AUTHOR=Weber-Boisvert Guillaume , Gosselin Benoit , Sandberg Frida TITLE=Intensive care photoplethysmogram datasets and machine-learning for blood pressure estimation: Generalization not guarantied JOURNAL=Frontiers in Physiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1126957 DOI=10.3389/fphys.2023.1126957 ISSN=1664-042X ABSTRACT=
The large MIMIC waveform dataset, sourced from intensive care units, has been used extensively for the development of Photoplethysmography (PPG) based blood pressure (BP) estimation algorithms. Yet, because the data comes from patients in severe conditions—often under the effect of drugs—it is regularly noted that the relationship between BP and PPG signal characteristics may be anomalous, a claim that we investigate here. A sample of 12,000 records from the MIMIC waveform dataset was stacked up against the 219 records of the PPG-BP dataset, an alternative public dataset obtained under controlled experimental conditions. The distribution of systolic and diastolic BP data and 31 PPG pulse morphological features was first compared between datasets. Then, the correlation between features and BP, as well as between the features themselves, was analysed. Finally, regression models were trained for each dataset and validated against the other. Statistical analysis showed significant