
decline, and more rapidly assess response to new therapies.

We also acknowledge several limitations to our work and have
identified key goals moving forward. We only tested logistic regression
models usingmachine learning techniques for feature selection. Although
we did not test other algorithms, notably decision tree models, we
replicated findings of a recent study that did. Prior studies have
attempted to phenotype subjects at risk of lung function decline using
machine learning methods such as decision tree models in other cohorts,
but did not adjust for decline associated with sex, which was the greatest
predictor of decline (Nikolaou et al., 2021). As stated above, prediction of
FEV1 remains challenging, and continued refinement and optimization
of our models will be required before these techniques can be applied
clinically to account for lung function decline that may be fairly subtle
over a few years. A wealth of biomarker data correlates to risk of COPD
progression, exacerbations, and mortality (Leitao Filho et al., 2020;
Tanimura et al., 2020; Pratte et al., 2021; Serban et al., 2021; Singh
et al., 2021) that was not included in our current models, but in future
iterations would be important to consider. Survivorship bias is another
limitation in longitudinal observational cohort studies, especially in
subjects with advanced COPD and increased short term mortality
risk, that may influence our results. Finally, most of the longitudinal
follow-up in this study occurred over a 5-year period, with some
additional analysis based on 10-year follow-up data. However, a
longer follow-up period may further enhance our model’s
performance and predictive ability.

In summary, we determined that a combination of radiographic
and clinical variables can help predict which individuals are at
highest risk for rapid FEV1 decline. While logistic regression
models trained on a limited but more easily obtainable dataset
captured from CT scans also had significant predictive value, these
models were not as accurate. Predicting FEV1 decline continues to
be challenging and there remains a strong unmet clinical need for
further refinement of these models.
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Glossary

6MWD 6-min walk distance

AUC area under the curve

AWT airway wall thickness

awt.Thirona segmental airway wall thickness, measured by Thirona
software

BDR bronchodilator responsiveness

BMI body mass index

CONSORT Consolidated Standards of Reporting Trials

COPD chronic obstructive pulmonary disease

COPDGene Genetic Epidemiology of Chronic Obstructive
Pulmonary Disease

cortical.T12 average Hounsfield unit value within the cortical region
of the T12 vertebral body

CT computed tomography

DICOM Digital Imaging and Communications in Medicine

exp.ct.vol CT-derived expiratory lung volume

FEF25.75 forced mid-expiratory flow

FEF.25.75.post post bronchodilator forced mid-expiratory flow

FEV1 forced expiratory volume in 1 s

FEV1.FVC.post post bronchodilator FEV1/FVC

FEV1.pp.post post bronchodilator FEV1% predicted

Δ FEV1%pred FEV1 percent predicted per year

fSAD functional small airways disease

FVC forced vital capacity

FVC.pp.post post bronchodilator FVC % predicted

GOLD Global Initiative for Chronic Obstructive Lung Disease

HIPAA Health Insurance Portability and Accountability Act

HU Hounsfield unit

insp.ct.vol CT-derived inspiratory lung volume

IRB institutional review board

PFT pulmonary function testing

Pi10 square root of an airway wall area with a 10 mm lumen
perimeter

Pi10.thirona square root of an airway wall area with a 10 mm lumen
perimeter, measured by Thirona software

PRM Parametric Response Mapping

prm.lower.emphysema PRM lower lobes emphysema > 2%

prm.lower.fsad PRM lower lobes fSAD > 10%

prm.total.emphysema PRM total emphysema > 2%

prm.total.fsad PRM total fSAD >10%

prm.upper.emphysema PRM upper lobes emphysema > 2%

prm.upper.fsad PRM upper lobes fSAD > 10%

ROC-AUC receiver operating characteristic area under the curve

SD standard deviation

SGRQ St. George’s Respiratory Questionnaire

SPIROMICS Subpopulations and Intermediate Outcome Measures in
COPD

TBV total blood vessel volume

tBV5/t.bv5 ratio of vascular tree length in vessels with a
cross-sectional area less than 5 mm2 to total vascular tree
volume

trabecular.T12 average Hounsfield unit value within the trabecular
region of the T12 vertebral body

walk.dist 6-min walk distance
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