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Purpose: Blood damage has been associated with patients under temporary
continuous-flow mechanical circulatory support. To evaluate the side effects
caused by transit blood pumping, in vitro hemocompatibility testing for blood
damage in pumps is considered a necessary reference before clinical trials.

Methods: The hemocompatibility of five extracorporeal centrifugal blood pumps
was investigated comprehensively, including four commercial pumps (the Abbott
CentriMag, the Terumo Capiox, the Medos DP3, and the Medtronic BPX-80) and a
pump in development (the magAssist MoyoAssist

®
). In vitro, hemolysis was tested

with heparinized porcine blood at nominal operating conditions (5 L/min,
160 mmHg) and extreme operating conditions (1 L/min, 290 mmHg) using a
circulation flow loop. Hematology analyses concerning the blood cell counts
and the degradation of high-molecular-weight vonWillebrand factor (VWF) during
6-h circulation were also evaluated.

Results: Comparing the in vitro hemocompatibility of blood pumps at different
operations, the blood damage was significantly more severe at extreme operating
conditions than that at nominal operating conditions. The performance of the five
blood pumps was arranged in different orders at these two operating conditions.
The results also demonstrated superior hemocompatibility of CentriMag and
MoyoAssist

®
at two operating conditions, with overall low blood damage at

hemolysis level, blood cell counts, and degradation of high-molecular-weight
VWF. It suggested thatmagnetic bearings have an advantage in hemocompatibility
compared to the mechanical bearing of blood pumps.

Conclusion: Involving multiple operating conditions of blood pumps in in vitro
hemocompatibility evaluation will be helpful for clinical application. In addition,
the magnetically levitated centrifugal blood pump MoyoAssist

®
shows great

potential in the future as it demonstrated good in vitro hemocompatibility.
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1 Introduction

Centrifugal blood pumps have been widely used, as ventricular
assist devices (VADs) or as part of the extracorporeal membrane
oxygenation (ECMO) circuit, in extracorporeal life support to drive
blood in the circuit (Bottrell et al., 2014; Wu et al., 2021a). As a
temporary continuous-flowmechanical circulatory support device, a
centrifugal blood pump is considered clinically favorable (Nishida
et al., 1993; Bennett et al., 2004). Despite the effectiveness of
centrifugal blood pumps in prolonging the lives of heart failure
patients, it has been reported that patients being bridged could
develop a series of blood damage-related clinical hemocompatibility
complications (Eckman and John, 2012; Kirklin et al., 2017). The
complications could be the consequence of the side effect of pre-
sheared blood in the blood pumps (Borchardt et al., 2012; Sun et al.,
2020). When heart failure patients are treated with VADs, high-level
non-physiological shear stress created by the pumps can damage
blood components, including blood cells and protein in the plasma
(Fraser et al., 2012; Chen et al., 2019).

To evaluate these side effects, hemocompatibility testing for
overall blood damage caused by a centrifugal blood pump is
considered a necessary reference before clinical trials. In vitro
and in vivo tests are two commonly used ways of evaluating the
hemocompatibility of blood pumps. However, scientific head-to-
head comparisons cannot be made using a few samples because
animal blood and hemodynamic differences can cause pumps to
operate at different conditions. Thus, while performing a head-to-
head hemocompatibility comparison test, an in vitro test is also
recommended in preclinical studies. Using the in vitro hemolysis
test, the red blood cell trauma caused by a developing blood pump
can be quantitatively analyzed and evaluated, referring to key
indicators in terms of the normalized hemolysis index (NIH) and
modified hemolysis index (MIH) (Sobieski et al., 2012). Many
studies demonstrated that compared to mechanical bearings,
blood pumps using non-contacting bearings with advanced
technologies like hydrodynamics suspension and/or magnetic
levitation could alleviate damage to blood components
(Ranganath et al., 2020; Wu et al., 2021b). In practice, blood
damage-associated adverse events, e.g., hemolysis and in-pump
thrombosis, were reduced (Kosaka et al., 2009; Bourque et al.,
2016). The incidence of clinical complication gastrointestinal (GI)
bleeding remains high (Bansal et al., 2019), which has been proven as
a consequence of the loss of high-molecular-weight von Willebrand
factor (VWF) after continuous-flow mechanical circulatory support
in clinics (Stockschlaeder et al., 2014; Bartoli et al., 2015). Therefore,
it is necessary to involve VWF damage in the hemocompatibility test
of centrifugal blood pumps.

Although extracorporeal centrifugal blood pumps were initially
designed for a specific nominal operating condition, they could be
manipulated into a broader operation range in a clinic due to the
various settings, the resistance of different pipelines, or under the
worst-case clinical scenario (Schöps et al., 2021). Moreover, neonatal
or pediatric patients receiving ECMO and patients undergoing
extracorporeal CO2 removal represented a lower blood flow rate
than conventional ECMO (Schöps et al., 2021). It has been verified
that blood damage in blood pumps varies widely under different
operating conditions (Gross-Hardt et al., 2019; Kuck et al., 2021). In
particular, adverse events such as hemolysis, clotting, and GI

bleeding complications were frequently reported at low blood
flow rate operations (Gross-Hardt et al., 2019; Schöps et al.,
2021). Hence, the overall blood damage in centrifugal blood
pumps at a more comprehensive operating condition range
should also be investigated to provide a more thorough
evaluation, especially the extreme work condition (low flow rate
and high-pressure head) (Chan et al., 2015; Radley et al., 2019).

In this study, comprehensive perspectives on blood damage
from five centrifugal blood pumps were investigated, including four
commercial pumps and a pump in development. The comparison of
three mainstream commercial extracorporeal blood pumps and a
new fully maglev extracorporeal blood pump with the clinical
standard CentriMag was conducted. The influence of different
operating conditions on hemocompatibility was also evaluated.
Here, we present our study on the in vitro hemolysis level of five
blood pumps at nominal operating conditions (5 L/min,
160 mmHg) and extreme operating conditions (1 L/min,
290 mmHg) using a circulation flow loop. The 160-mmHg
pressure head at nominal operating conditions was due to the
resistance of the peripheral tubes used in clinical practice. The
extreme operating condition was chosen to reflect the worst-case
clinical scenario. Hematology analysis concerning change in the
number of white blood cells and platelets over time was conducted.
The degradation of high-molecular-weight VWF multimers during
6-h circulation was also evaluated.

2 Materials and methods

2.1 Device description

The following extracorporeal centrifugal blood pumps were
included in this study: the CentriMag magnetically levitated
centrifugal pump (Abbott, Thoratec, Pleasanton, CA, United States),
the Capiox centrifugal pump (Terumo Corp., Tokyo, Japan), the
Deltastream DP3 diagonal rotary pump (Medos Medizintechnik AG,
Stolberg, Germany), the Bio-pump BPX-80 (Medtronic, Inc.,
Minneapolis, MN, United States), and the MoyoAssist® device
(magAssist., Inc., Suzhou, China). The Deltastream DP3 is a rotary
blood pump with combined characteristics of an axial and a radial
design. All the blood pumps are commercially used devices, except
magAssist MoyoAssist®. MoyoAssist® is a magnetically levitated extra-
VAD that could provide bi-ventricular support for patients with acute
heart failure (Li et al., 2022). Different from CentriMag and
MoyoAssist®, Capiox, DP3, and BPX-80 are mechanical bearing
centrifugal pumps. The maximum flow rate of CentriMag, BPX-80,
andMoyoAssist® is 10 L/min, while that of Capiox and DP3 is 8 L/min.
The maximum operating pressures of CentriMag, Capiox, DP3, BPX-
80, and MoyoAssist® are 600 mmHg, 800 mmHg, 600 mmHg,
1,100 mmHg, and above 600 mmHg, respectively.

2.2 Flow loop design and protocol

Domestic porcine blood with 0.4% heparin sodium
anticoagulant was purchased from Suzhou Frankenman Medical
Devices Co., Ltd. The activated coagulation time (ACT) of blood was
kept greater than 300 s (ISO, 2016). The in vitro blood circulation
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loop was built referring to the American Society for Testing and
Materials (ASTM) standard F1841-97 (Figure 1) (ASTM, 2019). For
each set of tests, four loops were operated simultaneously, and the
blood was taken from one pig. Due to the limited blood volume per
porcine model, the loop was designed smaller than the ASTM
standard, and the option of centrifuging blood for controlling the
hematocrit was not performed. The hematocrit (Hct) of blood in the
loop was controlled at 21% ± 4%, and the total blood volume was
310 ± 10 mL. The total hemoglobin at time zero was 8.3 ± 1.0 g/dL.
The blood pumps were tested under stable hemodynamic conditions
for 6 h on nominal (5 ± 0.25 L/min, 160 ± 5 mmHg) and extreme
(1 ± 0.05 L/min, 290 ± 8 mmHg) operations, respectively. The flow
rate was measured using an ultrasonic flow sensor (T402, Transonic
Systems Inc., Ithaca, NY, United States). The differential pressure
across the pump was measured using pressure sensors (DPT-01,
Nora, Shenzhen, China). All the test loops and a separate static
control blood bag were immersed in the thermostatic water bath to
maintain a blood temperature of 37°C ± 1°C. During the experiment,
blood samples were collected through the sample port at 0, 30, 60,
120, 180, 240, 300, and 360 min. The blood samples at time zero
were obtained from blood that circulated for 5 min to ensure
complete mixing. The first 2 mL of the blood sample was
discarded, followed by a second volume of 3 mL. Blood samples
from the static control blood bag were collected in the same way at 0,
120, 240, and 360 min.

2.3 Hemolysis measurement

Blood samples were centrifuged twice at ×1,500 g for 10 min,
and the supernatants were collected to measure plasma-free

hemoglobin. Samples were diluted 10 times with 0.01% Na2CO3

solution, and then, the triplicate was added to a 96-well labeled plate
(Jet Biofil, Guangzhou, China). The absorbance was measured using
the SpectraMax Paradigm Multi-Mode Microplate Reader
(Molecular Devices, California, United States) at three
wavelengths of 380 nm, 415 nm, and 450 nm. The absorbance of
each sample at three wavelengths of 415 nm, 380 nm, and 450 nm
was denoted as A415, A380, and A450, and the absorbance difference
of each sample was calculated according to

Y � 2A415 − A380 − A450 (1)
where Y represents the absorbance difference of each sample.

Then, the value Y was substituted back into the standard formula
Y � 0.0018Hb + 0.0013 to calculate the plasma-free hemoglobin
concentration. The NIH and MIH were calculated as follows:

NIH g/100L( ) � ΔpfHb × V ×
100 −Hct

100
×

1
Q × T × 1000

(2)

MIH � ΔpfHb × V ×
100 −Hct

100
×

1
Q × T × Hb

(3)

Here,
ΔpfHb: increase of the plasma-free hemoglobin concentration

(g/L)
Hb: total blood hemoglobin concentration at time zero (g/dL)V:

blood volume in the loop (mL)
Q: flow rate (L/min)Hct: hematocrit (%)
T: sampling time (min)

2.4 Hematology analysis

The porcine blood samples from both the circulation loop
and static control blood bag were collected for hematology
analysis at time points 0, 120, 240, and 360 min. The total
numbers of white blood cells and platelets in the samples were
determined using the clinical automatic hematology system
(ADVIA 2120i, Siemens Healthcare Diagnostics Inc., Erlangen,
Germany).

2.5 Immunoblotting of VWF

Blood samples were centrifuged at 15,000 g for 5 min to collect
the supernatant and remove debris. The VWF multimers in plasma
samples were separated by gel-electrophoresis for 3.5 h and
transferred onto a 0.45-µm polyvinylidene difluoride membrane
(Immobilon-P; Millipore Corporation, Bedford, MA, United States)
overnight. Then, primary antibody (Polyclonal Rabbit anti-Human
von Willebrand factor, Cell Signaling Technology, Boston,
United States) and secondary antibody (Polyclonal Rabbit anti-
Rabbit lgG HRP-linked antibody, Massachusetts, United States)
tests were performed to detect the VWF multimers’ molecular
weight distribution on the film. The whole process included five
main steps: SDS agarose gel preparation, electrophoresis, Western
blot, immunolocalization, and visualization. After the visualization
step, ImageJ software was used to process the VWF bands’ image
obtained from the Kodak film (Rayco Medical Products Company
Limited for Carestream Health, Xiamen, China) development. The

FIGURE 1
Schematic diagram and picture of the blood circulation loop. The
loop setup allows for control of temperature, flow rate, and pressure
head.
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high-molecular-weight VWF multimers section was selected to
acquire the gray value corresponding to each sample. This value
did not represent the actual molecular weight of VWF. The loss
percentage of high molecular weight VWF multimers was
expressed as

Degradation of highmolecular weight VWF %( )
� Hcontrol −Hsample

Hcontrol
× 100 (4)

where Hsample is the gray value of high molecular weight bands
corresponding to each blood sample and Hcontrol is the gray value of
high molecular weight bands corresponding to each blood sample at
time zero.

2.6 Statistical analysis

Three valid measurements were obtained from repeated tests
of the MoyoAssist® and CentriMag centrifugal blood pumps. Due
to the limitations of the experimental conditions, two accurate
repeated measurements were obtained for BPX-80 on the
nominal operation and Capiox on the extreme operation.
Since DP3 and BPX-80 were only used for a single test on
extreme operation, no statistical analysis was performed. The
averages and standard deviations were calculated using data
analysis software (Origin version 9, OriginLab, Northampton,
MA, United States). Due to multiple measurements taken from
each blood pump, statistical analysis was carried out using one-
way ANOVA. A value of p < 0.05 (**) was considered to be
statistically significant.

3 Results

3.1 Hemolysis

The result of in vitro hemolysis in terms of NIH and MIH for all
the test blood pumps is shown in Figure 2. The hemolysis values of
all the test pumps at extreme operating conditions were 6–13 times
higher than those of the nominal operating conditions. At both
nominal and extreme operating conditions, the averages of NIH and
MIH ranked from low to high were MoyoAssist®, CentriMag,
Capiox, DP3, and BPX-80. There was a significant difference
among the five devices at the nominal operating condition (p =
0.01), with a significant difference between MoyoAssist® and DP3
(p = 0.03), MoyoAssist® and BPX-80 (p = 0.02), and CentriMag and
BPX-80 (p = 0.03). No significant difference was demonstrated
among MoyoAssist®, CentriMag, and Capiox at extreme
operating conditions. DP3 and BPX-80, on extreme operation,
were not statistically comparable since they were only conducted
for a single test. However, they presented approximately 1–4 folds
higher levels of hemolysis than the other three devices.

3.2 Hematology analysis

The result of white blood cell and platelet counts every 2 hours for
all the test blood pumps is shown in Figure 3. Due to the differences in
the data baseline of blood samples, the ratios of each sample to the
sample at time zero were presented. On nominal operation, there was a
significant decrease in the white blood cell count over time for
CentriMag and Capiox (p < 0.05) (Figure 3A). The number of
white blood cells was reduced by more than 10% for both of them
after 6-h circulation. No significant decrease in white blood cell
numbers over time was observed for the other three devices. On
extreme operation, there was a significant decrease over time for all
the blood pumps (p < 0.05) (Figure 3C). The number of white blood
cells was reduced by 10%–15% after a 6-h in vitro hemolysis test under
extreme operating conditions. It indicated more damage to white blood
cells at a low flow rate and high pressure head. In addition, no
significant difference in white blood cell numbers was observed
between the static control sample and blood pump samples at
360 min for MoyoAssist® and Capiox. Since Capiox showed a
significant decrease in white blood cell count over time on nominal
operation, MoyoAssist® performed best among the five devices at white
blood cell counting. For the platelet count, there was no significant
change over the testing period for all the blood pumps at both nominal
and extreme operating conditions (Figures 3B, D). There was also no
significant difference in platelet numbers between the static control
sample and all the blood pump samples at 360 min.

3.3 The degradation of high-molecular-
weight VWF

For the study of high-molecular-weight VWF degradation, blood
samples at time points 0, 30, 60, 120, 180, 240, 300, and 360 min were
tested. During the 6-h test, a part of the high-molecular-weight VWF
cut off to be small molecules under high shear stress. The representative
image of VWF multimer bands obtained by immunoblotting is shown

FIGURE 2
Averages of (A) NIH and (B) MIH for all the centrifugal blood
pumps. The sample sizes were MoyoAssist

®
(n = 3; n = 3), CentriMag

(n = 3; n = 3), DP3 (n = 3; n = 1), Capiox (n = 3; n = 2), and BPX-80 (n =
2; n = 1), representing nominal operating conditions and extreme
operating conditions. Porcine blood subjected to circulation loops for
6 h. Hemolysis was measured and calculated in accordance with
ASTM. A value of p < 0.05 (**) was considered to be statistically
significant.
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in Figure 4. The section in the dotted box represented the high-
molecular-weight VWF multimer bands. The result indicated a
gradual loss of high-molecular-weight VWF multimers over time for
all the test blood pumps at both nominal and extreme operating
conditions. Based on the representative images, the degradation of
high-molecular-weight VWFmultimers (%) was calculated (Eq. 4) and
is shown in Figure 5. On nominal operation, the most severe
degradation of VWF occurred in the first 2 h of the experiment
(Figure 5A). It started to fluctuate after that. The degradation of
high-molecular-weight VWF multimers was less than 20% during
the entire test period. There was a significant difference among the
five devices at the time point 360 min (p = 0.001). BPX-80
demonstrated a significant difference with the other four devices
(p < 0.05), with at least 6% more degradation of high-molecular-
weight VWF. On extreme operation, there was a significant increase in
high-molecular-weight VWF degradation over time for all the test
blood pumps (Figure 5B). Meanwhile, all the degradation of high-
molecular-weight VWF multimers was more than 20% during the
entire test period. It was obviously more severe than the VWF damage
under nominal operation. There was a significant difference among
MoyoAssist®, CentriMag, andCapiox at time point 360 min (p = 0.001).
Capiox demonstrated a significant difference with the other two devices
(p < 0.05), with 10%more degradation of high-molecular-weight VWF.

4 Discussion

In this study, the blood damage caused by four commercial
extracorporeal centrifugal blood pumps widely used in clinics
was comprehensively investigated. Experimental research on the

influence of different operating conditions was conducted. The
blood compatibility of a full maglev extracorporeal blood pump
in development was also evaluated. All the centrifugal blood
pumps were operated at nominal operating conditions (5 L/min,
160 mmHg) and extreme operating conditions (1 L/min,
290 mmHg) for clinical relevance. We did not consider
conducting the experiments for right-sided support conditions
(a high flow rate and low-pressure head) because the hemolysis
will be lower under a lower pressure head. We considered the
results under the worst case (a low flow rate and high-pressure
head) more valuable. Hemolysis, calculated by the amount of
plasma-free hemoglobin, is a reliable marker for red blood cell
damage. The variable coefficient of NIH and MIH could be
acceptable as in other certified labs. The hemolysis results of
commercial pumps were consistent with the data in the literature
(Hijikata et al., 2008; Schibilsky et al., 2020). MoyoAssist® and
CentriMag demonstrated lower hemolysis levels might be due to
their non-contacting bearings associated with lower shear stress
in pumps. The reason for the lower hemolysis of Capiox than
DP3 and BPX-80 may be the lower operating pump speed (max.
3,000 rpm) that cause lower shear stress than the other two
devices. White blood cells and platelets play an essential role
in infection and thrombosis. Thus, their damage could contribute
to adverse events in the clinic. The phenomenon of slightly
increased platelet counts (false-positive) in the automatic
hematology analyzer has been confirmed to be associated with
the release of microparticles from white blood cells (Radley et al.,
2019).

It is known that the VWF damage caused by centrifugal blood
pumps is a major factor in GI bleeding. Under non-physiological

FIGURE 3
Comparison of temporal changes among control and centrifugal blood pumps on (A)white blood cells at nominal operating conditions, (B) platelets
at nominal operating conditions, (C) white blood cells at extreme operating conditions, and (D) platelets at extreme operating conditions. The sample
sizes were the same as those for the hemolysis test. Porcine blood was subjected to a circulation loop for 6 h and measured by automatic hematology
analysis every 2 h. Results expressed as mean ± SD, % relative to each time zero samples. A value of p < 0.05 (**) was considered to be statistically
significant.
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shear stress, the high-molecular-weight multimers of VWF will
easily be degraded into small molecules and thus cannot
participate in the coagulation process. The high-molecular-
weight VWF decreased by less than 20% during the test
period for all the blood pumps on nominal operation, which is
consistent with the published data on CentriMag. The result
indicated that the loss of high-molecular-weight VWF over time
exists in all the centrifugal blood pumps; thus, it needs to be paid
attention to in preclinical testing. Interestingly, BPX-80, which
performed much worse than the other blood pumps in hemolysis,
demonstrated low VWF damage at extreme operation. This
phenomenon may be related to the different damage
mechanisms of red blood cells and VWF (Mei et al., 2022a;
Mei et al., 2022b). The shear stress threshold for the damage to
VWF was much lower than the damage to red blood cells
(Nascimbene et al., 2016). Other factors also affect the
degradation of high-molecular-weight VWF besides high shear
stress, such as a surface that easily adheres to VWF and unfolds
the chain segments. Therefore, the blood pump with higher shear
stress may cause more hemolysis but not necessarily yield more
damage to VWF. In addition, the rate of VWF degradation was
the fastest at the beginning, followed by a gradual decline. It
suggested that VWF damage induced by non-physiological shear
stress is rapid and irreversible.

Comparing the in vitro hemocompatibility of blood pumps at
different operations, the blood damage was more severe at
extreme operating conditions than that at nominal operating
conditions. It was consistent with the published data (Chan et al.,
2015). At the same flow rate, the hemolysis index increased with
the increase of pressure head. In addition, the hemolysis index
decreased with the increase in flow rate at the same pressure head.
Another research showed lower hemolysis in pediatric LVAD
operating conditions than in adult LVAD operating conditions,
with about half of the flow rate and 70% of the pressure head
(Kuck et al., 2021). The order of most to least hemolysis remained
the same as the nominal operating condition. However, the order
of most to least VWF damage was not the same at different
operations. This may also be related to the different damage
mechanisms of red blood cells and VWF, as mentioned in the
previous paragraph. The more severe blood damage in blood
pumps at extreme operating conditions could be associated with
more adverse events in clinics. Therefore, special attention
should be paid to the hemocompatibility performance of
extracorporeal centrifugal blood pumps at extreme operation
to reduce adverse events in clinical practice.

Third-generation VAD utilizing non-contacting bearings with
hydrodynamic suspension and/or magnetic levitation technology
has been developed to reduce blood damage-associated adverse

FIGURE 4
Representative immunoblot gel image of VWF multimers for all the centrifugal blood pumps at (A) nominal operating conditions and (B) extreme
operating conditions. The sample sizes were the same as those for the hemolysis test. Porcine blood was subjected to circulation loops for 6 h and then
measured by immunoblotting.
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events. Compared to mechanical bearing, a non-contacting bearing
allows for a bigger secondary flow path and, thus, lower shear stress
distributed in the blood pump. Therefore, pumps with non-
contacting bearings were supposed to perform better than those
with mechanical bearings in in vitro hemocompatibility. CentriMag
and MoyoAssist® involved in this study are magnetically levitated
centrifugal pumps, while Capiox, DP3, and BPX-80 are mechanical
bearing centrifugal pumps. The results demonstrated the superior
hemocompatibility of CentriMag and MoyoAssist®, with overall low
blood damage at the hemolysis level, blood cell counts, and
degradation of high-molecular-weight VWF. They were expected
to reduce adverse events associated with blood damage in clinical
practice.

The CentriMag centrifugal blood pump has a long successful
history of clinical use and caused low blood damage during in vitro
testing (Zhang et al., 2006; Chan et al., 2015). In this study, as the
only pump in development, MoyoAssist® demonstrated even lower
white blood cell damage than CentriMag. The findings suggested
that non-contacting bearings with magnetic levitation have an
absolute advantage in comprehensive hemocompatibility
compared to mechanical bearings in blood pumps. Since the
MoyoAssist® blood pump shows good performance in in vitro
blood damage testing, it has great potential in the future.

In addition, the blood circulation loop built in this study
consisted of 1 m of 3/8″-diameter tubing. The total blood
volume in the loop was 310 ± 10 mL. It could be considered
as a downscaled test loop with a lower priming volume according
to the old version of the ASTM standard (2017). However, a mini
test-loop was proved to significantly better differentiate the
blood pumps with fewer adverse effects by the loop itself
(Woelke et al., 2020). A 160-mL test loop provided
significantly higher plasma-free hemoglobin increase and
consistently stronger VWF degradation than a 480-mL test
loop. Therefore, to test as many circuits as possible
simultaneously, a downscaled circulation loop may be useful
to evaluate in vitro blood damage.

5 Limitations and future directions

In this study, all the centrifugal blood pumps were evaluated
by in vitro models with well-controlled experimental conditions.
Clinical scenarios integrate a plethora of variables, especially
patient-related, which are associated with phenomena such as
hemolysis, leukopenia, and altered hemostasis. Therefore, the
results from an in vitro study may be different from clinical
practice. In addition, the low sample size was due to the limited
pump heads and the small number of animals as the blood source.
Repeated tests at extreme operating conditions were not
conducted for DP3 and BPX-80. In addition, all the
centrifugal blood pumps were tested at operating conditions
for the extracorporeal VAD application. In the future, the
in vitro blood damage tests will be conducted at ECMO
operating conditions to reflect the hemocompatibility for
cardiopulmonary support application. The platelet activation
will also be measured to evaluate the risk of clot formation.

6 Conclusion

In this study, the hemocompatibility of five extracorporeal
centrifugal blood pumps was investigated comprehensively.
Compared to mechanical bearing blood pumps, the
magnetically levitated centrifugal pumps CentriMag and
MoyoAssist® demonstrated an advantage in hemocompatibility
under both nominal and extreme operations. As a pump in
development, the MoyoAssist® blood pump has good in vitro
hemocompatibility. In addition, the blood damage was more
severe at extreme operating conditions than that at nominal
operating conditions. The performance of the five blood
pumps was arranged in different orders at these two operating
conditions. Therefore, including multiple operating conditions of
blood pumps in in vitro hemocompatibility evaluation will be
helpful for clinical application.
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