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The large MIMIC waveform dataset, sourced from intensive care units, has been
used extensively for the development of Photoplethysmography (PPG) based
blood pressure (BP) estimation algorithms. Yet, because the data comes from
patients in severe conditions—often under the effect of drugs—it is regularly noted
that the relationship between BP and PPG signal characteristics may be
anomalous, a claim that we investigate here. A sample of 12,000 records from
the MIMIC waveform dataset was stacked up against the 219 records of the PPG-
BP dataset, an alternative public dataset obtained under controlled experimental
conditions. The distribution of systolic and diastolic BP data and 31 PPG pulse
morphological features was first compared between datasets. Then, the
correlation between features and BP, as well as between the features
themselves, was analysed. Finally, regression models were trained for each
dataset and validated against the other. Statistical analysis showed significant
(p<0.001) differences between the datasets in diastolic BP and in 20 out of
31 features when adjusting for heart rate differences. The eight features showing
the highest rank correlation (|ρ| > 0.40) to systolic BP in PPG-BP all displayed
muted correlation levels (|ρ| < 0.10) in MIMIC. Regression tests showed twice
higher baseline predictive power with PPG-BP than with MIMIC. Cross-dataset
regression displayed a practically complete loss of predictive power for all models.
The differences between the MIMIC and PPG-BP dataset exposed in this study
suggest that BP estimation models based on the MIMIC dataset have reduced
predictive power on the general population.
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1 Introduction

Hypertension is one of the greatest challenges to public health of our time. According to
the Centre for Disease Control, 47% of the adult population in the United States suffer from
hypertension, and only 24% of those with hypertension have their condition under control
(Centers for Disease Control and Prevention, 2022). Hypertension is an independent risk
factor for cardiovascular diseases such as heart attack, stroke, and kidney disease, and ranks

OPEN ACCESS

EDITED BY

Panicos Kyriacou,
City University of London,
United Kingdom

REVIEWED BY

Guanghao Sun,
The University of Electro-
Communications, Japan
Leonardo Bocchi,
University of Florence, Italy

*CORRESPONDENCE

Guillaume Weber-Boisvert,
guillaume.weber-boisvert.1@ulaval.ca

Frida Sandberg,
frida.sandberg@bme.lth.se

SPECIALTY SECTION

This article was submitted to
Computational Physiology and Medicine,
a section of the journal
Frontiers in Physiology

RECEIVED 18 December 2022
ACCEPTED 17 February 2023
PUBLISHED 02 March 2023

CITATION

Weber-Boisvert G, Gosselin B and
Sandberg F (2023), Intensive care
photoplethysmogram datasets and
machine-learning for blood pressure
estimation: Generalization
not guarantied.
Front. Physiol. 14:1126957.
doi: 10.3389/fphys.2023.1126957

COPYRIGHT

© 2023 Weber-Boisvert, Gosselin and
Sandberg. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 02 March 2023
DOI 10.3389/fphys.2023.1126957

https://www.frontiersin.org/articles/10.3389/fphys.2023.1126957/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1126957/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1126957/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1126957/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1126957/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1126957&domain=pdf&date_stamp=2023-03-02
mailto:guillaume.weber-boisvert.1@ulaval.ca
mailto:guillaume.weber-boisvert.1@ulaval.ca
mailto:frida.sandberg@bme.lth.se
mailto:frida.sandberg@bme.lth.se
https://doi.org/10.3389/fphys.2023.1126957
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1126957


second amongst the preventable causes of death in the U.S., trailing
cigarette smoking only (US Department of Health and Human
Services, 2003; Kochanek et al., 2019; Danaei et al., 2009). It is
now widely accepted that home blood pressure (BP) monitoring and
ambulatory BP monitoring are much better at predicting risks
associated with hypertension than in-clinic BP measurements
(Ogedegbe and Pickering, 2010), with night time BP increasingly
seen as an important risk determinant (Hansen et al., 2011; Gehring
et al., 2018). Devices presently used for home BP monitoring utilize
an inflatable cuff, which only provides intermittent readings instead
of presenting the entire dynamic range and patterns of BP
fluctuations. Moreover, the discomfort caused by cuff inflation is
particularly problematic for nocturnal BP measurement, as it can
disturb sleep and thereby interfere with measurements (Solà and
Delgado-Gonzalo, 2019).

Photoplethysmography (PPG) based BP estimation shows
promises to be a low-cost and convenient technique that enables
wearable designs and has the potential to replace cuff-based devices
(Elgendi et al., 2019). However, the lack of open access, standardized
PPG datasets for training and testing BP estimation algorithms is an
obstacle to researchers in the field. Most studies are based on private
databases where composition of the data and methods of acquisition
vary considerably, making a direct comparison between the
published BP estimation algorithms impossible (Solà and
Delgado-Gonzalo, 2019).

At the time of writing, several public datasets that include BP
and PPG signal are available. There are two large datasets sourced from
intensive care and surgical units: the Multiparameter Intelligent
Monitoring in Intensive Care II (MIMIC) Waveform Dataset (Saeed
et al., 2011) from the Massachusetts Institute of Technology, released on
PhysioNet (Goldberger et al., 2000) in 2011, and the VitalDB from the
Seoul National University Hospital (Lee et al., 2022) released in 2017.
Several smaller datasets also exist, often with a focus on a specific
condition. A few examples are: The University of Queensland Vital
SignDataset (Liu et al., 2012), a 32 patient dataset focusing on anaesthesia
acquired at the Royal AdelaideHospital in Adelaide, Australia, released in
2012; the Bed-Based Ballistocardiography Dataset (Carlson et al., 2020), a
40 patient dataset from the Kansas State University, released at the end of
2020; and the PPG-BP dataset (Liang et al., 2018), a 219 patients dataset
from the Guilin People’s Hospital, released in 2018, with a focus on the
screening of cardiovascular diseases (CVD) from PPG.

The PPG-BP dataset can be considered a middle ground among
the available datasets. It contains 657 short PPG segments three for
each of the 219 patients and recorded at rest under controlled
experimental conditions. Each patient is associated with a single BP
measurement, as well as patient biometric data and diagnosed CVD,
if any. In contrast, MIMIC contains more than 25,000 records of
variable length and varying measurement types, at times including
PPG and arterial blood pressure (ABP). The data was acquired from
bedside monitoring devices at intensive care units (ICU), including
surgery and cardiac care units, at the Beth Israel Deaconess Medical
Center in Boston, United States. Among all the public datasets,
MIMIC has been available the longest and has been used the most
extensively in the field of BP estimation. The other datasets have
seen little use in comparison, and some are not well suited for
developing and validating BP estimation algorithms due to the
limited number of subjects, the special conditions of data
collection and the sporadicity of BP measurements.

MIMIC has been used in many BP estimation studies. Kachuee
et al. used a sample of 3,663 records from 942 subjects to estimate
systolic blood pressure (SBP) using 10 PPG and ECG morphological
features. Their best results were a mean absolute error (MAE) of
11.17mmHG without calibration and 8.21 mmHG with calibration,
using AdaBoost for regression (Kachuee et al., 2017). In
2020 Hasanzadeh et al. used a sample of about 1,000 subjects to
estimate SBP from one spectral and 18 morphological features using
PPG only. Their best results were obtained with AdaBoost regression,
giving a MAE of 8.22mmHg (Hasanzadeh et al., 2020). In 2021, a subset
of 200 subjects has been used by Esmaelpoor et al. to compare of
56 machine-learned features generated by convolutional neural
network (CNN) against a set of 27 frequently used morphological
features from PPG and ECG. Eight regression methods were tested
and the best results were obtained with squared exponential Gaussian
regression or Gaussian process regression depending on the test
parameters, providing SBP with a MAE under 6 mmHg using
morphological features, and under 3.5 mmHg using machine-learned
features (Esmaelpoor et al., 2021). As in this last example, the dataset has
been used many times with pulse transit time and pulse arrival time
algorithms, despite that variability in the ECG sampling time makes it
unsuitable for transit and arrival time calculation (Elgendi et al., 2019).
The breadth and variable quality of the dataset also resulted in uneven
sampling by researchers, and as such hardly makes performance
comparison easier, even between two studies using it. A more serious
concern is the frequently mentioned hypothesis that because the data is
sourced from ICU, with patients having receivedmedication and being in
varied critical conditions, the MIMIC population may exhibit
abnormalities or a different relation between PPG and BP than would
be seen in a more controlled setting (Kachuee et al., 2017; Hasanzadeh
et al., 2020; Chao et al., 2021), casting doubt on the validity of results
beyond the dataset itself.

The aim of this study is to evaluate if the relationship between
PPG pulse characteristics and BP inMIMIC is truly different from that in
data acquired under controlled conditions. To achieve this goal a subset of
MIMIC was compared to PPG-BP in a two-step approach. First, a
statistical comparison of the datasets was performed. It comprised
comparing the distribution of features characterizing PPG pulse
morphology, as well as comparing the correlation between features on
each dataset. Second, the correlation between BP and features was
compared between datasets to see if similar morphological variations
could be observed on both datasets in relation to BP changes. To illustrate
the implication of the differences between the datasets, Support Vector
Regression models were trained on each dataset and their cross-validated
performance on the training set were compared to their performance on
the other dataset, in order to assert whether predictive powers were
retained.

2 Materials and methods

2.1 Datasets

A subset of the MIMIC database, prepared especially for BP
estimation by Kachuee. (2015), is used in this study. Because it is
hosted by the University of California, Irvine, the subset is
sometimes called the “UCI” dataset, which will be used hereafter.
This subset, which excludes segments with missing signals and
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abnormal values from MIMIC, contains 12,000 records of lengths
varying between 8 s and 10 min. Each record is sampled at 125 Hz
and contain fingertip PPG, electrocardiogram (ECG), and
instantaneous ABP. No additional information about the subjects
is provided, and the devices used for data acquisition are not
specified.

The PPG-BP dataset contains 657 fingertip PPG segments from
219 subjects of 21–86 years of age with an average of 57 ± 16 years.
Each segment has a duration of 2.1 s and a sampling rate of 1 kHz. A
single SBP and diastolic blood pressure (DBP) measurement is provided
for each subject, as well as the sex, age, height, weight, heart rate, and
disease records. The PPG signal was recorded through an SMPLUS
SEP9AF-2 sensor connected to a Texas Instrument
MSP430FG4618 microcontroller, with a hardware filter bandpass of
0.5–12Hz. The BP measurements were taken with an Omron HEM-
7201 upper arm BP monitor. While also sourced from hospital patients,
the PPG-BP data does not come from ICU units and was acquired under
controlled conditions following an experimental protocol. Data
acquisition was conducted in private, following a relaxation and
adaptation period of 10min, with the patients sitting in an office
chair and their arms resting on a desk. The same acquisition devices
were used for all subjects. Furthermore, a screening process excluded
patients diagnosed with diseases other than cardiovascular diseases and
diabetes. The data was also screened for abnormal and missing values,
while a consistent signal quality was ensured by computing a signal
quality index and excluding subjects with low values (Liang et al., 2018).

2.2 Pre-processing

All signal processing was done in Python and references to
functions are, otherwise noted, part of the standard library or of the
SciPy scientific library (Virtanen et al., 2020).

For UCI, five evenly spaced segments of a duration of 5 seconds
were first extracted from each of the records in the dataset. Records
shorter than 25 s were rejected. SBP and DBP were extracted from
the continuous ABP signal by averaging all the peak values in the
sequence, using function find_peaks. Records with less than three
ABP peaks, due to non-pulsatile ABP segments, were rejected. Even
though the UCI dataset had already been pre-processed to eliminate
invalid or excessively noisy signals found inMIMIC, signal segments
with movement artefacts, as well as sequences with large variations
in pulsatile amplitude remained. To eliminate those issues and
ensure coherence between the datasets, the following pre-
processing steps were applied to both UCI and PPG-BP. First, all
segments had their mean removed and were then filtered using a
0.7–12 Hz zero-phase fourth order Butterworth bandpass filter.

Three screening criteria were created to identify the remaining
problematic segments. Any segment satisfying one of the conditions
was rejected. The first criterion excluded signal segments with very
rapid changes associated with signal artefacts such as those caused
by body movements or device disconnection:

max x´ n( )| |( )> μ x´ n( )( ) + 5σ x´ n( )( ) (1)
where x(n) is the filtered PPG signal, x´(n) is its first derivative, σ is
the standard deviations (STD) and μ the mean. The second
criterion ensured pulsatile amplitude was stable throughout
each segment:

max xi( ) −min xi( )( )> 1.5 max xj( ) −min xj( )( )
for i, j ∈ 1, 2, 3{ } and i ≠ j

(2)

where x1, x2 and x3 are three equally sized subdivisions of x(n). It
was not applicable to PPG-BP because of the shorter segment
duration. The last criterion removed segments with extreme heart
rate or with characteristics interfering with peak detection:

PR< 40 ∨ PR> 220 (3)
where PR is the pulse rate in beat per minute (BPM) estimated as the
average first derivative x´(n) peak to peak interval. To avoid false
peaks, those with a prominence lower than 60% of the maximum
prominence were discarded. The prominence of a peak quantifies
the amplitude difference between its apex and its bases, computed by
function peak_prominences.

Finally, to be able to compare the various time-based
features, both datasets were resampled to a matching
frequency of 250 Hz.

2.3 Fiducial points extraction

The fiducial points used for feature extraction are shown in Figure 1.
The second derivative of the signal was first computed and low-pass
filtered with a 12 Hz zero-phase sixth order Butterworth filter to obtain
x´´(n), after which the third derivative x´´´(n) was computed. The PPG
pulses peak positions np, and their maximum upslope positions nu were
then established by finding the peak positions of x(n) and x´(n) with the
find_peaks function, considering only peaks with a prominence greater
than 60% of the maximum prominence. Boundaries for each pulse were
established by finding the pulse onset, n0, associated with each nu. The
position of n0 was chosen as the first positive peak of x´´´(n) left of nu,
subject to x´´´(n)> 0.4max(x´´´(n)) to ignore minor peaks. If a
positive zero crossing of x´(n) could be found between that point
and nu, it was used instead. This strategy allowed a robust
detection of onset even for pulses preceded with a slow rise

FIGURE 1
A typical PPG signal as well as its first and second derivatives with
their most important fiducial points.
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before the onset. The end of the pulse, nz, was defined as the next
pulse onset. Pulses with a marked difference between the
amplitude at onset and end point, satisfying
|x(n0) − x(nZ)|> 0.12 (x(nP) − x(n0)), were discarded.

With pulse boundaries and peaks established, the remaining
fiducial points were extracted from x´´(n). Five of those points
are the a, b, c, d and e points described by Takazawa et al. (1998).
Since the e point also marks the position of the dicrotic notch,
the same nomenclature was kept for the additionnal f, g and h
points designating the second derivative estimates of the
diastolic peak, early systolic peak and late systolic peak
positions. The fiducial points as described by Takazawa
asusme an ideal PPG signal with well defined successive
waves in the second derivative. To enable extraction from
the non-ideal waveforms present in the datasets, the
following five step process was developed:

1. Set the position of a, na, to the point where x´´(n) is at its
maximum and the position of b, nb, where it is at its minimum,
subject to n< nP.

2. Set the position of the dicrotic notch e, ne as
the earliest x´´(n) peak with n constrained by
nP < n< 2

3 (nz − n0) ∧ x(n)< 0.7 x(nP) ∧ x´´(n)> 0.05x´´(na).
3. Set the position of the diastolic peak f, nf, as the earliest downward

peak satisfying the condition ne < n< 2
3 (nz − n0) ∧ x´´(n)< 0.

4. Set the position of c and d, nc and nd, as the x´´(n) upward and
downward peaks with the greatest difference between them,
constrained by nb < n< ne. For pulses where those peaks did
not exist, the positions were estimated as the position of the
maximum inflection points of x´´(n), that is the maximum
downward and upward peaks of the fourth derivative
constrained by nb < n< ne.

5. Estimate the position of the early and late systolic peak by setting
ng � nb + nc−nb

2 and nh � nc + nd−nc
2 .

All peaks of x´´(n) and x´´´(n) were extracted by detection of the
zero-crossings of the next higher order derivative.

2.4 Features extraction

All features were extracted on a pulse-by-pulse basis. The trend
of the signal of each pulse was first removed by subtracting the linear
slope connecting the start point of each pulse to its end point, as
described in (Xing et al., 2020). Thus, all pulses in the resulting
detrended signal, y(n), have value of zero at their starting and
ending point. The amplitudes of the detrended signal at various
fiducial point are hereafter designated by the form yi where
yi � y(ni). The features used in this paper are recapitulated in
Table 1.

2.4.1 Amplitude ratios
The reflection index (RI) along with the augmentation index

(AI) measure the contribution of the peripheral wave reflections to
the overall pulse (Elgendi, 2012). As a measure of reflected waves, AI
can also be computed in regards to the early and late systolic peaks as
in Eq. 6 and Eq. 7 while Ygh defined in Eq. 8 is an estimate of
amplitude ratio of the late to early systolic peak, which has
been correlated with changes in systolic pressure (Baruch et al.,
2011).

RI � yf

yp
(4)

AI � yp − yf

yp
� 1 − RI (5)

AIgh � yg − yh

yg
(6)

AIgf � yg − yf

yg
(7)

TABLE 1 Summary of the features used in this paper.

Feature Name/Description Defined in

RI Reflection index Sec. 2.4.1, Eq. 4

AI Augmentation index Sec. 2.4.1, Eq. 5

AIgh Augmentation index of early to late systolic peaks Sec. 2.4.1, Eq. 6

AIgf Augmentation index of early systolic to diastolic peaks Sec. 2.4.1, Eq. 7

Ygh Amplitude ratio or early to late systolic peaks Sec. 2.4.1, Eq. 8

IPA Inflection point area ratio Sec. 2.4.2, Eq. 9

Δnij Time span between two fiducial points Sec. 2.4.3, Eq. 10

HR Heart rate Sec. 2.4.3, Eq. 11

Ni Time ratio between the portion of the pulse duration before and after a fiducial point Sec. 2.4.4, Eq. 12

AX Aging index Sec. 2.4.5, Eq. 13

Spe Slope between points p and e Sec. 2.4.6, Eq. 14

Spf Slope between points p and f Sec. 2.4.6, Eq. 15

Wxx Width of the pulse at xx% of its amplitude Sec. 2.4.7
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Ygh � yh

yg
(8)

2.4.2 Area ratios
The Inflection Point Area ratio (IPA), the ratio of area under the

curve until the dicrotic notch to the area under the curve after it, is
an indicator of total peripheral resistance (Elgendi, 2012).

IPA � ∑ne
n�n0y n( )

∑nz
n�ney n( ) (9)

2.4.3 Time spans
Time spans all take the same general form, given in Eq. 10, and

can be visualised in Figure 2. The duration of the systolic phase,
Δn0p, has been associated with hypertension (Dillon and Hertzman,
1941; Elgendi, 2012) while the duration of the diastolic phase, Δnpz,
has been associated with DBP (Yoon et al., 2009). The time spans
Δn0g, Δn0h, Δngh, and Δngf, are spans between reflected waves
components, of which Δngf has been associated with pulse
pressure (PP) (Baruch et al., 2011). Δnpf is the time between
the peak and the diastolic peak. Δnup, Δnue, Δnuf are time spans
in relation to the maximum upslope point, of which the last has
been shown to have a strong correlation with SBP and DBP
(Kim et al., 2008).

Δnij � nj − ni (10)

The HR estimation used as a feature is also, in essence, a
time span, and was calculated based on the pulse duration as
shown in Eq. 11, where fs is the sampling rate.

HR � 60fs

nz − n0
(11)

2.4.4 Time ratios
Three different time ratios have been included in this study, each

representing the pulse duration ratio before and after a fiducial
point, taking the form shown in Eq. 12. Included areNp in relation to
the peak,Ne in relation to the e point, andNf in relation to the f point.
The time ratio of systole to diastole,Nf,was shown to be correlated to
SBP (Li et al., 2014).

Ni � Δnoi
Δniz

(12)

2.4.5 Acceleration PPG
Acceleration PPG, or second derivative PPG, is a group of

features extracted from the fiducial points in the second
derivative of the signal. They have been associated with
arterial stiffness and vascular aging (Takazawa et al., 1998).
The features b/a, c/a, d/a and e/a are amplitude ratios of the
second derivative at those fiducial points, while the aging index
(AX) is shown in Eq. 13.

AX � b − c − d − e

a
(13)

2.4.6 Slopes
The slopes from the peak to the dicrotic notch, Spe, and to the

diastolic peak, Spf, have been investigated as BP predictors. Spe was
shown, although with low certainty, to have a weak correlation to
DBP (Kim et al., 2008), and has also been associated with
peripheral resistance (Lin et al., 2020). Slopes used in this study
are normalized, as in (Kim et al., 2008), in relation to the pulse peak
value.

Spe � ye − yP

yP Δnpe
(14)

Spf � yf − yP

yP Δnpf
(15)

2.4.7 Widths
Widths are conceptually the same as time spans, but they

are not calculated from specific fiducial points in the pulse.
Rather, the span is the width of the pulse at a certain percentage
of its amplitude. It has been used as a BP predictor (Ding et al.,
2019) and is associated with systemic vascular resistance (Awad
et al., 2007). In this study, the pulse width is measured at 30%,
50%, 70% and 90% of yp for W30, W50,W70 and W90,
respectively.

2.4.8 Outlier exclusion and feature vector
construction

Outlier exclusion was performed on a per-pulse basis.
Morphologically abnormal values for IPA were identified first
and any values below 0.5, usually caused by an abnormal shape
of the diastolic part of the pulse, were rejected. The feature vectors of
both datasets were then temporarily joined to compute the global
mean and the global STD, σglobal, of each feature. Pulses where any
feature diverged more than 4 STD from the mean were considered
outliers and rejected.

The remaining feature vectors for pulses in the same segment
were then averaged and saved. Since only a single BPmeasurement is
provided per subject in the PPG-BP dataset, features extracted from
different segments but from the same subject were also averaged
together.

2.5 Statistical comparison of the datasets

To characterise the differences between PPG-BP and UCI, the
distribution of features and BP data compiled in section 2.4.8 were
first examined.

FIGURE 2
Different types of measurements used in feature extraction.
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For each feature, as well as SBP and DBP a two sample
Kolmogorov–Smirnov (KS) test was performed with α = 0.001 to
determine if differences between distributions were significant.

For each dataset, the mean and STD of each feature was
calculated. For each feature, the difference between the mean
value of the two datasets, was determined as per Eq. 16. The
same was also done for the STD value as in Eq. 17. The results
were computed as a percentage of σglobal to bring them on a
comparable scale. This analysis was also done on SBP and DBP.

μ% � μuci − μppg−bp
σglobal
∣∣∣∣

∣∣∣∣
· 100 (16)

σ% � σuci − σppg−bp
σglobal
∣∣∣∣

∣∣∣∣
· 100 (17)

Since many features are affected by the pulse duration, those
tests were then repeated with HR compensation. That is to say that
all time spans (Section 2.4.3) and widths (Section 2.4.7) were
multiplied by HR while slopes (Section 2.4.6) were divided by
HR before recomputing σglobal, Eq. 16 and Eq. 17, yielding μadj%
and σadj%.

Finally, the feature correlation matrix was computed: for
each feature, the Pearson correlation coefficient (r) was
calculated against every other feature. The difference between
the correlation matrix of each dataset was then produced to
highlight their discrepancies.

2.6 Response to BP variations and shared
predictive power

2.6.1 BP correlation test
The Spearman rank correlation coefficient (ρ) was computed

to assess correlation between each feature and SBP as well as
DBP, respectively. Spearman correlation was selected here
instead of Pearson for its ability to identify both linear and
non-linear relationships. The difference between the datasets
was then computed to reveal any divergence in BP-features
relationship.

2.6.2 BP estimation test
For this section, the Scikit-Learn machine learning library was

used (Pedregosa et al., 2011). Using the svm.svr module, a support
vector regression (SVR) model with a radial basis function
(RBF) kernel was trained for SBP estimation on the PPG-BP
dataset and another on UCI, keeping one random sample per
subject. Therefore, when splitting a dataset into a training and
testing set, data from one subject was never included into both
the training and testing set.

To counter the bias caused by the non-uniform sample
distribution, sample weights were passed to the model for
training and also in subsequent evaluation of performance.
Samples were first split into 12 equally spaced bins based on
their BP value. The weight g of each sample was gi � k max/ki
where k max is the number of samples in the bin with the most
samples and ki is the number of samples in the current sample’s
bin. Because samples were concentrated in the middle of the BP
range, the resulting weights increased emphasis on the samples

towards the extrema of the BP range, as to approximate training
and testing using a uniform distribution.

The features were centered to zero mean and scaled to unit
variance before being handed to the model.

The model regularization parameter C, controling
penalization of estimation errors during training, and the
kernel function scale parameter γ, were optimized first
through a coarse then a fine parameter grid search, as
described in (Hsu et al., 2016). A leave-one-out cross-
validation strategy was used to maximize the ammount of
useable data for training.

Backward feature elimination was used to find the optimal
feature set for each dataset, following this method:

1. Using 10-fold cross validation, sequentially train and test the SVR
using all features but one, until all features have been left
out once.

2. Compare the results and save the reduced feature set with the best
cross-validated performance.

3. Restart from step one using the reduced feature set until only
4 features remain.

4. Select the optimal feature set, that is the one that had the best
performance throughout the entire process.

At every step, performance was evaluated using the weighted
coefficient of determination R2, as defined in Eq. 18, where i is the
sample index, gi is the sample weight, ui is a sample’s true BP, ûi is a
sample’s estimated BP, �u is the weighted mean of the true BP of all
samples defined in Eq. 19, and k is the number of samples.

R2 � 1 − ∑k
i�1gi ui − ûi( )2

∑k
i�1gi ui − �u( )2 (18)

�u � ∑k
i�1giui

∑k
i�1gi

(19)

The Pearson correlation coefficient between the estimated BP
and true BP, as well as the MAE of the estimated BP were used as
secondary metrics. In addition to plotting the estimated BP and true
BP pairs for each test, Bland-Altman plots (Bland and Altman, 1986)
were also produced to allow better interpretation of the results. Final
performance evalution with the optimised model parameters was
carried out through leave-one-out cross-validation on the training
dataset. The models were then retrained separately on their entire
respective training dataset without leaving out any samples, but
keeping the same set of features as well as the same C and γ values.
Those retrained models were then validated against the other dataset
to see if the predictive power would be retained.

3 Results

3.1 Pre-processing and feature extraction

For PPG-BP, 16 of the dataset’s 657 segments were rejected
by criterion 1) before feature extraction. No segments were
rejected due to criterion 2) or 3). From the remaining segments,
742 pulses were identified, of which 22 (3%) were rejected as
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outliers based on extracted feature values. Averaging the
remaining pulse features per segment yeilded 533 valid
segments with complete feature vectors, for an overall
segment rejection rate of 19%. After averaging per subject,
the dataset had 211 feature vectors.

For UCI, 2,376 records were too short to generate the
segments and were ignored. The remaining records yielded
48,120 segments, of which 1791 were rejected due to non-
pulsatile ABP signals, 1,228 because criterion 1),
2,663 because of criterion 2) and 78 because of criterion 3).
From the remaining segments, 83,903 pulses were identified, of
which 7,104 (8%) were rejected as outliers based on extracted
feature values. Averaging the valid pulses per segment yeilded
21,698 valid segments with complete feature vectors, for an
overall segment rejection rate of 55%.

3.2 Statistical comparison

Results of the statistical comparison of the datasets are
aggregated in Figure 3.

According to the KS-test, the differences between feature
distributions were significant (p< 0.001) for 22 out of 31 features
for the original features and 21 out of 31 features for the HR adjusted
features.

Looking at μ% the difference in mean original feature values
between the datasets, c/a stood out among all features,
registering a difference of −100% of the standard deviation
on UCI compared to PPG-BP. Several other features displayed a
large difference, the second highest being Δngh (−93%),
followed by the width features all showing at least −75%
difference, Spe (−74%), AI (68%) and RI (−68%). The
difference between HR distributions (46%) is worth noting
because of its direct physiological implication and its effect
on other features. As shown in Figure 4, the UCI HR
distribution is bimodal with a first peak positioned around
75 BPM, similar to PPG-BP, and a second peak close to
90 BPM. The average HR was 6.2 BPM higher in UCI and
28% of segments had a HR above 90 compared to 8% in PPG-BP.

Because HR directly affects the value of many features, looking
at the HR corrected difference in mean μadj% reveals what part of μ%
is not explained by the difference in HR distribution, and highlights
fundamental differences in the pulse shapes. Values significantly
higher on UCI were AI (68%), Nf (68%), AIgf (62%), Δngf (59%),
Δnpf (51%), Δnuf (49%), HR (46%), Δn0g (45%), IPA (31%), AX
(28%) and d/a (14%). Values significantly lower on UCI were c/a
(-100%), RI (-68%), Δngh (−61%), W90 (−45%), W70 (−42%), Spe
(−41%), W30 (−40%), W50 (−39%) and b/a (−30%).

The five features with the highest STD difference were c/a (41%),
AX (38%), d/a (37%), IPA (31%) and Spe (30% or 29% adjusted for
HR), all higher on UCI. In fact, STD was higher in UCI for 87% (or
80% adjusted for HR) of features, indicating a greater variability in
pulse morphology within the dataset.

The relation of those differences to differences in pulse
morphology between UCI and PPG-BP are illustrated in
Figure 6. For example, the PPG-BP pulse with typical values
(A) had a well defined second derivative peak for the c point
with c/a = −0.15 while the depression at the c position for the

FIGURE 3
The difference inmean (μ%) and standard deviation (σ%) between
the datasets, given as a percentage standard deviation of the joined
datasets. The HR adjusted forms (μadj%) and (σadj%), compensate for
the different HR distributions affecting time sensitive features.
Negative values indicate that the mean or std values for UCI are lower
than for PPG-BP. Values in bold indicate significantly different
distributions (p < 0.001) according to the Kolmogorov-Smirnov test.
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bottom two pulses, (C) and (D), gave lower values of c/a = −0.40 and
c/a = −0.68. The f point was also positioned later in the pulse for (C)
and (D), resulting in larger time spans. Pulse (C) had Spe = −0.022,
Δn0g = 36; Δnuf = 83; Δnpf = 69 and Nf = 1.22 which can be directly
compared to the values of (A), Spe = −0.012, Δn0g = 32, Δnuf = 76,
Δnpf = 50 and Nf = 0.90, since both had similar heart rates.

Pulse (C) also had a very narrow peak section with W90 =
14 while the PPG-BP pulse (A) had a wider one with W90 = 30.
The heart rate of the UCI pulse (B) was 20 BPM lower than the
PPG-BP pulse (A) but still only hadW90 = 15. Pulse (B) also had
AI = 0.76 because of the larger amplitude difference between
p and f as well as a lower b/a = −1.26 caused by its more
pronounced b peak in the second derivative. In comparison the
PPG-BP pulse (A) had AI = 0.50 and b/a = −0.79. The variability
of c/a in UCI is also illustrated in Figure 6, where the amplitude
of c can be seen fluctuating between zero and the amplitude of b
in the three UCI pulses. It should be noted that the pulses in
Figure 6 are not archetypal pulses of UCI, which includes highly
varied pulse shapes. The pulses in Figure 6 were rather selected
to illustrate the morphological features that induce some of the
largest feature distribution differences observed between the
datasets.

In regards to BP, the SBP distribution was similar for both
datasets and close to normality. However, the DBP distributions had
significant differences. The average DBP value for UCI was lower at
64.3 mmHG, compared to 71.8 mmHG for PPG-BP, or a difference
equivalent to -64% of the global sandard deviation. The DBP
distribution of UCI was also found to deviate significantly from
normality, as shown in Figure 5, with a slightly leptokurtic shape and
a significant skew towards lower values.

Overall, the datasets had a similar degree of internal correlation,
with mean(|r|) � 0.36 compared to mean(|r|) � 0.35 for PPG-BP.
UCI had 61% of feature pairs with |r|> 0.25 and 28% of feature pairs
with |r|> 0.50, as compared to 57% and 25%, respectively, for
PPG-BP.

As for the correlation between features, the largest differences
between datasets were observed with Spe, a feature that also displayed
a significant mean and STD differences between the datasets.
Compared to PPG-BP, the correlation level |r| of Spe increased on
average by 0.40 with seven other features in UCI: b/a, d/a, AX,
Δnup,Δn0p, Ygh andAIgh. Another important difference was e/a,
which had a correlation of r = -0.42 with d/a for PPG-BP, while
that correlation fell to r = 0.02 for UCI.

The differences observed between the datasets were in large part
associated with the presence of particularily pointed pulses in UCI
and rare in PPG-BP. Those pulses hold a different relationship
between features compared not only to most pulses in PPG-BP, but
also to other types of pulses in UCI, increasing variability. Their
caracteristics can be seen in the UCI Pulses of Figure 6. In general
their c and d points were not well defined peaks in the second
derivative, but inflection points in a curve between b and e. The
amplitude of d tended to be higher as e also got higher and the Spe
slope became more pronounced. AX, which is calculated from the
amplitude of the second derivative fiducial points, was in turn
affected. Those pulses were also associated with a quick pulse
onset with shorter Δnup,Δn0p and a proportionnaly narrower
pulse wave. Finally the g point also tended to be situated around
the peak while the h point came later at a much decreased PPG
amplitude, wherea in PPG-BP the amplitude at g and h was not
related to Spe due to their more varied positions around a generally
flatter pulse peak.

3.3 Response to BP variations and shared
predictive power

3.3.1 Correlation to BP
The Spearman rank correlation coefficient (ρ) of each dataset’s

features against SBP and DBP is presented in Figure 7.
For SBP, significant correlation could be established for

15 features in PPG-BP. The three most correlating features were

FIGURE 4
Comparison of the HR distribution for the PPG-BP and UCI
datasets.

FIGURE 5
Comparison of the DBP distribution of the PPG-BP and UCI
datasets.
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AIgh(ρ � −0.50), Ygh(ρ � 0.50), Spf(ρ � −0.48), and a total of
14 features had a correlation of |ρ|> 0.25. For UCI, the three
most correlating features were c/a (ρ � 0.24), W90 (ρ � 0.22) and
Δngh (ρ � 0.20). It should be noted that those features all had major
mean and STD differences with PPG-BP (see Section 3.2). In total,
significant correlations with SBP could be established for 22 features
in UCI, although coefficients were lower at |ρ|≤ 0.25 for all features.

Stronger correlation with SBP in one dataset was not associated
to a stronger correlation with SBP in the other dataset. For example,
the three most correlating features of PPG-BP, AIgh, Ygh and Spf
(|ρ|≥ 0.48) were not among the higest in UCI, where their SBP
correlation reached at most |ρ| � 0.09. As for the most correlating
features in UCI, W90 obtained ρ � 0.36 in PPG-BP, Δngh was not
significant and c/a had a stronger but opposite correlation of
ρ � −0.28. Two other features showed significant but reversed
correlation, although to a lesser degree: Spe with ρ � −0.23 for
PPG-BP and ρ � 0.11 for UCI, and AX with ρ � 0.42 for PPG-
BP and ρ � −0.05 in UCI.

A similar pattern was observed for DBP. Significant correlations
were established for ten features for PPG-BP. Those with the highest

correlation were Δnpf(ρ � −0.42), Spf(ρ � −0.36), and d/a
(ρ � −0.35). For UCI, significant correlations were established for
a total of 28 features. Those with the highest correlation were
Δnpz(ρ � −0.25), HR(ρ � 0.24), and Ne(ρ � 0.23). In addition,
relatively strong correlation (for UCI) was shared with one of the
most correlating features of PPG-BP: Δnpf(ρ � −0.21). Again for
DBP, correlation levels of |ρ|> 0.25 were only reached on PPG-BP,
and that for nine of the ten features where significance was attained.

3.3.2 BP estimation
Sampling one feature vector per subject in UCI for the BP

estimation test yielded a total of 7,087 vectors. Parameter selection
for the PPG-BP trained model resulted in C � 75, γ � 0.1 while
selected parameters for UCI were C � 0.25, γ � 0.03. For PPG-BP,
eight features were retained during feature selection:
Ne, Spf,W90,Δngf,Δngh,Δnpf,AX andHR. For UCI, sixteen
features were retained: AIgf,Nf, Spf,W30,W50,W90,Δn0g,
Δn0h,Δnuf ,Δ ngh,HR,AX,RI, b/a, c/a and d/a.

SBP estimation results for the PPG-BP trained model are
presented in Figure 8 for cross-validated tests on PPG-BP.

FIGURE 6
(A) Pulse from PPG-BP with characteristics representative of the dataset. (B), (C) and (D) Pulses from UCI illustrating some of the differences
observed with PPG-BP. In general, the pulse shape wasmore pointed and narrower, dropping sharply after the peak. The amplitude of the PPG signal was
usually lower at the e and f points, and the f point was often encountered later in the pulse. The second derivative showed a lot of variability, but compared
to PPG-BP, the b point had usually a lower amplitude and the c and d points were often not well-defined peaks in the second derivative and were
thus estimated from the inflection points. This resulted in highly variable but general lower amplitude values for the c point especially, compared to PPG-
BP where it more consistently appears as a peak with a value closer to zero. Note that the pulse duration is normalized in all four pulses of this figure.
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During cross-validated tests, the model tended to overestimate
samples with low BP values and underestimated samples with
high BP. Nonetheless, it showed significant predictive power over
the entire range of BP values, as shown by the R2 score of 0.63.
Secondary metrics were r = 0.63 and MAE = 13.96 mmHg with an
STD of 10.50 mmHg. When applied to predict SBP for the UCI
dataset, a model with the same parameters trained with the entire
PPG-BP did not retain any predictive power, as shown in Figure 9,
giving worse results than a mean predictor, as shown by the R2 score
of -0.07. Secondary metrics were r = 0.09 and MAE = 21.03 mmHg
with an STD of 16.95 mmHg.

Cross-validated results for UCI, shown in Figure 10 were
considerably worse than for PPG-BP, achieving only R2 = 0.31,
with secondary metrics r = 0.42 and MAE = 16.66 mmHg with an
STD of 12.90 mmHg. Applying the UCI trained model to PPG-BP
resulted again in a loss of predictive power, as shown in Figure 11,
although not as dramatic as for the PPG-BP trainedmodel applied to

UCI. It resulted in an R2 score of 0.12, barely better than a mean
predictor. Secondary metrics were r = 0.45 andMAE = 16.68 mmHg
with an STD of 11.93 mmHg. Themodel can in fact be said to almost
act as a mean predictor, as the produced BP values always remain
close to the mean BP, with an STD of 5.74 mmHg.

4 Discussion

Analysis of the BP and features distributions showed
fundamental differences between datasets. Because vascular aging
plays a role in shaping the pulse wave, it can be hypothesized that
differences in the age distribution between the datasets could
influence the results. This hypothesis can neither be confirmed
nor rejected as age information is not available for UCI. While
we can’t ascertain that the UCI data is similarily distributed, it can be
interesting to look at age data available for 2040 subjects of the
MIMIC waveform database that have been matched to the MIMIC
clinical database. That information, provided in theMAP-CW file of
the dataset, shows an average age of 65 ± 17. It should however be
considered a low estimate since age for patients older than 90 years
of age is simply noted as “90+”.

For several features, the difference can be partly attributed to the
higher mean HR in UCI which results in narrower pulses. That
characteristic of UCI and more specifically the large portion of data
associated with a HR above 90, could be linked with stress or poor
health. It supports the idea that differences in the conditions in
which the data was obtained, or in the condition of the subject, has
an influence on the data.

However, even when scaled by the heart rate, the difference inmean
values between the datasets remained significant. That remainder was
linked to morphological variations between the datasets, notably to the
UCI pulse types illustrated in Figure 6. Those have amore pointed peak,
more of their energy concentrated early in their period, and often lack
well defined c and d peaks in the second derivative.

The loss of correlation between d/a and e/a on UCI may give
some insight into the physiological origin behind the differences.
The e/a ratio is associated with an increased inflection at the dicrotic
notch while the d/a ratio is associated with inflection at the late
systolic peak. A lower d/a ratio often equates to a flatter PPG peak
with a sharp drop, as compared to a pointier PPG peak with a more
progressive decline for higher ratios. In the wave-reflection based
PPG model, this can be seen as the effect of timings and amplitude
between the main systolic peak and the renal and iliac reflections
(Baruch et al., 2011). The correlation between those features in the
PPG-BP indicates that relatively uniform parameters in the
circulatory system of the subjects define both reflections, while
the loss of correlation on UCI indicates less uniformity, since the
renal and iliac reflections appear modulated by different parameters.
The d/a and e/a ratios have been shown to change independently
with the administration of vasodilators or vasoconstrictors
(Takazawa et al., 1998), which hints at possible differences in
subject or environmental conditions between UCI and PPG-BP.

The relatively high degree of linear correlation between features
was expected, as many features are similar in nature and are
influenced in the same way by the pulse characteristics. For
example widths and timings are all expected, to a certain degree,
to vary together with the pulse duration.

FIGURE 7
Feature-BP Spearman correlation test results. The top value is
the correlation coefficient for PPG-BP, the bottom value the
correlation coefficient for UCI, while the color and intensity show by
how much UCI differs from PPG-BP. Values in bold indicate that
the correlation is significant (p < 0.001).
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The BP correlation test showed a different relationship between
features and BP for each dataset. The higher correlation coefficients
generaly found on PPG-BP indicated a more uniform response
between the subjects, which is coherent with the controlled data
collection and subject selection methodology of PPG-BP, whereas
the data from UCI lacks any control over environmental and subject
conditions. For UCI, two of the features correlating the most with
SBP were c/a and Δngh, features that also had the most difference
between the datasets. Since those features had an opposite or null
correlation on PPG-BP, the difference points to possible clusters of
patients or conditions in UCI where consistant BP changes

accompany those morphological changes. In fact, 35% of the
pulses had a c amplitude lower than d in UCI, while it is the
case for only 5% of pulses in PPG-BP. In UCI, those pulses were
associated with an average SBP lower by 10.7 mmHg and average
DBP lower by 3.8 mmHg compared to pulses with well defined
second derivative peaks where c > d.

Of the features retained by the SBP estimation model for PPG-
BP, four out of eight (Spf,W90,Δnpf and AX) had significant
correlation to SBP. Some of the feature that showed among the
strongest correlation were not retained, which may be attributed to
information redundance due to the generally strong correlation

FIGURE 8
Cross validated results for the PPG-BP trained model.

FIGURE 9
Results of the PPG-BP trained model tested with the UCI data. A random sample of the BP estimations are shown but the metrics are for the entire
dataset.
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between features. For UCI, the large sample size allowed establishing
significance at lower correlation levels, despite the increased
variability of the data. The three features with the highest
correlation to SBP (W90,Δngh and c/a) were retained for
estimation, the latter two also being the two features with the
largest difference in mean value between datasets. Despite
significant SBP correlation being present for b/a, c/a and d/a, no
second derivative ratios were retained for PPG-BP. The fact that
those three ratios were retained for UCI, and especially c/a with its
opposite correlation profile compared to PPG-BP, maybe related to
the aforementioned presence of clusters of patients with significant

differences in the second derivative. It is also interesting to note that
HR was retained for both datasets despite the absence of direct
correlation to SBP, which suggests that scaling of some features in
relation to the pulse duration played an important part in the
estimation process.

Performance of BP estimation algorithms are extremely difficult
to compare. The absence of a standard test dataset and the tradition
of reporting the results in mmHg mean error or MAE make the
results very sensitive to sample selection and BP range. Sample size,
preprocessing and sampling methods vary widely, and are not
always clearly described in published studies. Comparison with a

FIGURE 10
Cross validated results for the UCI trained model. A random sample of the BP estimations are shown but the metrics are for the entire dataset.

FIGURE 11
Results of the UCI trained model tested with the PPG-BP data.
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few other calibration free studies can be made but should not be seen
as decisive. Kachuee et al. obtained anMAE of 11.17 ± 10.09 mmHG
and r = 0.59 on UCI using Adaboost, but also making use of ECG
(Kachuee et al., 2017). Slapnicar et al. obtained an MAE of
15.41 mmHg on 510 MIMIC subjects with a deep neural network
on the raw PPG signal and the two first derivatives, while
18.34 mmHG was obtained when using a random forest
algorithm with hand crafted features (Slapničar et al., 2019). As a
last example, Maqsood and al. tested the same algorithms on both
PPG-BP and MIMIC (although without cross-dataset tests) and
reported an MAE of 5.32 ± 4.26 mmHG for PPG-BP and 5.59 ±
5.92 mmHg for MIMIC with a bidirectional long short-term
memory neural network (Bi-LSTM) and time domain features,
while they obtained 15.48 ± 3.52 mmHG for PPG-BP and
12.14 ± 6.67 mmHG with an SVR (Maqsood et al., 2021).

While the use of more complex models such as Bi-LSTM may
potentially bring uncalibrated BP estimation closer to medical
device requirements, optimal performance was not the goal of this
study and a simpler model was prefered to illustrate the impact of
observed differences. The present results are thus more in line with
those of other simpler models. More importantly, the present
results clearly show that what was learned on one dataset does
not apply, or applies only weakly, to the other. It is interesting to
note that with fewer features, the cross-validated model of PPG-BP
obtained an R2 twice as that of UCI. The fact that less features and
thus less information is necessary to get those results in PPG-BP
indicates a more uniform response in the subjects, which may be
due to the more controlled data collection conditions. This would
also explain why the PPG-BP trained model retains no predictive
power at all with UCI, since it would not cover the wider variety of
patients and recording conditions present in UCI, while the UCI
trained model, having knowledge of a wider variety of conditions,
may be able to retain some power, even though very weak, when
applied to PPG-BP.

Absolute values of the PPG signal can vary greatly depending on
the recording conditions and equipment calibration. To ensure a
consistent comparison between the different records, and especially
between datasets possible, no raw amplitudes were used as features,
neither was the DC component of the signal. Thus, a part of the
signal information, which could potentially improve performance,
was not used. The added benefit of this information in the case of
UCI is however doubtful, as amplitudes were uneven between
segments, with the pulsatile amplitude actually following a strict
bimodal distribution with a wide separating gap.

Another factor limiting the comparison was the structure of
PPG-BP, which offers three short PPG segments per patient, all
associated to a single BP value. In contrast, UCI offers longer
segments with continous a contnuous ABP signal. The use of 5 s
samples of UCI allows to obtain on average the same number of
usable pulses as in three PPG-BP segments, and to reduce the ABP
signal to mean SBP and DBP over the period. As a result of those
differences, two additional criteria had to be applied to UCI in
Section 2.2 to ensure the integrity of the signal. One on the ABP
signal to detect non-pulsatile ABP, and one on the PPG signal to
ensure consistant pulsatile amplitude throughout the segment. We
believe that those additional criteria should not affect the validity of
the comparison. They merely ensure the signals are present and
usable to the same degree as in PPG-BP, which was already similarily

screened for signal integrity prior to its release. However, another
aspect of those differences brings uncertainty to the cross-dataset
validation. While in UCI the BP measurements are derived from the
ABP signal corresponding to the 5 s PPG segment, the BP
measurements in PPG-BP are derived from a period of 30 s
preceding the acquisition of the PPG signal. Moreover, unknown
gaps exist between the three PPG segments, the only guarantee being
that the BP measurements and all PPG segments are taken within a
period of 3 min. While this is not an idea situation and may
ultimately produce a certain degree of decoupling between the
PPG signals and the recorded BP value, the simultaneous
acquisition of BP and PPG may not be as important for PPG-BP
as for UCI, where ABP signals sometimes change rapidely. Indeed,
the acquisition protocol of PPG-BP guarantees a rest period as well
as a quiet and stable environement, which should provide more
stable BP values and PPG signals.

The preprocessing screening criteria were devised to catch the
most obvious signal issues, such as artefacts resulting from sudden
movements or sensor disconnections, that could be seen in UCI.
The exclusion thresholds were adjutsted incrementally to ensure
that, through visual inspection of a sample of 100 UCI segments,
only those with obvious issues were rejected. Thus, this step should
not be seen as an optimized method of eliminating all possible
segments with issues, but only those with the most flagrant signal
quality issues. The aim was to remove those early in order to have
less data to process and have a better baseline for statistical
comparison for filtering the remaining, lesser issues, in later
stages of processing. Segments are later excluded if fiducial
points cannot all be extracted according to the constrains, or if
the features produced are outliers.

The larger number of outliers in UCI compared to PPG-BP
raises the question of whether those segments could be a result of
extreme BP, and should not be rejected as outliers. It is however not
the case. The DBP distribution of rejected segments is almost
identical to that of retained segments. The SBP distribution is
only slightly more skewed towards lower values for rejected
segments with a mean and STD of 126.4 ± 21.8 mmHg
compared to 131.8 ± 21.4 mmHg for retained segments. The
large number of outliers can be explained by the lower signal
quality of UCI, where noise and remaining artefacts can result in
miss-detection of fiducial points or in abnormal pulse shapes,
generating anomalous feature values.

Although not presented here, two pulse decomposition
algorithms were evaluated to extract the g and h points: The
recursive algorithm described by Kontaxis et al. (2020) and the
gaussian fitting algorithm described by Couceiro et al. (2015). The
first one gave very inconsistant results for pulses with different
shapes, such as more pointed or wider top pulses and may not be
appropriate to compare between subjects with such differences. R2

estimation results were also lower by as much as 0.18 with that
method compared to the estimation method based on the
second derivative described in Section 2.3. For the gaussian
fitting method, R2 estimation results were similar while
computation time for feature extraction was several times
larger. The observation that some points in the second
derivative were highly correlated with the position of the
fitted gaussian components resulted in using those points
directly, as described in Section 2.3.
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To conclude, the various private datasets used in the indirect BP
measurement literature make comparing the published algorithms
difficult, and researchers have called for the creation of a
standardised dataset suitable to compare and validate BP
estimation algorithms (Solà and Delgado-Gonzalo, 2019).
MIMIC, and by extension UCI, are publicly available and contain
a large quantity of data, which may seem like a good basis for
comparison. However, results presented in this paper reinforces
suspicions of many researchers: that data sourced in intensive care
units, under unknown conditions, may have a skewed response to
BP and impair the generalisation of BP estimation algorithms. In
fact, the issue of cross-dataset generalization is neither new nor
limited to the field of BP estimation, but it is an issue often
overlooked. It has been argued that cross-dataset validation of
machine learning models developed for the medical field is
essential to evaluate their performance (Thambawita et al., 2020).
Yet, it is almost never done in the BP estimation literature. Cross-
dataset generalisation can be challenging in itself, for example
because of differences in equipment calibration, sampling, and
recording conditions. Using intensive care data introduces an
obvious sampling and recording condition bias. This is reflected
in our presented results as significant differences in the relationship
between BP and pulse features when comparing the UCI dataset to
data obtained under more controlled conditions, which may make
generalization more difficult to achieve. Besides using data that
better represents the entire population, researchers could turn to
data fusion and data augmentation to make their datasets more
comprehensive. The latter has been used successfully in
computer vision to improve cross-dataset performance,
including in the field of imaging photoplethysmography
(Nowara, 2021). In any case, we hope that the present paper
raises awareness of this issue, replaces the vague suspicions
surrounding intensive care data with quantified results that can
be referred to, and stimulates better validations of models on
different populations in future research.
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