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Skin is the largest organ in the human body with ~95% of its surface made up of
keratinocytes. These cells maintain a healthy skin barrier through regulated
differentiation driven by Ca2+-transcriptional coupling. Many important skin
conditions arise from disruption of this process although not all stages are fully
understood. We know that elevated extracellular Ca2+ at the skin surface is
detected by keratinocyte Gαq-coupled receptors that signal to empty
endoplasmic reticulum Ca2+ stores. Orai channel store-operated Ca2+ entry
(SOCE) and Ca2+ influx via “canonical” transient receptor potential (TRPC)-
composed channels then activates transcription factors that drive
differentiation. While STIM-mediated activation of Orai channels following
store depletion is well defined, how TRPC channels are activated is less clear.
Multiple modes of TRPC channel activation have been proposed, including 1)
independent TRPC activation by STIM, 2) formation of Orai-TRPC-STIM
complexes, and 3) the insertion of constitutively-active TRPC channels into the
membrane during SOCE. To help distinguish between these models, we used
high-resolution microscopy of intact keratinocyte (HaCaT) cells and immunogold
transmission electron microscopy (TEM) of HaCaT plasma membrane sheets. Our
data shows no evidence of significant insertion of Orai1 or TRPC subunits into the
membrane during SOCE. Analysis of transmission electron microscopy data
shows that during store-depletion and SOCE, Orai1 and TRPC subunits form
separate membrane-localized clusters that migrate towards each other. This
clustering of TRPC channel subunits in keratinocytes may support the
formation of TRPC-STIM interactions at ER-plasma membrane junctions that
are distinct from Orai-STIM junctions.
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1 Introduction

Keratinocytes protect the body from the extracellular environment by forming a
condensed layer of cornified epithelial tissue that covers the proliferative cell layers
below. The cornified layer is produced as keratinocytes crowd towards the skin surface
and differentiate in response to increased extracellular calcium [Ca2+]o (Capone et al., 2000;
Hofer and Brown, 2003; Tu et al., 2004). Elevated [Ca2+]o is detected by keratinocytes via the
extracellular Ca2+-sensing receptor (CaSR), which couples to Gαq proteins to activate
phospholipase C (Hofer & Brown, 2003; Tu et al., 2005). This in turns stimulates IP3-
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mediated Ca2+ mobilization from the endoplasmic reticulum (ER),
emptying Ca2+ stores and triggering the opening of store-operated
channels in the plasma membrane (Numaga-Tomita and Putney,
2013). Incoming Ca2+ then reaches the nucleus where it activates
specific transcriptional factors, including the critical differentiation
regulator activating protein 1 (AP-1). This form of Ca2+-
transcriptional coupling notably upregulates the expression of
many structural proteins, including involucrin and keratin, and
also alters the expression of hundreds of other genes to shift the cell
towards a differentiated phenotype (Rossi et al., 1998; Capone et al.,
2000; Ng et al., 2000; Tu et al., 2004). A number of skin diseases
including Darier’s disease, anhidrotic ectodermal dysplasia, Hailey’s
disease and psoriasis arise from failures of epidermal Ca2+ handling
(Pani and Singh, 2008; Lacruz and Feske, 2015; Dai et al., 2021),
although several stages in the keratinocyte Ca2+-transcription
pathway are not well understood.

Store-operated Ca2+ entry (SOCE) through Orai channels is a critical
component of keratinocyte differentiation (Numaga-Tomita and Putney,
2013) and Ca2+ influx via “canonical” transient receptor potential
(TRPC)-composed channels also plays an essential role (Tu et al.,
2005; Fatherazi et al., 2007; Beck et al., 2008; Muller et al., 2008).
Orai channels are directly activated by STIM proteins which
themselves directly sense the Ca2+ levels within the internal stores
(Emrich et al., 2022). However, there is no consensus for how TRPC
channel opening is triggered byCaSR activation. Aside from activation by
incoming “trigger” Ca2+ (Blair et al., 2009; Gross et al., 2009), some
members of the TRPC family can be directly activated by diacylglycerol
downstream of Gq protein activity (Hofmann et al., 1999; Trebak et al.,
2003; Storch et al., 2017). However, there is also evidence for the
activation of TRPC channels by STIM (Huang et al., 2006; Yuan
et al., 2007; Alicia et al., 2008), the formation of Orai-TRPC-STIM
complexes (Jardin et al., 2008; Jia et al., 2017), and the insertion of
constitutively active TRPC channels into the membrane during SOCE
(Cayouette et al., 2004; Cheng et al., 2011).

To distinguish between these latter three models, we used high-
resolution microscopy of intact keratinocyte (HaCaT) cells to
determine membrane insertion, and immunogold transmission
electron microscopy of plasma membrane sheets to measure the
spatial relationship between Orai1 and TRPC channel subunits at
rest, and during store-depletion and SOCE.

2 Materials and methods

Unless specified otherwise, all reagents were purchased from Sigma-
Aldrich (St Louis, MO, United States). Experiments were undertaken at
room temperature (20°C–25°C) unless indicated otherwise.

2.1 Cell culture

The HaCaT keratinocyte cell line was gifted from David Fernig
(University of Liverpool, United Kingdom) and validated by 16-loci
short tandem repeat profiling at the European Collection of
Authenticated Cell Cultures (ECACC). Cells were cultured under
sterile conditions at 37°C, 5% CO2 and sub-cultured every 3–4 days.
Differentiated HaCaT cells were cultured in Dulbecco’sModified Eagle’s
Medium (DMEM) supplemented with 2 mML-Glutamine and 10% (v/

v) foetal bovine serum (FBS) (Thermo Fisher Scientific Inc., Waltham,
MA, United States). To maintain a basal phenotype, HaCaT cells were
cultured in low-Ca2+ DMEM (Thermo Fisher Scientific) supplemented
with 30 µM CaCl2 and 10% (v/v) FBS following Ca2+ chelation with
0.76% (w/v) Chelex-100 resin (Wilson, 2014).

2.2 RNA extraction, DNAse treatment and
reverse-transcription

RNA was extracted using an RNeasy Mini Kit® (Qiagen, Valancia,
CA, United States) according to manufacturer’s instructions. RNA was
treated with DNAse I to remove contaminating genomic DNA before
cDNA was synthesized using SuperScript® III reverse transcriptase
(Invitrogen) according to manufacturer’s instructions.

2.3 Quantitative reverse-transcriptase (qRT-
) PCR

Primers were obtained from Sigma-Aldrich or GeneGlobe
(Qiagen; Supplementary Table S1). qRT-PCR reactions contained
up to 200 ng cDNA, forward and reverse primers (10 nM), and
PowerUp SYBR Green Mastermix 1X (Thermo Fisher Scientific)
topped up to 25 µL with RNAse-free water (Thermo Fisher
Scientific). Reactions were amplified with a StepOnePlus thermal
cycler (Thermo Fisher Scientific). PCR reactions were initially
subjected to a 95°C holding stage for 10 min followed by
48 cycles consisting of 15 s at 95°C followed by 60 s at 60°C.
mRNA expression was calculated using the ΔΔCt method based
on the formula RQ = 2−ΔΔCt (Livak and Schmittgen, 2001). No-
template control reactions all failed to amplify any genetic material
and melt curve analyses indicated no amplification of off-target
products in each reaction. mRNA expression was normalised to β-actin
and presented as mean ΔCt values or values relative to Orai1.

2.4 Antibodies

The following primary antibodies were used for immunofluorescence:
mouse anti-Orai1 (sc-377281, Santa Cruz Biotechnology) and rabbit anti-
TRPC1 (PA5-77303, Invitrogen). The following primary antibodies were
used for gold particle transmission electronmicroscopy (TEM): rabbit anti-
Orai1 (SAB3500412, Sigma) and mouse anti-TRPC1 (sc-133076, Santa
Cruz Biotechnology). Secondary antibodies for immunofluorescence were:
Alexa Fluor 488-conjugated anti-mouse IgG and Alexa-fluor 647 anti-
rabbit IgG (Invitrogen). Primary antibodies for TEM were directly
conjugated to gold particles. Antibodies were assessed for their ability to
detect the Orai1 or TRPC1 using HEK293 cells transiently expressing
epitope-tagged versions of the proteins (Supplementary Figures S1, S2).We
also assessed the cross-reactivity of anti-Orai1 antibodies with Orai2 and
Orai3 (Supplementary Figures S1, S2).

2.5 Immunofluorescence

HaCaT cells were grown on poly-L-lysine-coated coverslips and
fixed in 4% (w/v) paraformaldehyde (PFA), 0.2% (v/v) Triton X-100 in
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PBS for 10 min. Live cells were stained prior to fixation with 1X
CellBrite 555 Fix in PBS (Biotium; 60 min). Fixed cells were washed
with PBS and blocked in buffer containing 1% (w/v) bovine serum
albumin (30 min) before incubating with primary antibody solutions in
blocking buffer (1:50 dilution for 60 min). Cells were washed before
addition of fluorophore-conjugated anti-IgG secondary antibodies in
blocking buffer (30 min). Coverslips were mounted onto glass slides
using Prolong Glass Antifade Mountant (Thermo Fisher Scientific).
Images were captured through a ×63 oil-immersion objective (Zeiss)
using the lattice-structured illuminationmicroscopy (lattice-SIM)mode
on an Elyra-7 super resolution microscope (Zeiss). 200 mW laser lines
were used to stimulate fluorophores at 488, 561, and 642 nm
wavelengths, at 2% laser intensity. Relevant excitation, filtering and
grating parameters for each channel are detailed in Supplementary
Table S2. Images were capturedwith 50 ms camera exposure time in 16-
bit grey depth and z-stack images were captured every 101 nm,
producing approximately 100 stacks per image.

2.6 Lattice-SIM image processing and
analysis

Z-stack image files encompassing 2-6 cells were sectioned within
ImageJ 2.3 (Rasband, W.S., ImageJ, U. S. National Institutes of Health,
Bethesda,Maryland,United States, https://imagej.nih.gov/ij/, 1997–2018),
removing the lower 10–20 z-planes to avoid any non-specific binding of
CellBrite to the poly-L-lysine coverslip coating. Single-cell images were
pre-processed using the SIM2 formula package for Zen Black 16.0 (Zeiss).
3-dimensional SIM2 processing was applied using the “Weak, Fixed” pre-
set (Low input signal-to-noise ratio, 15 iterations, regularization weight 0.
065) and a median filter was applied using the ‘Fast Fit’ method. Pre-
processed z-stacks were exported into Imaris 9.8 (Andor) for image
analysis. Binary “Surface” objects were segmented, firstly marking the
plasma membrane (CellBrite 555 Fix) using smoothing (surface detail 0.
0626 μm) and thresholding via background contrast (largest sphere
diameter 1.00 μm). Total Orai1 and TRPC1 surfaces were also
generated with smoothing (surface detail 0.0626 μm) and background
contrast thresholding (largest sphere diameter 0.235 μm). “Split touching
Objects (Region Growing)” was enabled to watershed closely aligned
surfaces (seed points diameter 0.313 μm). Seed points were subjected to a
median intensity filter to reduce non-specific signal. Finally, membrane-
restricted Orai1 and TRPC1 surfaces were generated by strictly assessing
surfaces overlapping the membrane volume (>10–20 μm3, the lower
volume limit in Imaris 9.8). Surface statistics were exported into Excel
16.5 (Microsoft) to analyse volume overlap and nearest-neighbour
distances.

2.7 Immunogold labelling and transmission
electron microscopy

Plasmamembrane sheets were prepared from culturedHaCaT cells
grown on poly-L-lysine-coated glass coverslips as previously described
(Prior et al., 2003). For details on grid preparation see Supplementary
Methods. Grids were imaged using a FEI 120 kV Tecnai G 2 Spirit
BioTWIN transmission electron microscope. Distances between gold
particles were measured using ImageJ 2.3 and exported to Excel 16.5
(Microsoft) for nearest-neighbour distance calculation and Prism 9

(GraphPad) for analysis. Images were processed using ImageJ 2.3 and
Excel 16.5 (Microsoft Corp, United States) prior to analysis and plotting
in Prism 9 (GraphPad Software, Inc., San Diego, United States).
Density-based spatial clustering of applications with noise
(DBSCAN) was implemented in R (Hahsler, 2019). Epsilon
neighbourhood and minimum cluster size were set to 50 and
5 respectively. Other parameters were defaults.

2.8 Statistical analysis

Statistical tests and p values are stated throughout.

3 Results

3.1 HaCaT keratinocytes express transcripts
for Orai1, 2, 3, STIM1, 2 and TRPC1 and 4

To assess the relative transcript levels of TRPC, Orai and STIM
isoforms in HaCaT keratinocytes we used qRT-PCR to screen for

FIGURE 1
HaCaT keratinocytes express transcripts for Orai1, 2, 3, STIM1,
2 and TRPC 1, 4 HaCaT mRNA expression from basal (dark blue) and
differentiated HaCaT cells (light blue) as determined by qRT-PCR.
Results are presented relative to β-actin (A) or Orai1 expression
(B,C). All STIM,Orai and TRPC results are shown asmean± SEM forN=
3 experimental replicates (D).
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mRNA expression in basal and differentiated cells. Transcripts for
Orai1, Orai 2 and Orai3 were found in both basal and differentiated
HaCaTs (Figures 1A, B, D). Orai1 expression, represented as a
fraction of β-actin, was found to approximately double between
basal and differentiated cells (Figure 1A). Orai2 and

Orai3 expression were similar to Orai1 in the basal phenotype,
but both Orai2 and Orai3 expression reduced with differentiation
(Figure 1B). STIM1 was the dominant STIM isoform in both HaCaT
phenotypes (Figures 1B, D). STIM2 was detected at much lower
levels such that the approximate STIM1:STIM2 ratio was 10:1 in the

FIGURE 2
Orai1 and TRPC1 co-localize during SOCE but membrane levels of both proteins remain constant. (A) Representative lattice-SIM
immunofluorescent images of HaCaT cells fixed in a resting state (upper panel) or following activation of store-operated Ca2+ entry (lower panel). Cells
were stained for the plasma membrane (CellBrite 555 Fix), and with antibodies against TRPC1 and Orai1. Images show a transverse slice from a z-stack
which was used to construct 3Dmodels for co-localization analysis. Staining for TRPC1 and Orai1 was identified using the surfaces methodology in
Imaris v9.8 (see Section 2). Surfaces of TRPC1/Orai1 signal were filtered to staining coincident with the plasma membrane stain and watershed to
represent individual clusters of fluorescence signal. Resultant surfaces were analysed for overlap of Orai1 (B,C), TRPC1 (D,E) and with the plasma
membrane stain and for total overlapping volume of Orai1-TRPC1 (F) under both resting (blue) and SOCE (red) conditions.
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basal phenotype versus 18:1 in the differentiated phenotype. TRPC1,
C3, C4, C5, C6, and C7 transcript levels were also determined
(Figures 1C, D). TRPC1 was the dominant isoform and C4 was also
detected. Both TRPC variants were detected at low levels relative to
Orai1 and remained relatively constant between basal and
differentiated phenotypes. TRPC3, C5, C6, and C7 mRNA were
not detected in samples from either HaCaT phenotype.

3.2 Orai1 and TRPC1 channel subunits co-
localize during SOCE: Lattice-SIM imaging

Keratinocyte store-operated Ca2+ entry is driven largely by Orai1
(Numaga-Tomita and Putney, 2013). We thus chose to focus on this
isoform for high-resolution lattice-structured illumination microscopy
(lattice-SIM) studies to examine Orai-TRPC co-localization and Orai/
TRPC membrane insertion during SOCE. Only TRPC1 and C4 have
been implicated previously in keratinocyte store-operated currents
(Cai et al., 2005; Cai et al., 2006; Fatherazi et al., 2007; Beck et al., 2008).
Of these two TRPC variants that we detected at transcript level, only
antibodies against the dominant TRPC1 were found to be suitable for
use in combination with Orai1 antibodies in immunofluorescence
experiments. We therefore selected TRPC1 for this investigation. Due
to the number of other members of the TRPC family, cross-reactivity
of the anti-TRPC1 antibodies was not assessed. These antibodies
robustly detected epitope-tagged TRPC1 in transient expression
systems (Supplementary Data), but we cannot exclude the
possibility that in keratinocytes these antibodies cross-react with
another TRPC protein.

Immunofluorescence experiments were conducted using
antibodies targeted to Orai1 and TRPC1 in conjunction with
plasma membrane staining (CellBrite 555 Fix; Figure 2A). Cells
were treated with a SOCE activation protocol (5 min in nominally
Ca2+-free PBS with 2 μM thapsigargin followed by 2 min in 2 mM
Ca2+-supplemented PBS) or maintained in a resting condition
(2 mM Ca2+-PBS alone) prior to fixation, permeabilization and
staining. Plasma membrane staining was used to stratify
Orai1 and TRPC1 signal incident at the plasma membrane. The
resultant membrane-restricted TRPC1/Orai1 signal was used for co-
localization and membrane expression analysis.

TRPC1 and Orai1 membrane expression was assessed by
examining the volume of signal co-incident with the plasma
membrane stain (Figures 2A–E). Membrane-incident
Orai1 volume was 4.59 μm3 in resting cells (median, IQR
2.68–7.23 μm3; Figure 2B, blue) versus 6.24 μm3 in the SOCE
condition (IQR 2.96–9.93 μm3; red; Mann-Whitney test, p =
0.1216). These values correspond with 41.5% of total Orai1 signal
in resting cells (IQR 32.9%–51.8%; Figure 2C, blue) versus 38.5% of
total Orai1 signal in the SOCE condition (IQR 30.3%–49.6%; red; p =
0.4474). Membrane-incident TRPC1 volume was 4.16 μm3 in resting
cells (median, IQR 2.01–6.98 μm3; Figure 2D, blue) versus 5.22 μm3

in the SOCE condition (IQR 2.93–8.91 μm3; red; p = 0.2148). As a
percentage of the total TRPC1 signal detected in each cell, these
values correspond with 21.4% of total TRPC1 in resting cells (IQR
15.8%–30.7%; Figure 2E, blue) versus 20.5% of total TRPC1 in the
SOCE condition (IQR 12.2%–33.1%; red; p = 0.4034). This suggests
that neither Orai1 nor TRPC1 membrane expression vary
significantly during HaCaT SOCE.

To assess the spatial relationship of the proteins in the
membrane and how this changes during store depletion and Ca2+

entry we examined their co-localization. The total volume of
coincident Orai1 and TRPC1 signal in the resting condition was
0.75 μm3 (median; IQR 0.43–1.13 μm3;N = 45 cells; Figure 2F, blue),
compared with a significantly increased coincident volume in the
SOCE condition of 1.05 μm3 (IQR 0.68–1.96 μm3; N = 33 cells; red;
Mann-Whitney test, p = 0.0058). This suggests that a greater number
of Orai1 and TRPC1 molecules are co-localized during SOCE
compared with baseline.

3.3 Orai1 and TRPC1 channel populations
cluster and co-localize during store
depletion and SOCE: Gold particle
immunolabelling TEM

We sought to confirm this SOCE-induced co-localization with
the higher resolution of electron microscopy. HaCaT cells were
treated prior to fixation and preparation for imaging. Treatments
included either: 1) 7 min in 2 mMCa2+-supplemented PBS (resting);
2) 7 min in nominally Ca2+-free PBS with 2 μM thapsigargin
(depleted); or 3) 5 min in Ca2+-free PBS with thapsigargin
followed by 2 min in 2 mM Ca2+-PBS (SOCE). After treatment
and fixation, basal HaCaT plasma membranes were ripped off
exposing the inner membrane leaflet for immunolabelling with
primary antibodies targeted to cytoplasmic portions of Orai1 and
TRPC1 proteins. Primary antibodies were directly conjugated with
gold nanoparticles (Orai1:10 nm diameter gold and TRPC1: 3 nm
diameter gold) to distinguish between these proteins (Figure 3A).
This procedure was carried out three times per condition (N =
3 biological replicates), with each condition totalling between
117–365 Orai1-associated particles and 156–1107 TRPC1-
associated particles. Distances between gold particles were
measured to calculate nearest-neighbour distances. We
investigated whether these Euclidean distances were clustered,
and whether such cluster configurations altered with treatment,
using the density-based spatial clustering of applications with noise
(DBSCAN) technique (Hahsler, 2019). Clustering was quantified for
four different distance combinations (Orai1-Orai1; TRPC1-TRPC1;
Orai1-TRPC1; TRPC1-Orai1) under three conditions each (at rest,
following store depletion, and during SOCE).

For each distance combination, clustering analysis detected two
clusters at rest and only one cluster following store depletion and
SOCE (Figures 3B–E). Note that the two “clusters” at rest simply
denote that some particles are “close” and others are “further away,”
perhaps randomly distributed throughout the membrane. The loss
of the “further away” population following treatment for each
distance combination reflects that the particles move closer
together. This suggests that under these conditions, Orai1 and
TRPC1 subunits form separate membrane-localized clusters and
that these clusters migrate towards each other.

For Orai1 channels at rest, the mean distance between
Orai1 particles was 244.5 ± 80.0 nm in cluster 1 (mean ± SD;
n = 35; Figure 3B, yellow) and 21.9 ± 14.9 nm for cluster 2 (n =
78; Figure 3B, blue). Following store depletion, only one cluster
could be detected centred at 74.7 ± 93.8 nm (n = 357; Figure 3B,
blue), and during SOCE only one cluster was identified centred at
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42.1 ± 46.7 nm (n = 174; Figure 3B, blue). A similar pattern was seen
for TRPC1-TRPC1 distances (Figure 3C). At rest, the mean distance
between TRPC1 particles was 404.9 ± 32.9 nm in cluster 1 (n = 8;
Figure 3C, yellow) and 45.5 ± 76.2 nm for cluster 2 (n = 144;

Figure 3C, blue). One cluster was detected following store depletion
centred at 41.8 ± 66.3 nm (n = 1,107, blue) and, again, only one
cluster was detected during SOCE centred at 17.6 ± 19.1 nm
(n = 823, blue). We also analysed the distance between

FIGURE 3
TRPC1 and Orai1 channel populations cluster and co-localize under Ca2+ store depletion and SOCE conditions. (A) Representative transmission
electron micrographs of HaCaT cell membrane rip-offs (N = 3 biological replicates per condition) immunolabelled with 10 nm and 3 nm diameter gold
nanoparticles targeted to Orai1 and TRPC1, respectively (scale bar 100 nm). (B) Distances between gold particles were measured to calculate nearest-
neighbour distances and the DBSCAN technique used to assess whether these Euclidean distances were clustered and whether identified cluster
configurations altered with treatment. Clustering was quantified for four different distance combinations [Orai1-Orai1(B); TRPC1-TRPC1 (C); Orai1-
TRPC1 (D); TRPC1-Orai1 (E)] under three conditions each (at rest, during store depletion, and during SOCE). For all conditions two clusters [cluster 1
(yellow) and cluster 2 (blue)] were detected at rest. Cluster 0 (grey) denotes particles not attributed to any cluster. Only one cluster (blue) was detected in
all conditions following store depletion and SOCE. The mean distance between particles in each identified cluster is indicated by the horizontal line.
Significance levels refer to the median distance between all particles within the population for a given condition (Kruskal-Wallis with Dunn’s multiple
comparisons; **p = 0.006; ***p = 0.0009; ****p < 0.0001; see text for details).
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Orai1-TRPC1 particles and, conversely, TRPC1-Orai1 under the
different conditions. At rest, the mean distance between Orai1-
TRPC1 was 749.6 ± 10.9 nm in cluster 1 (n = 5; Figure 3D, yellow)
and 259.1 ± 125.0 in cluster 2 (n = 111; Figure 3D, blue). This was
found to be similar for TRPC1-Orai1 distances at rest where cluster
centres were at 776.3 ± 8.1 nm and 275.9 ± 117.0 nm for cluster 1
(n = 5; Figure 3E, yellow) and cluster 2 (n = 149; Figure 3E, blue),
respectively. Here, again, the two clusters coalesced into one cluster
following treatment. Following store depletion, the mean distance
between Orai1-TRPC1 particles was 115.1 ± 68.5 nm (n = 362;
Figure 3D, blue), similar to the mean distance between TRPC1-
Orai1 (177.0 ± 112.6 nm, n = 1,105; Figure 3E, blue). During SOCE,
the one identified Orai-TRPC cluster centred at 64.5 ± 43.3 nm (n =
175; Figure 3D, blue), and the single TRPC-Orai cluster centred at
96.4 ± 57.9 nm (n = 825; Figure 3E, blue).

Independent from cluster analysis, we also looked at the median
distance between all particles within the population for a given
condition (Supplementary Figure S3). The distance between a given
labelled Orai1 particle and its nearest Orai1 neighbour was found to
be significantly lower during SOCE (median 19 nm, IQR 14–52 nm)
compared to resting (median 24 nm; IQR 15–206 nm; Kruskal-
Wallis with Dunn’s multiple comparisons, p = 0.0056). Similarly,
TRPC1 nearest-neighbour distances were significantly lower in the
SOCE condition (median 11 nm, IQR 8–18 nm) compared to at rest
(14 nm, IQR 8–54 nm; p = 0.006).

Orai1-TRPC1 median nearest-neighbour distances were 236 nm
(IQR 163–334 nm) at rest compared to 106 nm in the depleted
condition (IQR 67–154 nm) and 57 nm during SOCE (IQR
31–85 nm). A Kruskal-Wallis test with Dunn’s multiple comparisons
demonstrated a statistically significant difference between all three
distributions (p < 0.0001). Conversely, TRPC1-Orai median nearest-
neighbour distances were 274 nm (IQR 169–386 nm), versus 150 nm in
the depleted condition (IQR 97–236 nm) and 83 nm in the SOCE
condition (54–128 nm; blue). Similar to the above, a Kruskal-Wallis test
with Dunn’s multiple comparisons demonstrated a statistically
significant difference between the distributions in all three
conditions (p < 0.0001).

4 Discussion

Ca2+ influx via TRPC-composed channels plays a crucial role in the
Ca2+-transcriptional coupling that underlies keratinocyte differentiation
(Tu et al., 2005; Fatherazi et al., 2007; Beck et al., 2008;Muller et al., 2008).
Here we investigate the spatial relationship between these channels and
Orai1 in the HaCaT cell membrane following store depletion and during
SOCE. Our data support the idea that under these conditions separate
populations TRPC channels coalesce to form larger membrane-localized
clusters that migrate towards clustered Orai channels.

To assess the spatial relationship of Orai and TRPC channels at the
membrane under resting and SOCE conditions, high-resolution imaging
was undertaken. Immunofluorescence experiments with cells fixed in
resting and SOCE conditions suggest that plasma membrane Orai1 and
TRPC1 co-localize during SOCE, as assessed by the overlap of respective
fluorescence signal at the plasmamembrane. Plasmamembrane levels of
Orai1 and TRPC1 were both found to be consistent between resting and
SOCE conditions. These results are in contrast tofindings thatOrai1Ca2+

entry recruits TRPC1 to the plasma membrane (Cayouette et al., 2004;

Cheng et al., 2011) and findings that Orai1 is recruited to the membrane
during ER Ca2+ store depletion (Woodard et al., 2008). We determined
plasma membrane-restricted Orai and TRPC based on the staining of a
well-characterized dye, which covalently labels the surface of live cells.
Cells were stained prior to fixation and permeabilization to avoid dye
internalization as much as possible. We cannot exclude the staining of
some intracellular membranes however, and a proportion of the
membrane-restricted TRPC1 or Orai1 signal may originate from
intracellular trafficking vesicles close to the plasma membrane or the
membrane of the junctional ER, (approximately 20 nmdistance from the
plasma membrane).

To look at the plasma membrane in isolation we turned to the
higher-resolution membrane rip-off technique in conjunction with
immuno-gold labelling and TEM. TEM carries a resolution limit
closer to 0.1 nm (Franken et al., 2020) and so is expected to give
enhanced detail of Orai1-TRPC1 localisation at the plasma
membrane. Likely reflecting the relatively low abundance of these
proteins, the staining density of Orai1/TRPC1-conjugated gold
particles did not meet the minimum requirement for Ripley’s K
Function analysis of clustering or co-localization (Prior et al., 2003),
so nearest-neighbour distances were calculated. These data confirm
numerous studies that show Orai channel clustering during SOCE
(Xu et al., 2006; Park et al., 2009). Unbiased cluster analysis detected
two distinct clusters for Orai at rest and only one cluster following
store depletion. The lost cluster represents the “further away”
population, suggesting that Orai particles begin to move closer
together during store depletion. When analyzing Orai1 nearest-
neighbor distances, the change in median distance between rest and
store-depleted conditions did not reach significance. One possible
explanation for this is that our study looks at endogenous Orai
channels as opposed to over–expression systems which may
exaggerate clustering effects. Since we could not directly assess
Orai-STIM interactions in these experiments, another possibility
is that the detected Orai clusters are not active clusters induced by
STIM. Our results also demonstrate separate clustering of
TRPC1 channel subunits, and a general migration of
Orai1 clusters and TRPC1 clusters towards each other under
these conditions. It is tempting to speculate that this may be
evidence for TRPC1-STIM interactions at ER-plasma membrane
junctions that are distinct from Orai-STIM junctions, although we
have no direct evidence for this. This has been indicated previously
in pancreatic acinar secretory epithelial cells (Hong et al., 2011) and
also in HEK293 overexpression experiments (DeHaven et al., 2009),
with specialized STIM-TRPC junctions suggested to exist
independent of other STIM-Orai or STIM-Orai-TRPC junctions.
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