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This study examined methods for estimating the innervation zone (IZ) of a muscle
using recorded monopolar high density M waves. Two IZ estimation methods
based on principal component analysis (PCA) and Radon transform (RT) were
examined. Experimental M waves, acquired from the biceps brachii muscles of
nine healthy subjects were used as testing data sets. The performance of the two
methods was evaluated by comparing their IZ estimations with manual IZ
detection by experienced human operators. Compared with manual detection,
the agreement rate of the estimated IZs was 83% and 63% for PCA and RT based
methods, respectively, both using monopolar high density M waves. In contrast,
the agreement rate was 56% for cross correlation analysis using bipolar high
density M waves. The mean difference in estimated IZ location between manual
detection and the tested method was 0.12 ± 0.28 inter-electrode-distance (IED)
for PCA, 0.33 ± 0.41 IED for RT and 0.39 ± 0.74 IED for cross correlation-based
methods. The results indicate that the PCA based method was able to
automatically detect muscle IZs from monopolar M waves. Thus, PCA provides
an alternative approach to estimate IZ location of voluntary or electrically-evoked
muscle contractions, and may have particular value for IZ detection in patients
with impaired voluntary muscle activation.
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1 Introduction

The innervation zone (IZ) of a muscle is the region where muscle fibers are innervated by
motor axon terminals. The architecture of the IZ can influence electromyographic (EMG)
signal characteristics recorded from the muscle surface (Nishihara et al., 2010; Rantalainen
et al., 2012; Gallina et al., 2013; Ye et al., 2015; Smith et al., 2017; de Souza et al., 2022). The
ability to detect the location of the IZ using EMG techniques has implications for
understanding muscle function in health and disease. Thus, monitoring changes in IZ
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location may provide valuable information about the processes of
motor unit remodeling associated with aging, disease, and injury
(Jahanmiri-Nezhad et al., 2015; Rasool et al., 2017; Dias et al., 2018;
Li et al., 2021). In addition, the ability to detect the IZ has important
clinical value. For example, one clinical application of IZ estimation
is to guide botulinum toxin (BTX) injection more precisely for
treating spasticity in patients with neurological injuries such as
stroke and cerebral palsy (Van Campenhout and Molenaers, 2011;
Guzmán-Venegas et al., 2014; Zhang et al., 2019; Chen et al., 2020;
Zhang et al., 2021). The effectiveness of BTX treatment has been
reported to depend on the distance between the injection site and the
IZ (Shaari and Ira Sanders, 1993; Lapatki et al., 2011; Kaymak et al.,
2018).

The IZ can be identified through EMG signals recorded by a
linear electrode array or a matrix of electrodes placed over the
muscle (Drost et al., 2006; Barbero et al., 2012; Piccoli et al., 2014;
Campanini et al., 2022). Most investigators have estimated the
location of the IZ based on surface EMG recordings of voluntary
muscle contractions and processing the signals in a single
differential or bipolar configuration (Ostlund et al., 2007; Mesin
et al., 2009; Enck et al., 2010; Barbero et al., 2011; Beck et al., 2012;
Ullah et al., 2014; Marateb et al., 2016; Liu et al., 2019; Mancebo
et al., 2019; Liu et al., 2020; Zhang et al., 2020), whereas few have
processed monopolar signals for IZ estimation (Rodriguez-Falces,
2017). When EMG signals are processed in a differential
configuration the IZ location may correspond to either a reversal
in EMG signal polarity between two adjacent channels along the
muscle fibers, or the smallest amplitude in a single channel.

Although voluntary contractions are convenient for estimating
the IZ, theymay not be feasible in patients with significant paralysis or
poor motor control. An alternative method for IZ location is to record
compound muscle action potentials (or M waves) evoked by electrical
stimulation of the motor nerve, but few have used this approach
(Zhang et al., 2017). In two reports, the IZ location was found to be
similar when based on M waves and voluntary EMG (Guzmán-
Venegas et al., 2016) (Huang et al., 2019). When recording M waves
using electrode arrays, a monopolar electrode configuration is often
used because bipolar configuration may considerably attenuate M
wave content (Tucker and Türker, 2005; Hadoush et al., 2009;
Rodriguez-Falces and Place, 2018). There is a need to further
develop appropriate methods to automatically estimate the IZ from
M wave signals recorded in a monopolar configuration.

In this study we investigated two methods to estimate the IZ from
monopolar M-wave recordings. One method was based on principal
component analysis (PCA); specifically, the second principal
component coefficients derived from PCA, which are related to
time delays of different EMG channels. The method is suitable for
analysis of monopolar signals and has been evaluated using high
density voluntary surface EMG signals (Huang et al., 2022), but not on
electrically-evoked signals. The other method is based on Radon
transform (RT), which can be used to detect linear patterns in a
two-dimensional signal and has been proved useful for IZ estimation
(Cescon, 2006). Although IZ estimation based on RT was mainly
applied to bipolar voluntary surface EMG signals (Li et al., 2021),
(Cescon, 2006), (Li et al., 2022), theoretically, the RT method can also
be applied on monopolar signals for estimation of IZ location.

The usefulness of PCA and RT methods for automated
estimation of IZ location was explored in the current study using

monopolar M waves recorded with surface electrode arrays from the
biceps brachii (BB) muscles. The performance of automatic IZ
detection was compared with manual detection based on visual
inspection of the M waves. The objective was to provide an
alternative approach to voluntary contraction for reliable and
automatic estimation of muscle IZ.

2 Methods

2.1 Experiment

2.1.1 Participants and consent
Nine healthy male subjects (mean ± SD, 28.9 ± 4.8 years)

without a history of neuromuscular or musculoskeletal disorders
participated in the study. They were well informed of the
experimental procedures, including possible risks and
discomforts. All subjects gave written informed consent approved
by the ethics committee of Guangdong Work Injury Rehabilitation
Center (Guangzhou, China).

2.1.2 Experiment protocols
Two high density channel arrays (ELSCH064NM2,

Bioelettronica, Torino, Italy) were placed parallel to the muscle
fiber direction over the lateral side (Array 1) and the medial side
(Array 2) of the BB after skin preparation and fixed with elastic
straps (Figure 1A). Each channel matrix consists of 64 channels with
an 8 mm inter electrode distance (IED) arranged in a grid of
5 columns by 13 rows (one column contained only 12 channels).
A ground electrode was placed at the elbow. A constant-current
stimulator (DS7A, Digitimer, Herthfordshire, UK) and standard bar
electrode (3 cm inter-electrode spacing) were used to evoke BB
M-waves. The bar electrode was placed over the musculocutaneous
nerve at the proximal medial side of the BB (Figure 1B). Single pulses
of 1 ms duration were applied every 5 s as the current intensity was
increased until the maximal M-wave was recorded. The M waves
were recorded by a signal amplifier (100x) in monopolar
configuration (EMG-USB2, sampling frequency of 2048 Hz, 12-
bit A/D converter, Bioelettronica, Torino, Italy).

2.2 Detection of muscle IZ from monopolar
M waves

2.2.1 Muscle IZ estimation based on PCA
The rationale for using the 2nd principal component coefficients

derived from PCA for IZ estimation was explained in detail (Huang
et al., 2022). Briefly, PCA performs the eigen decomposition on the
covariance matrix Σ of the standardized (zero mean, and unit
variance) electrode array EMG signals X (M-by-N matrix, N
samples and M channels), which is a M × M matrix where each
element represents the covariance between two channels. The
elements of each eigenvector are the coefficients of each principal
component. It has been proven that the 2nd principal component
coefficients are related with the time delays of different channels due
to signal propagation from the IZ to the two ends of a muscle
(Huang et al., 2022) (Laguna et al., 2018). As illustrated in Figure 1C,
the channels located near the IZ are expected to have minimum time
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FIGURE 1
(A): Schematic representation of the two adhesive 2D matrices for recording experimental signals. (B): High-density electrode array recording with
columns positioned parallel to the muscle fiber direction. (C): An example of monopolar M waves of 13 channels in one of the columns from a
representative subject. The IZ is located close to row 6. Delay: time interval of the waveforms travelling distally from the IZ.

FIGURE 2
An example of muscle IZ estimation from experimental high density M waves where different methods reached the same results. (A): A column of M
waves of a tested subject. (B): PCA based IZ estimation: the minimum coefficient was located at row 7 and the coefficients gradually increased along the
fiber direction. (C): RT based IZ estimation: the distribution of RT results across all the rows, and between rows. (D): Cross correlation based IZ estimation:
the distribution of the correlation coefficients between adjacent bipolar signals.
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delay. Therefore, analysis of the 2nd principal component
coefficients can provide useful information pertaining to IZ location.

2.2.2 Muscle IZ estimation based on RT
The procedures of the RT based IZ identification have been

described in detail (Cescon, 2006). For a column of signals, starting
from the first row, the RT was implemented to search for the optimal
propagation lines from signals at either side of a row i (i = 1,2,3 . . .

13), or between row j and row j + 1 (j = 1,2,3 . . . 12). A total of 25 RT
results were obtained. As illustrated in Figure 1C, the potentials in
the spatiotemporal surface EMG signal appear along inclined lines
as they travel from the IZ to the tendon regions at a certain velocity.
Therefore, the IZ location can be estimated by the maximum RT
result.

2.3 Performance evaluation

The M-waves of the two most lateral and most two medial side
columns were excluded from IZ identification as they were close to
margin of the muscle. This left 6 columns for IZ estimation for each
subject (Figure 1A). For each M wave, stimulation artifact was
identified and suppressed as described previously (Liu et al.,
2014). The signal duration was 0.2 s. For the PCA-based method,
the signals were standardized (zero mean and unit variance). The
spline interpolation was applied to the 2nd component coefficients

along the rows to determine the IZ location for each column. For the
RT based method, the signals were rectified. The output of the IZ
detection was the channel number if the IZ was located on a specific
channel or the average of neighboring channels if the IZ was located
between two channels. In addition, the IZ was estimated from a
conventional cross correlation method applied on bipolar M wave
signals constructed frommonopolar signals. The identified IZs from
each of the methods were compared with those estimated manually
based on visual inspection of the M waves by at least two
experienced investigators. These investigators reached an
agreement on IZ location prior to automated processing. The IZ
location from manual inspection was used as the reference for
quantifying the performance of the automated methods.

3 Results

Figure 2A shows one column ofMwaves in bothmonopolar and
bipolar configurations for a single subject. Visually, the IZ was
located near the channel at row 7. Figure 2B shows spatial
distribution of the 2nd component coefficients. Notice that the
position of the smallest coefficients was at row 7. The RT
method also identified the IZ at row 7 (Figure 2C). The
minimum correlation coefficient was between bipolar pair
row6—row7 and row 7—row8 (Figure 2D), which also indicated
that the IZ was located at row 7 based on the monopolar

FIGURE 3
An example ofmuscle IZ estimation from experimental high density Mwaves where differentmethods produced different results. (A): A column ofM
waves of a single subject. (B): PCA based IZ estimation; (C): RT based IZ estimation; (D): Cross correlation based IZ estimation; (E): Enlarged view of the
monopolar M waves from rows 3, 4, and 5. See text for details.

Frontiers in Physiology frontiersin.org04

Huang et al. 10.3389/fphys.2023.1137146

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1137146


configuration. These results reveal that IZ location was similar
across the three methods.

There were also examples where the different methods produced
different IZ locations (Figure 3). Figure 3A shows a column of M
waves in both monopolar and bipolar configurations from a different
subject. The IZ was located between row 5 and row 6 according to the
2nd principal component coefficients (Figure 3B) and at row
6 according to the maximum RT (Figure 3C). In contrast, the IZ
was located at row 4 (between bipolar pair row 3—row 4, and row
4—row 5) according to the minimum correlation coefficient
(Figure 3D). To explore possible reasons for the different
estimates, the associated M waves were visually examined. As
shown in Figure 3E, at the second phase of the M wave from row
4, there was a very short segment of saturation, which caused an
artificial phase reversal between the bipolar pair row3—row4, and
row4—row5, leading to misidentification of the IZ. Visual inspection
of the M waves revealed that the IZ was located between row 5 and
row 6. This was also confirmed from the differential signals as the
amplitude between row 5 and row 6 was close to 0.

In total, 54 columns of experimental signals were processed for IZ
estimation. Among them, 45 IZs (83%) estimated from the PCA,
34 IZs (63%) from the RT, and 30 IZs (56%) from the cross correlation
were the same as estimations based on visual inspection. Compared
with the visual estimations (reference IZs), the mean difference in
estimated IZ location was 0.12 ± 0.28 IED for PCA, 0.33 ± 0.41 IED for
RT, and 0.39 ± 0.74 IED for cross correlation.

4 Discussion

The ability to estimate muscle IZ through high density surface
EMG signals using linear or 2-dimensional electrode arrays may be
important clinically. A typical application is to guide BTX injection as
close as possible to the IZ for spasticity treatment (Lapatki et al., 2011),
(Kaymak et al., 2018). Voluntary contraction and electrical
stimulation of the motor nerve are two common ways to generate
surface EMG signals. The advantage of using electrical stimulation for
IZ estimation is that it can be applied in patients who are paralyzed or
lack the necessary voluntary control.Mwaves are commonly recorded
in a monopolar mode, which provides informative content of action
potential generation, propagation, and extinction (Rodriguez-Falces
and Place, 2018). Compared with a differential configuration,
monopolar recording can capture EMG signals from a larger
muscle volume. The loss of M wave signal due to phase
cancellation was more pronounced in bipolar than monopolar
recording (Tucker and Türker, 2005). Although M waves provide
a valuable signal source, its application for muscle IZ estimation has
been rarely explored in the literature.

The current study examined two methods of estimating IZ
location (PCA and RT) from monopolar M waves of the BB
muscles. The BB was chosen as it is often affected by spasticity
in patients with neurological disorders and is thus often a target
muscle for treatment. Compared with manual IZ detection by an
experienced investigator, the PCA based method achieved more
consistent performance than one based on RT. PCA and RT use
different computational approaches for IZ estimation. In PCA, a
simplified time misaligned data model shows that the 2nd principal
component coefficients are linearly related with the time delay of

different channels (Laguna et al., 2018). Therefore, the 2nd principal
component can be used for IZ estimation. The rationale of RT is that
it can be used to measure the projections of the line-scan image at a
range of angles and determine the propagation of waveforms. When
the RT is applied for IZ estimation, it is assumed that waveforms
propagate at a constant velocity on both sides of the IZ (Cescon,
2006). However, this is not always the case experimentally, as
illustrated from examples of the 2nd principal component
coefficients distributions (Figures 2, 3). This might be one reason
that the performance of RT is not as consistent as PCA.

The IZ was also estimated from cross correlation analysis
applied to bipolar M waves constructed from the monopolar
signals, and its performance was the least consistent relative to
the visual inspected IZ. In the correlation coefficient method, if one
monopolar channel is of poor signal quality, the constructed bipolar
configuration may be affected leading to errors in IZ location
(Figure 3). This was also demonstrated in our previous study
(Huang et al., 2022).

The experimental data sets used for evaluating IZ estimation
performance were limited to the BB of healthy subjects. Recordings
from other muscles in the future is desirable. It would be clinically
relevant to test patients with neurological disorders such as stroke.
The IED of the electrode array used in this study was 8 mm. This
limited the spatial resolution for IZ detection, but can be increased
by using a smaller IED. In addition, this study only considered a
single IZ in amuscle. The effects of possible multiple IZs on recorded
M waves needs further investigation, as they may compromise
accuracy of the estimated IZ (Piccoli et al., 2014), (Huang et al.,
2021) (Lateva et al., 2010).

In summary, the current study explored the feasibility of
estimating IZ using monopolar high density BB M waves. The
PCA based method was able to automatically detect muscle IZs
from monopolar M waves, demonstrating a performance most
consistent with manual detection by human operators. The
findings provide an alternative approach to voluntary
contractions for estimating the IZ, which has practical clinical
value for patients with compromised ability to voluntarily
activate their skeletal musculature.
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