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Blood arrival time and blood transit time are useful metrics in characterizing
hemodynamic behaviors in the brain. Functional magnetic resonance imaging in
combination with a hypercapnic challenge has been proposed as a non-invasive
imaging tool to determine blood arrival time and replace dynamic susceptibility
contrast (DSC)magnetic resonance imaging, a current gold-standard imaging tool
with the downsides of invasiveness and limited repeatability. Using a hypercapnic
challenge, blood arrival times can be computed by cross-correlating the
administered CO2 signal with the fMRI signal, which increases during elevated
CO2 due to vasodilation. However, whole-brain transit times derived from this
method can be significantly longer than the known cerebral transit time for
healthy subjects (nearing 20 s vs. the expected 5–6 s). To address this
unrealistic measurement, we here propose a novel carpet plot-based method
to compute improved blood transit times derived from hypercapnic blood oxygen
level dependent fMRI, demonstrating that the method reduces estimated blood
transit times to an average of 5.32 s. We also investigate the use of hypercapnic
fMRI with cross-correlation to compute the venous blood arrival times in healthy
subjects and compare the computed delaymapswith DSC-MRI time to peakmaps
using the structural similarity index measure (SSIM). The strongest delay
differences between the two methods, indicated by low structural similarity
index measure, were found in areas of deep white matter and the
periventricular region. SSIM measures throughout the remainder of the brain
reflected a similar arrival sequence derived from the two methods despite the
exaggerated spread of voxel delays computed using CO2 fMRI.
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1 Introduction

Measurements related to blood arrival time throughout the
brain represent important hemodynamic metrics in several
contexts. Arrival time measurements are useful in characterizing
cerebral hemodynamic behavior in patients; examples include the
demonstration of prolonged blood arrival time in patients with
multiple sclerosis (Paling et al., 2014), internal carotid artery
occlusion (Bokkers et al., 2008), Moyamoya (Donahue et al.,
2016), and stroke (Chalela et al., 2000; Macintosh et al., 2010).
Additionally, computation of accurate blood arrival times is a key
step in computing cerebral vascular reactivity (Niftrik et al., 2017;
Yao et al., 2021) and is an important factor to consider when
analyzing collateral perfusion (Zaharchuk et al., 2011). Further,
blood transit time (the time taken for blood to pass through a
region or whole of the brain) can be derived from arrival time
measurements. Transit time can serve as a benchmark for evaluating
the quality of region-specific (or voxel-wise) arrival time
measurements, as the metric can be easily compared with known
whole-brain blood transit times. Thus, the development of reliable,
safe, and repeatable techniques for measuring cerebral blood arrival
times and the associated cerebral blood transit times is important for
the continued development of our understanding of blood dynamics
in the brain.

Dynamic susceptibility contrast (DSC) imaging is frequently
used to study magnetic resonance imaging (MRI) brain perfusion by
imaging the first pass of an intravenously injected gadolinium-based
contrast agent through the brain (Lentschig et al., 1998). DSC-MRI
is a reliable reference standard for blood flow-related measurements,
including transit time. However, it is a an invasive imaging
technique and the side-effects of gadolinium-based agents
remaining in the human body are still debatable (Essig et al.,
2013), highlighting the need for a safer and more convenient
alternative. Several different alternative methods for measurement
of hemodynamic metrics, based on blood oxygen level dependent
(BOLD) MRI, have been proposed (Aso et al., 2020; Bhogal et al.,
2022; Sayin et al., 2022). Recently, an increasing number of studies
have used elevated CO2 levels as a regressor to estimate the CO2/
blood arrival time via BOLD MRI (Blockley et al., 2011; Thomas
et al., 2013a; Duffin et al., 2015; Donahue et al., 2016). It is known
that CO2 is a vasodilator, meaning that elevated CO2 arriving to a
region of the brain can cause an increase in regional blood flow and
volume, resulting in increased BOLD signals. Thus, blood flow can
be observed by tracking the passage of the CO2 throughout the brain.
BOLD-CO2 MRI offers advantages over DSC-MRI as a blood-
tracking method, since CO2-MRI is a non-invasive technique and
there are no adverse side-effects of inhaling elevated CO2 within a
suitable range.

For CO2-MRI, a voxel’s estimated CO2/blood arrival time is
commonly represented by the time delay corresponding to
maximum cross-correlation coefficient (MCCC) between the
voxel’s BOLD signal and the partial pressure of end-tidal CO2

concentration (PETCO2) measurement (Blockley et al., 2011;
Poublanc et al., 2013; Niftrik et al., 2017). However, this delay
time often overestimates the true CO2 arrival time, leading to
overestimation in whole-brain blood transit time assessment.
This overestimation is a result of the brain’s varying
hemodynamic response to CO2, as different brain regions differ

in the time taken for local tissues to respond the arrival of the
increased CO2, leading to various shapes of the BOLD signal
waveform deformations from the PETCO2 measurement (Duffin
et al., 2015; Golestani et al., 2015; Poublanc et al., 2015; Prokopiou
et al., 2019). Hence the cross-correlation time delay from the
deformed BOLD signal does not purely reflect the signal onset
(i.e., CO2 arrival time), but is also influenced by the CO2

hemodynamic response of the brain region. Simulations from a
previous study showed that performing cross-correlation of the
measured CO2 with various shapes of the BOLD signal waveform
with a shared breakpoint (representing the same moment of CO2

arrivals) from the baseline can obtain different delay time values
when the true delay should be equivalent (Yao et al., 2021).
Depending on the extent of the distortion of the BOLD
waveform from the CO2 measurement, one can obtain a delay
time offset as large as 20 s (Yao et al., 2021). One study of
25 healthy subjects reported that the estimated arterial CO2

arrival times derived from the maximum cross-correlation
method can have an average span of 20.1 s across the whole
brain, with a span of 15.9 s for gray matter (GM) and 25.5 s for
white matter (WM) (Niftrik et al., 2017), which is inconsistent with
the fact that the whole-brain blood transit time is approximately
5–6 s on average (Hoffmann et al., 2000).

Thus, it is important to evaluate the effects of these signal
deformations on the accuracy of the CO2-derived delay maps.
This evaluation can be discussed through two different
perspectives: first, the accuracy of the specific voxel-wise CO2-
derived delay time values can be evaluated. Second, ordering of
the voxels throughout the brain based on CO2-derived delay time
values suggests a sequence of voxels corresponding to the arrival
paths of the CO2 “bolus”. This sequence of voxels can also be
evaluated for accuracy separately from evaluation of the delay values
themselves. The use of a carpet plot to analyze CO2-MRI data holds
potential to assist with better understanding this issue of widely
spread CO2-derived delay times computed via the MCCC method.

A carpet plot is a 2-dimensional voxel vs. time matrix showing
BOLD signal intensities, which was initially used withinMRI-related
studies for assessing quality of MRI signals (especially for the
detection of motion artifacts) (Power, 2017). We previously made
use of carpet plots for calculating the time taken for blood to pass
through the brain (i.e., transit time) by ordering voxels according to
delays (based on the low frequency oscillation signal delay time
relative to the global averaged signal) computed using resting-state
functional MRI (rs-fMRI) signals (Fitzgerald et al., 2021). The
derived blood transit time from reconstructed resting-state carpet
plots was shown to be comparable with that from DSC-MRI carpet
plots. The same methodology can be applied to CO2-MRI data to
create CO2-based carpet plots, in which observable signal patterns
could prove useful in assessing the impact of distorted BOLD signals
(caused by variations in reactivity to CO2 throughout the brain) on
the assigned venous blood/CO2 arrival times, as well as in
computing brain blood transit times using CO2-MRI data.

In this follow-up study, we apply this novel methodology to
construct sorted carpet plots from CO2-challenge BOLD fMRI data.
The purpose of this study is twofold: first, we use observed patterns
in these carpet plots to group voxels based on their assigned CO2-
derived delay times and demonstrate improved estimates of the
blood transit time (through the majority of the brain) which are
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closer to the expected transit time values than those implied by the
wide distribution of delay times computed from the cross-
correlation method. Second, we aim to provide an analysis of the
similarity between voxel-wise delay maps derived from CO2-MRI
and from DSC-MRI. To this end, we use the carpet plot voxel
groupings to examine how the delay times computed from the two
methods compare using the “structure” element of the structural
similarity index measure (SSIM) (Zhou et al., 2004). In addition, we
examine patterns in the BOLD signal of voxels within these groups
to move towards an understanding of how varying reactivity affects
the sequential ordering of assigned CO2 delay times throughout the
brain.

We acknowledge that conditions of brain perfusion differ
between DSC-MRI and CO2-MRI; here we simply aim to
investigate whether similar perfusion information (i.e., blood
transit time) can be derived from CO2-MRI by utilizing our
novel carpet plot methodology to tease out the confounding
effects induced by the CO2 challenge. Such analysis helps to
evaluate the possibility of using CO2-MRI as an alternative to
DSC-MRI in the measurement of the blood transit time.

2 Materials and methods

2.1 Data acquisition

The Institutional Review Boards (IRB) of the institutions at
which datasets were collected (McLean Hospital for DSC-MRI,
Purdue University for CO2 challenge MRI) approved all
experimental protocols used in this study. All experiments
followed the ethical principles of the Belmont Report, and all
subjects provided written informed consent. DSC-MRI data from
eight healthy subjects (1F, 7M, mean ± s.d., 33 ± 12 years) were
acquired using a Siemens TIM Trio 3T scanner (Siemens Medical
Solutions, Malvern, PA) with 32-channel phased array head matrix
coil. A gadolinium contrast agent was given by intravenous injection
for the DSC-MRI scans (TR/TE = 1510/21 m, voxel size = 1.8 × 1.8 ×
3.5 mm3, duration = 180 s). Detailed acquisition information for
DSC-MRI can be found in a previous publication by Tong et al.
(2017).

CO2 challenge data was collected from a separate set of eleven
subjects (5F, 6M, age ±s.d., 22.7 ± 4.4 years; three female subjects
were excluded due to dropouts and/or poor quality of data) using a
3T GE Discovery MR750 MR scanner. Two out of the eight
remaining participants (Subjects 1 and 2, scanned during the
protocol testing phase before parameters were adjusted for the
remaining subjects) underwent fMRI scanning with the following
parameters: (TR/TE = 800/30 ms, voxel size = 3.75 × 3.75 × 2.5 mm3,
duration = 600 s). The remaining participants (Subjects 3–8) were
scanned with the following parameters: (TR/TE = 1000/30 ms, voxel
size = 3 × 3 × 3 mm3, duration = 600 s). The elevated CO2 challenge
was controlled by a programmable computer-based gas delivery
system (RespirAct, Thornhill Research Inc., Toronto, Canada)
(Fisher, 2016). Each subject was fitted with a plastic face mask
(covering the nose and the mouth) connected with a breathing
circuit before entering the MRI scanner room. The breathing
protocol consisted of 2 minutes of the “baseline” CO2 level
(i.e., the resting CO2 level), followed by 2 minutes of elevated

(10 mmHg higher than baseline) CO2, 2 minutes of baseline CO2,
2 minutes of elevated CO2, and two final minutes of baseline CO2.
The system controlled and recorded the end-tidal partial pressure of
CO2 (PETCO2) time series.

2.2 Data preprocessing

Data were preprocessed using the FMRIB Software Library (FSL,
Oxford University, United Kingdom, v5.0 for DSC-MRI data,
v6.0 for the CO2-MRI data, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)
(Jenkinson et al., 2012). Preprocessing included motion
correction, slice-time correction, brain extraction, and spatial
smoothing (3 mm for DSC-MRI scans, 5 mm for CO2-MRI scan).

2.3 Constructing DSC delay maps

Gadolinium bolus delay maps were created for each DSC-MRI
subject, where delay values represent the time-of-arrival of the
gadolinium bolus in each brain voxel (see Figure 1). This voxel-
specific delay is represented by the time to peak (TTP), which is
computed as the time between initial injection until the maximum
dip of the DSC signal loss. TTP was chosen over T0 (interval
between injection and its first detection) because the peak can be
easily and more accurately identified than the detection of the first
arrival. TTP was calculated by the program Perfx using a gamma
function fitting with temporal interpolation (developed by Chris
Rorden, www.mccauslandcenter.sc.edu/CRNL/tools/pwi). After
interpolation, the temporal resolution of DSC-MRI data for TTP
was 0.0001 s.

2.4 Constructing CO2 delay maps

CO2 delay maps were computed using MATLAB (version
R2017b or later, www.mathworks.com/). The brain-masked fMRI
data was then arranged into a 2D matrix, where each row contains
the measured BOLD time series for a voxel. Each voxel time series
was detrended (MATLAB detrend) and normalized by dividing by
the standard deviation of the time series. The global average time
series was computed, detrended and normalized in the same way.
For each voxel, the time series was oversampled by a factor of 10
(MATLAB interpft) to improve the temporal resolution. For the CO2

delay map calculation, the time series was filtered using a fourth-
order Butterworth bandpass filter with bandwidth 0.001–0.02 Hz to
extract the very low frequency oscillations associated with CO2-
dependent fluctuations in the BOLD signal. The filtered time series
was then compared with the global average time series (also
oversampled by the same factor and filtered into the same
frequency band) via cross-correlation, and the shifting-index
which produced the maximum absolute correlation value
between the two signals was recorded as the “delay” value for
that voxel. We note that the use of the maximum absolute
correlation allowed some voxel delays to be associated with a
negative correlation, which is discussed in more detail in the
Discussion section. Full-brain CO2 delay maps for each subject
were computed using this method. These delay maps were then
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registered to a standard template space (Fonov et al., 2009),
temporally aligned by subtracting the mean delay values, and
averaged to produce a subject-averaged CO2 delay map.

2.5 Constructing CO2 carpet plots

The rows of the fMRI data matrix (where rows are voxels and
columns are time points) were reordered based on descending delay
values (see Figure 1; longest delay voxels at top of image, shortest
delay values at bottom of image), creating a sorted carpet plot. Visual
inspection of this carpet plots demonstrates that most voxel time
series in the center of the image form a linear edge, while a portion of
voxel time series at the top and bottom of the image (representing
voxels with comparatively high or low delays, respectively) do not
follow this linear edge trend. This observation is relevant because it
has been shown that carpet plots constructed from DSC-MRI data

yield a near-linear blood-arrival edge covering nearly all voxels
(above 95%) in the brain with reasonable associated transit times
(Fitzgerald et al., 2021). Using DSC-MRI as a reference standard,
this suggests that isolating voxels in the CO2 carpet plot which follow
this linear trend may be useful in computing better estimates of the
blood transit time. To this end, each carpet plot was divided into
three vertical sections. These sections were created by defining the
middle section such that it contained all voxels with delays inside a
20-s window centered at the median delay time (see window edges
defined by blue lines in Figures 1, 2). The width of this window was
chosen based on empirical results with visual confirmation, which
suggested that such a window size served as a conservative but
reliable method that could be applied consistently across all subjects
to isolate those voxels which followed the linear edge trend. A brief
further discussion of this window, the effect of varying its width, and
testing of a subject-specific adaptive window width is presented in
the Supplementary Section S1.

FIGURE 1
Methods for creating DSC delay maps, CO2 delay maps and carpet plots. DSC delay maps were created by computing the voxel-wise time to peak
(TTP) metric, representing the delay until peak signal decrease was obtained, which corresponds to the arrival of the gadolinium bolus in a given voxel.
CO2 delay maps were computed by performing voxel-wise cross-correlation between individual voxel time series and the global averaged time series
and selecting the delay value which resulted in maximum absolute correlation. Voxels were then sorted in descending order according to the
computed delay values, and the 2D carpet plot image was created by displaying the time series of all brain voxels in this sorted order (top representing
largest delay, bottom representing smallest delay).
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2.6 Carpet plot analysis

A slope detection program, introduced and discussed in our
previous study (Fitzgerald et al., 2021), was used to detect and fit a
linear line to the first CO2-arrival edge present in the middle section
of the CO2 carpet plot, illustrated as a red line in Figure 1. Details
regarding this slope detection program can be found in the previous
publication (Fitzgerald et al., 2021); to summarize, the program
estimates the linear edge present by fitting a linear trend line to a set
of data points, where the data points represent the horizontal (time)
point of maximum increase (i.e., maximum derivative). As such, the
detected linear edge reflects the time of maximum CO2-induced
BOLD signal increase. One adjustment to the described program
was made: voxel time series within the sorted carpet plot were first
frequency filtered (0.001–0.02 Hz) in order to capture the signal
variation resulting from CO2 arrival while removing the variation
resulting from low frequency oscillations (0.01–0.1 Hz) present in
rs-fMRI data. After computation, a nearly vertical edge that is tilted
slightly to the right can be observed due to the flow over time of the
CO2-arrival-based BOLD signal rise throughout the brain. The
horizontal (time) duration of this estimated edge line was
recorded as the transit time (i.e., time taken for CO2 bolus to

traverse all voxels present in the cropped carpet plot). Only
transit times for the first carpet plot edge, corresponding to the
first CO2 bolus given, is reported here. This choice was made in
order to avoid unknown complications arising from any residual
effects of the first CO2 bolus which might affect blood flow behavior
during the second CO2 bolus (see Supplementary Figure S2 for
transit times of the second edge).

As discussed in the introduction, it has been shown that CO2-
derived delay times computed via the cross-correlation method can
be skewed by varying responses of the brain to the CO2 bolus arrival,
with a primary issue being that the overall spread of delay times
throughout all voxels can extend far beyond the expected time it
takes for blood to flow through the whole brain (around 5–6 s)
(Hoffmann et al., 2000). To further investigate this issue, we examine
whether the shape of the voxel BOLD time series was associated with
that voxel’s assigned cross-correlation delay time (and thus the
voxel’s vertical location in the carpet plot). Voxel time series from
the top, middle, and bottom portions of the carpet plot were
averaged using two methods: first using the original, unfiltered
voxel time series, and second where each individual time series
was detrended, divided by the time series standard deviation, and
frequency filtered (0.001–0.02 Hz). Finally, we more closely observe

FIGURE 2
Carpet plots and transit times for each CO2 subject. Blue lines indicate boundaries for image cropping before edge detection. Red lines indicate the
computed edge associated with the arrival of the CO2 bolus.
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the time series of voxels in the middle of the carpet plot by dividing it
into four stacked subsections, each section representing voxels
grouped into 5-s windows based on their assigned delay time
(recall that the characterization of the middle section is based on
voxels which are assigned delay times within a 20-s window; see
Figure 3 for visualization). These four subsections will be referred to
as middle subsections A through D (from lowest to highest delay
grouping). Voxel time series within each middle subsection were
averaged (see example displayed in Figure 3) after normalization

and frequency filtering. To compare the relative signal to noise ratio
between carpet plot sections, roughly reflected in the magnitude of
CO2-induced signal increase, the standard deviations of the bottom,
middle, and top averaged time series (without filtering and
normalization—see Figure 3D) were computed and compared
using a Wilcoxon signed rank test with Bonferroni correction for
multiple comparisons.

For the averaged time series of the top, middle, and bottom
carpet plot regions, as well as that of each middle subsection, the

FIGURE 3
Sample averaged time series computed during carpet plot analysis. (A)Display of example sorted carpet plot, where the red line represents the edge
computed during edge detection applied to the cropped carpet plot. Solid blue lines indicate the boundary of regions removed before edge detection,
and divide the carpet plot into the “top”, “middle”, and “bottom” regions, as labeled. Dotted blue lines indicate boundaries for four subsections, (A–D), of
the middle region; these subsections are defined by grouping voxels with assigned delay times falling within four 5-s windows (a division, into four
groups, of the 20-s span of delays assigned to voxels in the middle section). (B) Display of the averaged time series of voxels in each middle subsection
after normalization (detrending and dividing by standard deviation) of each individual voxel time series. Circles mark estimates of the time series
breakpoints. (C) Plot of change in estimated breakpoint between middle subsection averaged time series. Plotted times indicate change relative to the
estimated breakpoint of subsection A. (D) Display of the averaged time series of voxels from the top, middle, and bottom sections of the carpet plot
without normalization of the time series. (E)Display of the averaged time series of voxels from the top,middle, and bottom sections of the carpet plot after
normalization (detrending and dividing by standard deviation) of each time series. Circles mark estimates of the time series breakpoints. (F) Plot of change
in estimated breakpoint between bottom, middle, and top carpet plot averaged time series. Plotted times indicate change relative to the estimated
breakpoint of the bottom section.
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breakpoint (i.e. time point when the time series signal begins to
increase, or break from the baseline level, in correspondence with
the arrival of the CO2 bolus) was estimated following a procedure
similar to that proposed by Niftrik et al. (2017). First, an estimate of
the breakpoint of the whole-brain averaged time series was
computed based on the start time of the measured PETCO2 signal
increase (see Supplementary Section S3 for details). Then, for a given
averaged time series from a carpet plot section, the baseline signal
level was computed as the average signal intensity during 1 minute
before the estimated whole-brain breakpoint. The peak signal
intensity (i.e. the signal intensity during the second minute of the
first bolus of elevated CO2) was estimated as the average signal
intensity of the 1-min time span beginning 1 minute after the
estimated whole-brain breakpoint. The breakpoint of the given
time series was then computed as the time index when the time
series first increased by 10% of the difference between the baseline
and peak signal levels. The 10% breakpoint threshold was
demonstrated by Niftrik et al. (2017) and is necessary to ensure
that the computed time point reflects CO2-induced BOLD signal
increase (as opposed to natural signal fluctuations). Breakpoint
estimates are illustrated in Figure 3.

To investigate whether the top, middle, and bottom carpet plot
regions were associated with particular brain regions, masks were
created which specified which voxels commonly fell within each
carpet plot section. These masks were computed by creating subject-
specific section masks, registering these masks to the same
standardized ICBM MNI-152 space (Kötter et al., 2001;
Mazziotta et al., 2001), and keeping voxels which appeared in at
least half of all subjects within the standardized space. In addition,
subject-specific masks of voxels which showed little CO2-induced
signal change (marked by absolute MCCC below 0.3) were created
and registered to the standardized space to analyze common

locations of such voxels. The carpet plot locations (top, middle,
or bottom section) of such voxels were also noted.

2.7 Similarity comparison using structural
similarity index (SSIM)

We employed the structural similarity index measure (SSIM)
to compare the similarity between the subject-averaged DSC-
TTP map and the subject-averaged CO2-MRI delay map
(Figure 4C). Unlike other common similarity metrics which
only provide a single value indicating the similarity as a global
assessment (such as the Pearson correlation), the SSIM provides
spatial similarity information by calculating local statistics (Zhou
et al., 2004). The two subject-averaged DSC and CO2 delay maps
were demeaned and masked such that only voxels that existed in
both delay maps were included. For 3D images, the SSIM
algorithm utilizes a cubic window with a Gaussian weighting
function to compute local image metrics during the computation,
meaning that the program cannot compute an SSIM value for
voxels near the brain edge if background voxels do not contain
some value. To resolve this issue, which would cause the loss of a
large number of edge voxels during the SSIM computation, we
assigned the average delay value (i.e., zero) to all voxels
containing no delay value (due to either being background
voxels or the DSC-TTP program not returning a valid TTP
delay, especially in ventricle regions). Note that while this
choice can introduce bias to the structural similarity metric,
the number of empty voxels inside the brain is very small and
the choice to fill empty or edge voxels with the averaged delay
value should minimize any introduced bias. The SSIM
comparison was then conducted using the MATLAB

FIGURE 4
(A) Histograms of delay maps computed from DSC-MRI and CO2-challenge fMRI. (B) Sample slices of subject-averaged DSC-MRI and CO2-fMRI
delay maps. (C) SSIM map displaying local (per-voxel) structural similarity s values comparing subject-averaged DSC bolus arrival delay map with the
subject-averaged original CO2 arrival delay map. The structural similarity metric s can be interpreted similarly to Pearson’s correlation coefficient; values
range from −1 to 1, where high positive values indicate higher structural similarity, lower negative values indicate inverted structural similarity, and
values near zero represent little similarity.
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command ssim. After the SSIM computation, those voxels filled
with average delay (zero) previously were masked out.

The SSIM program computes a voxel-wise similarity map, where
the resulting voxel-specific index value is computed using data from
a specified cubic window surrounding the voxel. The SSIM
algorithm incorporates three computed measurements:
luminance, contrast, and structure. For the purposes of this
study, only the “structure” element of the SSIM was used (see
Discussion for more details regarding this choice). The structure
element s of two compared cubic windows x and y is computed as:

s x, y( ) � σxy + c
σxσy + c

(1)

The parameters of Eq. 1 are computed as:

μx � ∑N
i�1
wixi (2)

σx � ∑N
i�1
wi xi − μx( )2⎛⎝ ⎞⎠1/2

(3)

σxy � ∑N
i�1
wi xi − μx( ) yi − μy( ) (4)

where c is a stabilizing constant and wi represents the weight
assigned to the voxel according to the Gaussian weighting
function (Zhou et al., 2004). The structure element is similar to a
local estimate of Pearson’s correlation coefficient between the two
windows with the added adjustment of the Gaussian weighting
function. For the remainder of this paper, references to “structural
similarity” will refer to this structure element of the SSIM. The
default window size and weighting settings were used, resulting in a
window size of 11 × 11 × 11 voxels and standard deviation of the
Gaussian weighting function as 1.5. This program returns a
structural similarity voxel map with index values ranging
from −1 to 1. Negative values indicate inverted structure between
the two images surrounding a specific voxel (Zhou et al., 2004). A
higher magnitude value indicates higher similarity between two
images in the region within the filter window surrounding the voxel.
A global average structural similarity value was computed by
averaging the resulting values over all brain voxels.

FIGURE 5
Comparison of SSIM values in gray matter (GM, top) and white matter (WM, bottom) shown in (A). SSIM maps compare the subject-averaged DSC
bolus arrival delay map with the subject-averaged CO2 arrival delay map. Voxels with SSIM values greater than 0.5 are shown in (B).
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Structural similarity values were averaged over GM regions and
over WM regions, with these regions illustrated in Figure 5. In
addition, structural similarity values were averaged over the
previously detailed carpet plot section masks, which isolate the
voxels which commonly belong to the top, middle, and bottom
carpet plot regions. A comparison of the top and bottom carpet plot
region masks with the computed structural similarity map is shown
in Figure 6.

2.8 Statistical analysis

To evaluate the association between computed breakpoints and
the carpet plot section from which the time series was derived,
Wilcoxon signed rank tests with Bonferroni correction for multiple
comparisons were performed comparing breakpoints from adjacent
carpet plot sections. Wilcoxon rank sum tests (with Bonferroni
correction when applicable) were applied to evaluate the differences

FIGURE 6
Locations of voxels located in top and bottom carpet plot regions and correspondence with structural similarity map. (A) Colored voxels indicate
locations corresponding to voxels which were located in the top and bottom regions of CO2 carpet plots in at least half of all subjects. Blue voxels
correspond to those cropped from the top of the carpet plot (with extra long CO2-derived delay times), while red voxels correspond to those cropped
from the bottom of the carpet plot (with extra short CO2-derived delay times). (B) The same cropped carpet plot voxels from (A) are overlaid on the
structural similarity value map comparing the subject-averaged DSC-TTP delay map with the subject-averaged CO2-arrival delay map.
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in SSIM values in the three sections (top, middle, and bottom) of a
carpet plot and in the GM and WM regions.

3 Results

3.1 Transit times derived from CO2 carpet
plots

Carpet plots for all subjects are displayed in Figure 2. CO2 bolus
transit times were computed as the horizontal distance, measuring
time, of the sloped carpet plot edge (displayed in red). The detected
CO2-arrival edges had transit times of 5.32±1.04 s (mean±s.d.).
Dividing lines between the top, middle, and bottom carpet plot
regions are shown in Figure 2 in blue. On average, the middle carpet
plot section contained 77.8±5.4% of all voxels.

3.2 Carpet plot analysis results

Figure 3 displays sample results of the carpet plot analysis for
one subject. Figure 3A illustrates the breakdown of the carpet plot
into three regions—“top”, “middle”, and “bottom”—and illustrates
the breakdown of the middle region into four smaller
subgroups—middle subsections A, B, C, and D. We note that
within the middle region, subsections B and C contain far more
voxels than subsections A and D, since subgroups are groups of
voxels with assigned delay times within a 5-s window. The
distribution of delay times is primarily bell-shaped, meaning
there are more voxels with assigned delay times close to the
mean of the distribution. Figures 3B, D, E display the averaged
time series of voxels for each grouping illustrated in (a) for the given
sample subject. Figures displaying the same information in Figures
3B, D, E for all other subjects can be found in the Supplementary
Figures S3–S5; the results derived from other subjects followed
similar trends to those shown here.

Figures 3C, F illustrate the relationships between estimated
breakpoints within the four middle subsections (C) and within
the top, middle, and bottom carpet plot regions (F). These
breakpoints represent an estimation of the true blood arrival time
point for the voxel grouping, in contrast to the skewed arrival delay
time assigned via cross-correlation. Analysis of these breakpoints
provides an evaluation of whether voxels assigned a later venous
blood arrival time via cross-correlation truly have a later arrival time
as estimated via the breakpoint. This analysis was conducted on
averaged subsections of voxels because computation of voxel-wise
breakpoints resulted in unsatisfactory quality in the breakpoint
estimates, likely due to noisiness in individual voxel time series
(this is further discussed in the Discussion). The breakpoints of the
middle subsections (from subsection A to D, i.e., from lower to
higher delay times) are non-decreasing and demonstrate a positive
association between the assigned delay time for the grouping and the
breakpoint of the grouping’s averaged time series. A statistically
significant (Wilcoxon signed rank test, p < 0.025) difference is found
when comparing the bottom breakpoints with the middle
breakpoints, as well as the middle breakpoints with top
breakpoints. A statistically significant difference (Wilcoxon signed
rank test, p < 0.016) was found in comparing middle subsections C

vs. D. For the raw averaged time series, illustrated in Figure 3D, the
average standard deviation (computed as a simple metric to
compare the relative signal-to-noise ratios between carpet plot
sections) of the middle averaged time series signal across subjects
was 154.3 (a.u.), which is significantly higher (Wilcoxon signed rank
test, p < 0.025) than both the averaged standard deviations of
41.6 and 46.7 for the top and bottom averaged time series,
respectively. Similar differences in CO2-induced signal strength
are seen in the normalized and filtered averaged time series
shown in Figure 3E.

The percentage (mean ± s.d.) of voxels within the top, middle,
and bottom carpet plot regions reflecting low (below 0.3) absolute
MCCC were found to be 8.97% ± 4.25%, 0.85% ± 0.53%, and
13.15% ± 5.21%, respectively. Subject-specific masks of the brain
locations of such voxels were created and analyzed, but the resulting
masks contained very few, sporadic voxel locations which reflected
little similarity between subjects; thus no further details on these
results are given.

3.3 Structural similarity map with SSIM and
regional comparison of SSIM

The subject-averaged delay maps computed from DSC-data and
CO2 challenge data are displayed in Figure 4B, with histograms
displayed in Figure 4A. In addition, Figure 4C shows the similarity
map (voxel-wise s as defined previously) acquired from comparing
the averaged DSC-TTP map with the averaged BOLD-CO2 MRI
delay map via the SSIM structure element. For the DSC-CO2 delay
map comparison, the whole-brain average structural similarity value
�s is 0.28.

Figure 5A shows the SSIM value similarity maps for the DSC-
CO2 delay maps comparison broken down into GM and WM
regions. The average SSIM values for each map and region are
also displayed above each image. The GM andWM regions produce
similar averaged SSIM values (0.29 for GM and 0.34 for WM;
medians statistically different based on Wilcoxon rank sum test,
p < 0.05). 30% of the voxels in the DSC-CO2 similarity map were
found to have relatively high (greater than 0.5) SSIM values and are
displayed in Figure 5B. The percentage of relatively high SSIM values
in GM and WM is 29% and 40%, respectively. Rough analysis of the
presence of different tissue types in the three carpet plot sections
suggested that the top carpet plot regions consisted of mostly WM,
the bottom carpet plot regions contain a large number of voxels
classified as neither GM or WM, and the middle carpet plot regions
contain a roughly equal amount of GM and WM (see
Supplementary Table S2 for further details).

Figure 6A displays the location of the top and bottom carpet plot
region masks, which represent areas of the brain that were assigned
to either the top or bottom carpet plot regions in at least half of
subjects. These same voxel masks are overlaid in Figure 6B with the
structural similarity map comparing the subject-averaged CO2 delay
map with the subject-averaged DSC delay map. The average
structural similarity s within the top, middle, and bottom carpet
plot regions were 0.36±0.41, 0.32±0.32, and −0.21±0.41,
respectively. Significantly different distributions in s values were
found between all three carpet plot regions (Wilcoxon rank sum test,
p < 0.01 for all three comparisons).
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4 Discussion

In this study, we use carpet plots and related analyses to assess
the issue of widely spread venous blood arrival delay values assigned
via the cross-correlation method applied to CO2-fMRI. Results
(Figure 4A) indicated, as expected, that the venous blood arrival
time values computed using CO2-challenge fMRI produce a wider
range of delay values than those derived fromDSC-MRI. Carpet plot
analysis yielded an average estimated blood transit time of 5.32 s.
The analysis of averaged time series from different groups of voxels,
identified in part using the carpet plot, illustrated patterns in the
shape of voxel time series based on a voxel’s assigned delay time,
which we will further discuss in this section.

4.1 Review of known inaccuracies in the
cross-correlation method

We first wish to clearly state the inaccuracy associated with
computing venous blood arrival times from CO2-challenge fMRI
data using the method of maximum cross-correlation of each voxel
time series with some version of the inhaled CO2 signal. It has been
previously demonstrated that the maximum cross-correlation
method can yield a blood-arrival delay span of 20.1 s across the
whole brain (Niftrik et al., 2017), which is inconsistent with the fact
that the cerebral blood transit time is approximately 5–6 s
(Hoffmann et al., 2000). To further illustrate this error stemming
from cross-correlation, we cross-correlated the CO2 measurement
with three BOLD signals with different shapes while sharing the
same breakpoint (see Figure 7). These three BOLD signals (in red,
green, and blue) simulate voxels having the same arrival time of the
elevated CO2 (the same breakpoint), but with different response
times to the elevated CO2, and were computed by convolving the
true PETCO2 measurement with three different hemodynamic
response functions from Yao et al. (2021). Depending on the
extent of the distortion of the BOLD waveform from the CO2

measurement, a delay time offset could be as high as 19 s. This
delay time offset is not due to the real CO2 arrival offset but the
brain’s CO2 response behavior. Therefore, the delay time calculated
for the CO2-fMRI by the cross-correlation method can be skewed by
this CO2 response behavior, raising the question of whether arrival
times computed via cross-correlation truly reflect the venous blood
arrival time or are purely dominated by the CO2 response behavior
of the voxel. We address a part of this issue by demonstrating that
analyzing CO2-fMRI data using carpet plots can lead to improved
estimates of the cerebral blood transit time. We also use voxel
groupings suggested by inspection of the carpet plots to better
understand the relationship between signal shape and assigned
delay time.

4.2 Transit times

The slope detection method introduced in our previous study
(Fitzgerald et al., 2021) was applied to the middle sections of carpet
plots to compute blood transit time through the associated brain
voxels, yielding an average estimate of 5.32 s. This observation of a
linear pattern in the middle region is important because we observe
this linear pattern in nearly the entire carpet plot (over 95% of
voxels) for carpet plots derived fromDSC-MRI; such carpet plots are
illustrated in our previous paper (Fitzgerald et al., 2021);
Supplementary Figure S6. The definition of the middle carpet
plot section is such that it contains voxels with delays within a
20-s window, meaning that the cross-correlation method alone
would suggest a 20-s blood transit time through this region of
voxels. An average of 5.32 s represents an improved transit time
estimate that moves much closer to the expected 5–6 s. We note that
the middle carpet plot sections contained, on average, about 78% of
voxels in the brain, meaning that about 22% of voxels were not
directly represented by this estimated transit time. This implies that
these estimated transit times could be underestimates, primarily if
the voxels located in the top and bottom sections truly do experience

FIGURE 7
Illustration of errors stemming from cross-correlation method of delay times. (A) An example end-tidal CO2 time series is shown in black, with three
example voxel time series shown in red, blue, and green. These voxel time series are created by convolution of the black end-tidal CO2 time series with
three different hemodynamic response functions representative of different areas of the brain, as used in Yao et al. (2021). The common break point for all
signals is illustrated by the dashed vertical line. (B) The voxel time series are shifted according to the maximum cross-correlation method, which
aligns the signals such that maximum correlation with the end-tidal CO2 time series is achieved. The same end-tidal CO2 breakpoint as in (A) is shown by
the dashed vertical line. The red arrow highlights that the voxel time series now display breakpoints occurring before the end-tidal CO2 increase, which is
not possible. The red, blue, and green voxel time series were shifted to the left by 7, 16, and 19 s, respectively, which represent unrealistically high delay
values.
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blood arrival after (for top voxels) or before (for bottom voxels)
those in the middle section. As will be discussed, our analysis
suggests that voxels within the top of the carpet plot, though
they do have assigned delays that are likely skewed too long, are
likely to be roughly correctly assigned sequentially, strengthening
the likelihood that these transit times are underestimates of the
whole-brain blood flow. However, increasing the estimated transit
times by 22% (proportionally to the number of voxels not
represented by the middle region) would result in an average
transit time of 6.44 s, which is still much improved compared to
the 20-s spread implied by the cross-correlation method alone. In
addition, the middle carpet plot sections appear to be composed of
roughly equal numbers of both GM andWM voxels, suggesting that
the computed transit time does not reflect blood passage only
through GM portions of the brain.

Other studies have presented similar methodologies for
computing whole-brain blood transit times based on BOLD
MRI signals, yielding similar results. Aso et al. (2020) computed
voxel-wise lag (i.e., delay) maps based on cross-correlation of
resting state voxel BOLD time series with an extracted seed
time series intended to represent the center of the vascular tree.
This was followed by computation of global transit time as the sum
of estimates of the arterial transit time (computed as the average of
voxels with positive lag times relative to center) and the venous
transit time (computed as the average of voxels with negative lag
times relative to center), with the majority of global transit time
estimates falling into the range of 4–6 s (Aso et al., 2020).
Additionally, Bhogal et al. (2022) implemented a carpet method
for computing global transit times using controlled hypoxia as a
source of BOLD contrast, yielding an average global transit time of
4.5 s. Similar investigation of using hypoxia to induce BOLD
contrast has been explored in (Sayin et al., 2022). These
alternative approaches demonstrate the feasibility of BOLD
signal-based methods for computing global transit time which
do not rely on induced hypercapnia.

4.3 Analysis of signal behavior in carpet plot
regions

Figure 3 illustrates several behaviors and traits of the voxel
time series within different sections of the carpet plots. First,
Figures 3D, E demonstrate that the averaged time series derived
from the middle of the carpet plot tends to have a more profound
signal-to-noise ratio than that of the top and bottom carpet plot
regions, which implies that voxels within the middle carpet plot
region tend to experience a greater degree of signal change due to
the arrival of the CO2 bolus. Observing this difference in induced
signal change after normalizing (detrended and divided by
standard deviation) voxel time series, as in Figure 3E,
demonstrates that a higher percentage of voxels within the top
and bottom carpet plot regions likely display little to no CO2-
induced signal change (causing the averaged CO2 signal strength
to be weaker). One possible reason could rely on the intrinsic
hemodynamic responses in some brain regions which tend to
have reduced BOLD response to the same CO2 stimulus,
measured by reduced cerebrovascular reactivity (Bhogal et al.,
2015; Niftrik et al., 2017). A more detailed discussion regarding

the main location of top and bottom carpet plot regions and the
effect on the signal behavior can be found in the next section.

In addition, it can be observed that the averaged time series from
the top carpet plot section displays a notably different signal shape
than that of the middle section, in that the CO2-induced signal rise
and fall is much sharper in the middle section. To help quantify this
difference in signal shape, we estimated two additional metrics from
the signals: the time index when the increasing CO2 signal reached
90% of the difference between baseline and peak signal intensity
(called “peak point” here), and the slope of the signal in between the
estimated breakpoint and peak point. Details regarding the
computation of these metrics and the associated results are listed
in Supplementary Figure S7. This analysis showed that voxels in the
top of the carpet plot, thus having been assigned very long delay
times, do tend to have signal shapes which reflect slower rise and fall
times. This is exactly the signal behavior which is demonstrated in
Figure 7 to lead to excessively long delay times in the cross-
correlation method. Similarly, this trend of higher delay times
associated with slower responses to the CO2 bolus can be seen in
the middle carpet plot subsections illustrated in Figure 3B. Peak
points and slopes for these averaged time series were also computed
and demonstrated that longer delay times were associated with lower
slopes and longer peak points (see Supplementary Figure S8).

These results demonstrate that, as is suggested by the discussion
of Figure 7, the delay time assigned via cross-correlation in CO2-
fMRI is largely associated with the shape of the voxel time series,
which is dependent not only upon the true arrival time of the CO2

bolus, but also upon how quickly and how strongly a given brain
region responds to the arrival of this CO2 bolus. It has been found
that various brain regions respond to the CO2 stimuli differently
(slow vs. rapid response) (Golestani et al., 2015; Poublanc et al.,
2015; Fisher et al., 2017; Prokopiou et al., 2019), resulting in a variety
of shapes of the BOLD waveform, which increases the difficulty of
obtaining accurate delay times. The rise in signal intensity is not a
result of detecting CO2 directly, but rather is the result of increased
blood flow caused by vasodilation due to the increased CO2

presence. This raises an important question: does a delayed/
weaker reactivity to the arrival of CO2 necessarily correspond to
an actual delay in the CO2 arrival? To address this question, we
computed estimates of the breakpoints of averaged time series from
each carpet plot section, as displayed in Figures 3C, F. Estimating
these breakpoints, as described in Niftrik et al. (2017), could serve as
a better estimate of the time point of CO2 arrival, given the known
shortcomings of the cross-correlation method. Results indicated that
on the averaged time signals, breakpoints do increase as the assigned
delay values corresponding to the given carpet plot section increase.
We note that the average change in breakpoint time between the
averaged time series for middle subsections A and D was 3.75 s.
Given that these four subsections were broken up according to 5-s
delay windows, the cross-correlation method alone would suggest a
range of delays in the realm of 15 s between the midpoints of
subsections A and D. Thus the breakpoint computations show a
tighter estimation of the change in venous blood arrival time, though
it must be highlighted that this tighter estimation only comes
through breakpoint computation on averaged BOLD time series
over many voxels as opposed to individual voxel breakpoint
estimates (discussed later in the Discussion). These observations
provide a first point of support for the notion that the sequence of
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delay values is somewhat reliable despite the heavy influence of
signal shape on the computed delay time. To further assess this
question, we turn to analyzing the structural similarity between the
subject-averaged CO2 and DSC delay maps.

4.4 DSC-MRI and CO2-MRI delay maps
comparison

The structural similarity metric s is computed somewhat like a
weighted correlation coefficient between data within the two
compared windows centered around a given voxel. It can provide
a rough intuition for whether the structure, or sequence of assigned
delay values, is similar between the two windows. In observing the
structural similarity map results, we first observe the regions with
relatively high structural similarity values (s greater than 0.5), as
illustrated in Figure 5B. 30% of all brain voxels yielded s values
greater than 0.5. Those voxels are mainly clustered in the temporal
lobe, parietal lobe, occipital lobe, and WM. We note that regions of
WM contained higher structural similarity values, on average, than
areas of GM (Figure 5A). It is important to note, however, that since
the structural similarity values s are computed using information
within an 11 × 11 × 11 voxel Gaussian-weighted window around the
central voxel, meaning that each s value reflects the similarity within
a window around the voxel, possibly from multiple tissue types.

4.4.1 Top of carpet plot
One of the primary issues of the maximum cross-correlation

method applied to CO2-MRI is the resulting wide spread of CO2-
derived delay values. To better understand this spread, we analyzed
which voxel locations corresponded to those cropped from the top of
CO2 carpet plots (indicating extra long CO2-derived delay values)
and voxel locations which corresponded to those cropped from the
bottom of CO2 carpet plots (indicating extra short CO2-derived
delay times). These voxel locations are displayed in Figure 6.
Observation of these voxel locations reveals that voxels with extra
long CO2-derived delay times were primarily located in areas of deep
WM in the brain. This also explains the observation that these voxels
have lower signal-to-noise ratio compared with those in the middle
carpet plot portion. This pattern of longer delays and lower signal-
to-noise ratio in areas of deep WM is consistent with the results
observed in the DSC-MRI data and in previous papers (Thomas
et al., 2013b; Bhogal et al., 2015; Poublanc et al., 2015; Bhogal, 2021;
Poublanc et al., 2021). Further, the observed BOLD signal pattern in
each voxel is impacted by both the arrival of CO2 to the voxel and the
blood vessel dilation which occurs due to CO2 being a vasodilator.
Some studies (Bhogal et al., 2015; Niftrik et al., 2017) suggest that
cerebrovascular reactivity, a measure of the magnitude of the
response of brain regions to the effects of CO2 arrival, tends to
be lower in regions of deep WM, which could suggest that the extra
long CO2-derived delays observed in these regions in CO2 delay
maps could also be influenced by low cerebrovascular reactivity in
those areas. Additionally, results from Bhogal (2021) confirmed that
reactivity in WM is notably different than that of GM and showed
that the response of WM is also influenced by venous draining
topology. Despite these sources of potential confounding of the
assigned delay time within these voxels, analysis of the structural
similarity map within the brain region mask associated with the top

of the carpet plots (see Figure 6B) revealed that these voxels had
equal, possible higher, structural similarity compared with those
from the middle of the carpet plots. This suggests that these voxels
with very long CO2-derived delays have similar reliability in their
ordering with those from the middle of the carpet plot (whose delay
times are expected to be more reliable) in terms of structural
similarity to the DSC delay map.

4.4.2 Bottom of carpet plot
Voxels which were removed from the bottom of the carpet plot

were primarily located in regions near the boundary between WM
and the lateral ventricles, particularly toward the posterior side of
the brain. These voxels correspond to locations where the computed
delay value was more than 10 s earlier than the average CO2-derived
delay time across the brain, which likely cannot reflect true arrival of
the CO2 given that the increased arterial CO2 would not likely occur
so early in these specific voxels. We also note that these voxels at the
bottom of the carpet plot were more likely to have BOLD time series
which were negatively correlated with the global average time series.
Analysis of the correlation values obtained during the cross-
correlation delay computations revealed that voxels with negative
correlations appeared in the bottom, middle, and top carpet plot
regions at rates of 35%, 2%, and 21% on average, respectively.

Such observations (namely, of negatively correlated BOLD
signals near the edge of the ventricles and with signal changes
earlier than most voxels across the brain) align with previous studies
(Bianciardi et al., 2011; Thomas et al., 2013a; Bright et al., 2014)
which suggest that negative BOLD signal correlations are
predominantly due to blood volume change instead of cerebral
blood flow (CBF) increase. This volume change is due to dilation of
ventricular vessels accompanied by shrinkage of cerebrospinal fluid
(CSF) space, resulting in signal decrease which could overpower any
BOLD signal increase. This hypothesis also explains the very short
CO2-derived delays calculated for voxels with negatively correlated
BOLD signals since CSF shrinkage could occur prior to the arrival of
the CO2. Alternatively, another mechanism which could cause
negatively correlated BOLD signals is the cerebral “steal effect”,
in which multiple CBF changes (both increased and decreased CBF
response in regions in and surrounding the voxel) simultaneously
occur in response to the arrival of the CO2, meaning that regions
with reduced CBF are compromised due to the increased CBF in
other regions (Brawley, 1968; Poublanc et al., 2013; Sobczyk et al.,
2014). Finally, one might hypothesize that the Bohr effect (Riggs,
1988), under which increased concentration of CO2 in the blood
causes a decreased oxygen binding affinity in hemoglobin (thus
increasing concentrations of deoxyhemoglobin), could theoretically
cause a BOLD signal decrease in response to elevated blood CO2.
However, the magnitude of any such signal changes due to the Bohr
effect is expected to be very small. This claim is supported by the fact
that an increase of 10 mmHg from baseline in end-tidal CO2 should
only cause a very small shift in the oxyhemoglobin dissociation
curve for normal blood partial pressure of O2 (PO2) (Levitzky, 2013),
where normal arterial PO2 typically falls within the range of
75–100 mmHg (Ortiz-Prado et al., 2019). Further investigation is
still needed to definitively explain this phenomenon of certain voxels
displaying decreased BOLD signal in response to the CO2 bolus. As
demonstrated in Figure 6B, the voxels with very short CO2-derived
delay values corresponded with areas of the SSIM value map which
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were particularly low, indicating that these unrealistically low delay
times are likely one of the main factors which differentiates the CO2

delay maps from the DSC delay maps.
As an added evaluation of the similarity between CO2 and DSC

delay maps, CO2 carpet plot were reconstructed by sorting voxels
according to the averaged DSC delay map (after registration to the
subject’s native space) and transit times were recomputed. Details on
these results are shared in the Supplementary Material, along with
the resorted carpet plots in Supplementary Figure S9. We note that
this method of sorting carpet plots resulted in varying transit time
values and did appear to significantly reduce the visual clarity of the
three carpet plot sections that are apparent when sorting via the
subject-specific CO2 delay maps. This result suggests a lack of
similarity between DSC and CO2-derived delay map sequence
should be noted. The difference between these two delay map
sequence could be partially explained by the different underlying
mechanisms of DSC and CO2 MRI, as DSC-MRI tracks the passage
of the paramagnetic gadolinium-based contrast agent, inducing a
local signal loss while not affecting the vascular tone or cerebral
blood flow, whereas CO2 stimulus induces various complicated
hemodynamic reactions, resulting in changes in the BOLD signal
waveform. However, it must also be acknowledged that this transit
time computation method (via slope detection on carpet plots) is
highly dependent upon precise sorting of the carpet plot voxels for
each subject. Since this experiment sorted individual subject carpet
plots based on an averaged delay map derived from a separate cohort
of subjects, such inter-subject differences may likely account for a
significant portion of the differences in carpet plot sorting.
Confirmation of the similarity of carpet plots and transit times
derived from CO2 versus DSC delay maps would be best evaluated
on a cohort where both DSC and CO2 MRI can be conducted on the
same subjects.

4.5 Alternative methods and reasoning for
chosen methodology

We wish to note two alternative methods for computing venous
blood arrival times from CO2-MRI data and explain the observed
shortcomings with these methods. First, the improved transit times
derived from carpet plots suggest the possibility that the voxel-wise
data points used to estimate the transit time edge may represent
accurate CO2 arrival times. The carpet plot edge detection method,
after applying an image smoothing filter, examines each image row
(voxel time series) and identifies the time point of maximum point-
to-point increase (signal derivative). These time points from all
voxel time series in the carpet plot are then used to estimate the
observed edge via linear regression. In one alternative method, these
maximum signal derivative time points were computed as the voxel-
wise venous blood delay times. When a subject-averaged delay map
using this method was compared with the DSC-MRI delay map via
SSIM comparison, the resulting brain-wise SSIM value was 0.20,
indicating lower similarity than the cross-correlation delay map
SSIM value of 0.28. Visual inspection of this delay map showed that
it appeared “noisier”, or less smooth, than the delay map derived
from cross-correlation.

Additionally, the discussion of Figure 3 would suggest that direct
computation of the voxel time series “breakpoint”, or the starting

point of the rise of the BOLD signal associated with arrival of the
CO2 bolus, would yield a more accurate delay time than that of the
cross-correlation method. This second alternative method was
discussed and implemented in a study by Niftrik et al. (2017).
However, implementation of this method on the data set
discussed in this study failed to overcome the issue of delay-value
distributions spanning a time window greater than the expected
5–6 s. One hypothesis for why these alternatives fail to out-perform
the cross-correlation method is that these methods rely on direct
observation of one specific portion of the voxel time series. These
methods are thus very sensitive to noisiness in the voxel BOLD
signal. In comparison, the cross-correlation method utilized
information from the entire voxel time series, which contains
two instances of rising and falling signal, which is helpful in
overcoming noisiness of the signal (see Supplementary Section
S8; Supplementary Figures S10–S12 for more details on
alternative results).

We also wish to note the reasoning used in decisions regarding
the use of the structure element of the SSIM for CO2-MRI vs. DSC-
MRI comparisons. The traditional SSIM metric is computed as the
multiplication of three terms: structure, luminance, and contrast
(Zhou et al., 2004). The structure term, as described in this paper,
reflects the degree of scaled covariance of the data within the two
compared windows. The luminance term measures the similarity
between the means of the two windows, while the contrast term
measures the similarity in the variance between the two windows.
For the purposes of this study, multiplying each of these terms as is
done in the traditional metric made it difficult to interpret precisely
what caused a low SSIM value, so we elected to analyze the structure,
luminance, and contrast terms individually. It was found that the
structure element was useful in that it was easily interpreted (due to
similarity to Pearson’s correlation coefficient—see Eq. (1)), relatively
insensitive to delay map normalization, and provided useful
information reflecting regional similarity between the two delay
maps. In contrast, the luminance and contrast elements were found
to add relatively little additional information, with interpretation
highly sensitive to data normalization methods (the choice of which
is not trivial). Thus we chose to use the structure element as the main
comparison metric for this study (see Supplementary Figure S13 for
more details regarding this choice).

Another commonly used similarity metric, normalized mutual
information (NMI), was also tested to evaluate the similarity
between two delay maps. The NMI metric yields similarity values
ranging from 0 to 1. The comparison of the spatial similarity maps
derived from both metrics are shown in Supplementary Figures S14,
S15. A very similar pattern of the similarity maps from both
methods was observed in majority of the regions. However, the
SSIM allows for highlighting inverted structure between the two
maps through negative similarity values, while the NMI metric does
not. This capability is the main reason the SSIM approach was
chosen over the NMI approach.

4.6 Limitations and future directions

One limitation of this study is the limited number of subjects in
the DSC-MRI (DSC scans on healthy subjects are rarely conducted
due to the injection of the Gd contrast) and BOLD-CO2 MRI
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datasets, leading to a high variety of delay maps across subjects. Also,
subjects in the CO2-MRI dataset and the DSC-MRI dataset are from
different cohorts and not gender-matched, contributing to the
inconsistency between delay maps derived from these two
methodologies. These factors may lead to underestimation of the
similarity between the averaged DSC-TTP map and the averaged
BOLD-CO2 MRI delay map. Furthermore, in the CO2 arrival delay
adjustment methodology, a linear fitting was assumed in the edge-
detection algorithm, which might not work properly in diseased
patients (e.g., Moyamoya, stroke). Non-linear fitting could be
considered for such subjects. Additionally, the brain operates under
different conditions during DSC-MRI and BOLD-CO2MRI. DSC-MRI
tracks the passage of the paramagnetic gadolinium-based contrast
agent, which induces a local signal loss while not affecting the
vascular tone or cerebral blood flow or volume. However, in BOLD-
CO2 MRI, the CO2 stimulus induces various complicated
hemodynamic reactions, which plays an important role in the
BOLD signal changes. Analysis of averaged time series delays as
divided by the carpet plot confirmed that the shape of voxel time
series, characterized by the response of the voxel to the CO2 bolus
arrival, are largely associated with the delay times assigned via cross
correlation in CO2 challenge fMRI. An alternative strategy could be
inducing hyperoxia (Moreton et al., 2016; Pinto et al., 2020) or hypoxia
(Poublanc et al., 2021; Sayin et al., 2022) during BOLD imaging as an
alternative gas stimulus to track blood flow with the benefit of less
vascular reactivity changes during imaging.

A useful extension of this study would include an analysis of
whether the carpet plot-based transit time computation method can
be useful for quantifying blood transit times throughout localized
subsections of the brain. Additionally, it may be possible to extend
this methodology to use the fitted carpet plot edge line to estimate
improved voxel-wise blood arrival delay times. To support such an
extension, more work would need to be conducted to conclude
whether the rank (i.e., ordering) of voxels in the carpet plot is truly
accurate when computed based on the cross-correlation method.

5 Conclusion

In this study, we proposed a novel carpet plot-based method to
reduce the estimated cerebral transit times derived from hypercapnia
fMRI in healthy subjects and spatially compare the resulting delaymaps
with theDSC-MRI TTPmaps.We demonstrated that, at least at a broad
level, the sequence of voxels implied by the assigned CO2 delay values is
still similar to, though not a perfect representation of, that derived from
DSC-MRI. The tilted edge in the middle CO2 carpet plot regions
mimics that observed in DSC-MRI carpet plots. Voxels in the top
portion (extra long delays) were located in deepWMwhile those in the
bottom portion were located in the periventricular region. The
structural similarity (with DSC delays) of voxels associated with the
top andmiddle carpet plot regions was shown to be positive and similar
between the top andmiddle regions. Voxels falling within the bottom of
the carpet plot were shown to have delay values that are unrealistically
early and, on average, have poor (negative) structural similarity with the
same voxels assigned delays via DSC-MRI. However, delay values of
voxels in the top portion were largely affected by the hemodynamic
response under CO2 challenge. Further research should focus on
inducing alternative gas challenge to eliminate the vessel response, as

well as collecting both DSC-MRI and gas challenge MRI data from the
same cohort of subjects.
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