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Introduction: Mechanical ventilation is a life-saving treatment in the Intensive
Care Unit (ICU), but often causes patients to be at risk of further respiratory
complication. We created a statistical model utilizing electronic health record and
physiologic vitals data to predict the Center for Disease Control and Prevention
(CDC) defined Ventilator Associated Complications (VACs). Further, we evaluated
the effect of data temporal resolution and feature generation method choice on
the accuracy of such a constructed model.

Methods: We constructed a random forest model to predict occurrence of VACs
using health records and chart events from adult patients in the Medical
Information Mart for Intensive Care III (MIMIC-III) database. We trained the
machine learning models on two patient populations of 1921 and 464 based
on low and high frequency data availability. Model features were generated using
both basic statistical summaries and tsfresh, a python library that generates a large
number of derived time-series features. Classification to determine whether a
patient will experience VAC one hour after 35 h of ventilation was performed using
a random forest classifier. Two different sample spaces conditioned on five varying
feature extraction techniques were evaluated to identify the most optimal
selection of features resulting in the best VAC discrimination. Each dataset was
assessed using K-folds cross-validation (k = 10), giving average area under the
receiver operating characteristic curves (AUROCs) and accuracies.

Results: After feature selection, hyperparameter tuning, and feature extraction,
the best performing model used automatically generated features on high
frequency data and achieved an average AUROC of 0.83 ± 0.11 and an
average accuracy of 0.69 ± 0.10.

Discussion: Results show the potential viability of predicting VACs using machine
learning, and indicate that higher-resolution data and the larger feature set
generated by tsfresh yield better AUROCs compared to lower-resolution data
and manual statistical features.
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1 Introduction

Mechanical ventilation is a life-saving treatment for patients
with respiratory failure. Every year in the United States, up to
800,000 patients receive mechanical ventilation treatment
(Cocoros et al., 2016). However, ventilated patients are at risk of
further respiratory decompensation that increases the longer a
patient is mechanically ventilated (Magill et al., 2013).
Decompensation causes include disease progression (e.g.,
infection spreading to lungs or within lungs) and therapy
complications (e.g., fluid overload from volume resuscitation,
traumatic injury from ventilator pressures). Identifying patients
at risk for further decompensation can aid clinical decision
making for mechanically ventilated patients. In this paper, we
present a predictive, early-warning classifier model for respiratory
decompensation of mechanically ventilated patients.

Training predictive models and evaluating their performance
requires meaningful labels of clinical events (Rajkomar et al.,
2019). Our respiratory decompensation label is based on the
ventilator associated complication (VAC) event from the
ventilator associated events (VAE) surveillance framework
introduced by Magill et al. (2013). Designed as an objective
replacement for the ventilatory associated pneumonia (VAP)
surveillance definition, VAEs include infectious and non-
infectious causes of respiratory decompensation and have
demonstrated association with patient outcomes including
mortality and length of stay (Klompas, 2019). A VAC is a
period of 48 h of stable/improving ventilator settings, followed
by 48 h of increased ventilator settings. To create clinically
relevant labels, we use the midpoint of the VAC window,
when the patient transitions from stable/improving ventilator
settings to increased settings, as the time for respiratory
decompensation to train and evaluate our models. We also
label VACs on an hourly basis (versus the daily basis used in
surveillance).

To predict of VAC risk, our models use features derived from
patient demographics, EHR data, and physiologic time series data.

2 Materials and methods

Our study aims were twofold:

1. Build a model to predict VACs 1 h before occurrence using 35 h
of ventilation data

2. Evaluate different feature extraction techniques on our model

In this study, we wanted to compare different feature extraction
techniques on different granularities of data. We looked at manual
statistical features vs. automated feature extraction, and high-
resolution vs. low-resolution data.

To create our models, we leveraged data from MIMIC-III, an
open-access dataset (Johnson et al., 2016), and utilized machine
learning techniques to construct various models. Our results have
the potential to inform clinicians on the need for timely critical
interventions during the ICU stay of mechanically ventilated
patients before obvious signs of decompensation. With a
clinically significant early warning system, the monitoring

physician will have a risk score, in addition to other physiological
measurements, as evidence to make changes to treatment protocol if
necessary. Earlier intervention on the part of the clinician can help
mitigate and altogether prevent complications that have been
predicted to occur. The prevention of a VAC improves patient
outcomes by shortening duration of ICU stay, reducing hospital
costs, and preventing further mechanical injury (Dasta et al., 2005).

2.1 Prior work

Prior work in this area includes algorithms applied to other ICU
classifier events such as unplanned intubation in Trauma ICU
patients (Schmidt et al., 2014), moving of patients to the ICU
within 12 h (Gursel and Demirtas, 2006; Blackburn et al., 2017),
as well as the likelihood of, mortality due to, or survival despite
events similar to VACs such as sepsis (Calvert et al., 2016; Harrison
et al., 2016; Scherpf et al., 2019; Fang et al., 2020), acute respiratory
distress syndrome (ARDS), and respiratory failure after initiation of
extracorporeal membrane oxygenation (ECMO) treatment
(Schmidt et al., 2014). Such studies have produced results with a
wide range of AUCs ranging between 0.625 and 0.92. A study by
Huber et al. (2020) compared various ARDS definitions and
associated information during intubation and had a range of
AUC scores from 0.620 to 0.824 depending on features used for
prediction. Though studies predicting VACs are few, there has been
work over related predictive analyses. For example, the APACHE II
score has been used to predict mortality from VAP with an AUC of
.81 (Schmidt et al., 2014) and VAE definition conditions have been
shown to predict poorer outcomes in sepsis patients using a log-rank
test (Fang et al., 2020).

Most hospital admission centers calculate critical patient scores
within the first 24 h of ICU admission (Gursel and Demirtas, 2006).
There is a clear need for a prediction model regarding events prior to
patient decompensation, specific to mechanical ventilation (Fang
et al., 2020). Other predictive models, such as the likelihood of
sepsis, use a similar approach (Calvert et al., 2016; Harrison et al.,
2016; Scherpf et al., 2019; Fang et al., 2020). In such models, a
heightened sensitivity is of emphasized importance to minimize
poor outcomes from false negatives. Prior research indicates both a
need for and the potential to create a predictive model that meets
these specifications.

2.2 Hypotheses

For both cohorts, we built random forest models using manual
as well as tsfresh low-frequency features. For the high frequency
cohort, we also built a random forest model using the top tsfresh
high-frequency features. The main variables we were interested in
comparing were cohort size, temporal resolution of data, and
automated features. In examining model performance while
varying these different aspects, we hypothesized that:

1. Increasing temporal resolution through use of waveform data will
improve a random forest model’s ability to predict VACs

2. Increasing the sample size of the training set will improve a
random forest model’s ability to predict VACs
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3. Use of tsfresh in generating features will improve a random forest
model’s ability to predict VACs relative to a model with
manually-derived features

2.3 Study populations

We selected patients retrospectively from the MIMIC-III
Clinical Database. Published by the Massachusetts Institute of
Technology (MIT) and Physionet, MIMIC-III contains
46,338 adult and pediatric patients admitted to the critical care
units of Beth Isreal Deaconess Medical Center in Boston,
Massachusetts between 2001 and 2012. Adult patients were
included if they received mechanical ventilation for at least
96 h—the minimum time to be formally at risk for a VAC. Only
one ICU stay was considered per patient. Patients with more than
40% of missing low-frequency data were excluded (Figure 1). In
addition, we used the MIMIC-III Waveform Database for high-
resolution physiologic data. A companion to the original MIMIC-
III, this database supplies patient records with automatically
collected vital signs at a high temporal resolution, along with
numerical records similar to that of MIMIC-III Clinical (Moody
et al., 2017). Patients with sufficient data for statistical feature
generation were placed in Cohort One. Patients with sufficient
physiologic time series data were placed in Cohort Two.

2.4 Prediction task

We considered the outcome of VAC, as defined by the CDC to
be 48 h of stable or decreasing daily minimum FiO2 and PEEP
settings, followed by 48 h where either the daily minimum FiO2 or
PEEP increased by 0.2 or 3 mm Hg respectively. The time of
transition from stable/decreasing settings to increasing settings

was considered the VAC onset time. For patients at risk of a
VAC (having been ventilated for at least 48 h), we then
considered the binary prediction at hour of mechanical
ventilation with hours labeled as 1 for patients in which a VAC
onset occurred and 0 otherwise. Models considered patient
demographic variables and patient data from the previous 35 h
(chosen a priori) to 1 h before VAC onset to make a prediction.

2.5 Data preprocessing and missingness
strategy

For each patient, demographics (age, gender), labs (arterial pH,
PaO2, glucose, WBC), nurse recorded vital signs (temperature, heart
rate, blood pressure, respiratory rate, SpO2), nurse recorded
ventilator settings/measurements (PEEP, mean airway pressure),
and physiologic time series data were extracted. Physiologically
implausible values were removed (Table 1).

Low-frequency values missing for more than 1 h were replaced
with the mean value from the training set. High-frequency data were
partitioned into 5-min intervals for median down-sampling. After
down-sampling, data gaps longer than 1 h (12 consecutive missing
values) were filled by linear interpolation in a manner that ensured
causality. Data gaps shorter than 1 h were carried forward from the
most recent non-null value. For leading null values in the window
that could not be replaced using carry-forward (all prior values
before the window were also null), the value was backward-filled
with the first future non-missing value.

2.6 Feature extraction and selection

Different time frames of data before VAC onset were tested for
model input with preliminary models, with the best results found

FIGURE 1
Inclusion criteria for MIMIC-III database to arrive at anticipated patient Cohorts One and Two, both of which were composed of patients who had
enough data points for automatic statistical feature extraction methods. Cohort One consists of patients with aperiodic data recorded by nurses and
clinicians, and Cohort Two consists of patients with high frequency waveform data.
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using the data 36 h before VAC onset. Data was therefore extracted
36 h before VAC onset, and features were extracted during the first
35 h of this data, allowing for prediction 1 h before VAC onset.
Variables with 40% or more missing samples across patients were
removed. We computed statistical summaries (mean, variance,
number of features, min, max, and range) of 12 h windows and
of 3 h windows of all variables, resulting in 278 features. We also
used the tsfresh package (Christ et al., 2018) to automatically
calculate derived static features from the underlying time-series
data, resulting in 916 features from 20 low frequency signals and
12,853 features from 6 high frequency signals.

Highly correlated features were removed when Pearson
correlations were greater than 0.95. Forward selection, a stepwise
regression technique utilizing significance (p-value) levels from
model performance, was used to select the most relevant features
from each type of data, resulting in a top 35 tsfresh features and
29 manual features from the low frequency data, as well as a top
167 tsfresh features from the high frequency data.

2.7 Model training and validation

We trained and compared five different models using random
forest classification, as implemented by the scikit-learn library
(Pedregosa et al., 2011) in Python 3. For Cohort One, two
models were created: one using tsfresh features derived from
low-frequency nurse recorded data, and one using manually
defined features from the same. For Cohort Two with high
frequency data availability, three models were created: one using
tsfresh features derived from low-frequency data, one using tsfresh
features derived from high-frequency data, and one using manual
features from low-frequency data.

The models constructed are summarized below:

1. Tsfresh features derived from low frequency data of 1921 Cohort
One patients

2. Tsfresh features derived from low frequency data of 464 Cohort
Two patients

3. Tsfresh features derived from high frequency data of 464 Cohort
Two patient

4. Manual features derived from low frequency data of 1921 Cohort
One patients

5. Manual features derived from low frequency data of 464 Cohort
Two patients

Random forests have 4 hyperparameters—the number of trees,
the maximum features, the maximum tree depth, and splitting
criterion. A hyperparameter search was conducted with the
GridSearchCV function from scikit-learn. Model performance

was evaluated using 10-fold cross validation (e.g., for
hyperparameter setting 10 different models were built using 90%
of the data and performance was evaluated on the remaining 10% of
the data, then averaged). Model performance was measured by the
AUROC. The best performing hyperparameters were then reported
as is. Random forest, our choice of classification, is a machine
learning algorithm that classifies testing data based on
uncorrelated decision trees (set at 512 trees), each of which
intuitively ask a sequence of questions about the data until it
arrives at a classification. A hyperparameter search gave optimal
parameters of “auto” for max features, 500 estimators, a max depth
of 9, and the Gini criterion for determining split quality in fitting.
However, these settings did not cause model performance to
materially deviate from default settings. Random forest models
were constructed using features chosen after feature reduction
and selective feature elimination. Model outcome was incidence
of a VAC during the patient’s ICU stay. Classification results were
obtained from K-folds cross-validation (k = 10), and summary
statistics from the average area under the receiver operating
characteristic (AUROC) curves are reported in Table 2.

3 Results

Cohort One, patients with sufficient EHR data for statistical
feature generation, included 1921 patients experiencing 869 VACs.
Cohort Two, patients with sufficient physiologic time series data for
statistical feature generation, included 464 patients experiencing
235 VACs. (133 patients were in both cohorts). Table 3 describes the
characteristics of these cohorts.

3.1 Feature generation and selection

Tsfresh generated 916 statistical features from EHR data in
cohort one. 350 features with Pearson correlation greater than
0.95 were removed. 531 additional features were removed by
forward selection, resulting in 35 tsfresh features on low-
resolution physiologic data. On cohort two, tsfresh generated
12,853 statistical features from PTS data, of which 12,491 were
removed by Pearson correlation and 195 were removed by forward
selection, resulting in 167 tsfresh features on high-resolution
physiologic data.

3.2 Model performance

Table 2 and Figure 2 summarize model performance (AUROC
and accuracy) of the five models using 10-fold cross validation. On

TABLE 1 Valid physiological vital signs parameter ranges to determine outliers.

HR (bpm) RR (breaths/min) Diastolic B.P. (mmHg) Systolic B.P. (mmHg) SpO2 (%) PEEP (cm H20) FiO2 (%)

Lower bound 30 6 20 50 80 0 21

Upper bound 200 50 120 220 100 20 100

Vital signals include heart rate (HR), respiratory rate (RR), diastolic and systolic blood pressure (B.P.), oxygen saturation (SpO2), positive end-expiratory pressure (PEEP), and fraction of

inspired oxygen (FiO2).
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Cohort One, automated low-resolution features (M1) achieved an
AUC of 0.762 ± 0.002 and manual features (M4) achieved an
AUROC of 0.792 ± 0.001. On cohort two, automated high-

resolution features (M3) achieved an AUROC of 0.826 ± 0.006,
automated low-resolution features (M2) achieved an AUROC of
0.626 ± 0.007, and manual features (M5) achieved an AUROC of
0.737 ± 0.002.

3.3 Feature importance

These most relevant features constitute a set of possible baseline
risk factors, and derive from the signals of airway pressure, SpO2,
respiratory rate (RR), diastolic blood pressure (DBP), systolic blood
pressure (SBP), heart rate (HR), PaO2, glucose stick levels, mean
arterial pressure (MAP), Glasgow coma scale score (GSC score),
temperature (TEMP), and white blood cell count (WBC).
Additional static features included a binary categorical variable for
if a neuromuscular blocker was prescribed, shock index (HR/SBP),
age, gender, time since admission to the ICU, and the number of vital
sign measurements recorded in a patient’s data collection window.

4 Discussion

The CDC ventilator associated complication (VAC) surveillance
criteria identifies a range of complications associated with
mechanical ventilation in adult patients (Muscedere et al., 2013)
and has been associated with increased morbidity/mortality
(Muscedere et al., 2013).

Clinically, model outputs can be applied in at least three ways.
First, when an individual patient’s score crosses a threshold
associated with high specificity, immediate diagnostics and
interventions could be triggered to assess for early signs of
complications (such as pneumothorax) and optimize pulmonary
function (such as more aggressive pulmonary toilet). Second, an
individual patient’s score trajectory over time may provide early
warning about occult developments that may progress into
decompensation. Finally, relative scores in a cohort of patients,
such as ICU provider’s panel, could help triage both attention and
resources to patients at greatest risk of decompensation.

TABLE 2 Summary of model results.

Model Number of
patients

Number of
features

AUROC mean ±
variance

Accuracy mean ±
variance

AUPRC mean ±
variance

PPV mean ±
variance

M1 EVENTs tsfresh
featuresa

1921 (Cohort 1) 35 .7620 ± .0017 .6976 ± .0012 .7359 ± .0025 .6990 ± .0027

M2 EVENTs tsfresh
featuresb

464 (Cohort 2) 35 .6262 ± .0069 .5901 ± .0066 .6250 ± .0092 .6061 ± .0084

M3 PTS data tsfresh
featuresc

464 (Cohort 2) 167 .8257 ± .0055 .7650 ± .0075 .8261 ± .0070 .7610 ± .0081

M4 Manual featuresd 1921 (Cohort 1) 29 .7916 ± .0010 .7314 ± .0011 .7671 ± .0010 .7266 ± .0034

M5 Manual featurese 464 (Cohort 2) 29 .7373 ± .0023 .6811 ± .0019 .7091 ± .0075 .6770 ± .0027

Number of patients indicates the cohort used for both training and testing of models. The number of features column represents the number of features found to give the largest AUC and was

found using the forward selection technique for feature selection.
aLow-resolution features generated using tsfresh on Cohort 1.
bLow-resolution features generated using tsfresh on Cohort 2.
cHigh-resolution features generated using tsfresh on Cohort 2.
dLow-resolution features generated manually on Cohort 1.
eLow-resolution features generated manually on Cohort 2.

TABLE 3 VAC Cohort patients.

Cohort 1 Cohort 2

Unique Subjects (n) 1921 464

Age, years [mean, (s.d.)] 69.3, (43.49%) 66.3, (36.6%)

Male gender [n, (%)] 1,126, (58.7%) 272, (58.6%)

Ventilator Duration (mean hours) 236 206

Length of ICU stay (mean days) 13.84 12.03

Hospital mortality [n, (%)] 637, (33.2%) 154, (33.2%)

Patients with VAC 869 235

FIGURE 2
Plot of random forest mean AUCs.
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Methodologically, we demonstrate the viability of automated
feature generation from high-resolution physiologic time series data.
Packages like tsfresh can generate a large number of non-linear
summarizations of physiologic time series data, some more related
to the outcome thanmanually constructed features. After removal of
a) features highly correlated with other features and b) features
poorly correlated with the outcome while controlling for other
features, model performance (AUROC 0.826 for M3) exceeds
that of manual features (AUROC 0.737 for M5). This result did
not hold for automated features generated from low resolution data,
where performance was consistently lower than for models built
with manual features (M1 vs. M4 andM2 vs. M5) and lower than for
models built with automated features from high-resolution. We also
demonstrate, not unexpectedly, that models with identical features

but trained on more patients have better performance (M1 vs.
M2 and M4 vs. M5).

The feature importance provides insight into the models. The
top 15 feature importance scores for each model are plotted
respectively in Figures 3–7. Time since admission was the most
important feature in all models, except for M3 which used
automated features from the high-frequency PTS data. While
random forest variable importance does not indicate the
variable’s relationship with the outcome, this is consistent with
published data that VAC risk increases over time (Klompas, 2014).
Model M3’s ability to provide better predictions without relying on
time since admission indicates it has found physiologic features
more closely associated with VAC than time since admission. The
top eight features of model M3 are derived from MAP, followed by

FIGURE 3
Top 15 significant Features from Cohort 1 tsfresh EVENTs features (M1).

FIGURE 4
Top 15 significant Features from Cohort 2 tsfresh EVENTs features (M2).
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signals derived fromHR, RR, DBP, and SpO2. In the best performing
manual model, M4, mean SpO2 in last interval is second most
important, followed by PaO2 statistics, then MAP statistics.

Strengths of our approach include the use of VAC as a prediction
target. VAC has been demonstrated to be a clinically valid construct for
patient decompensation while ventilated that is associated with worse
outcomes. The feature generation and selectionmethodology is scalable
to dense time series data. Compared to manual feature engineering, it is
able to find more informative features that improve model outcome.
While the automated features are not as widely recognized as standard
statistical features, they are defined transformations that can be
analyzed. For example, FFT and CWT coefficients correspond to

specific frequencies or patterns occurring in the data. This
analyzability stands in contrast to deep learning approaches where
learned features are inherent to the neural network structure and cannot
be easily analyzed. Finally, our use of the MIMIC cohort makes this
analysis easy to reproduce and compare with other approaches.

Our model development and evaluation had several limitations.
The patient cohort is from a single institution. The small number of
patients with sufficient data necessitated use of cross-validation for
model development and prevented evaluation of the model on a
held-out dataset. The clinical origin of the dataset resulted in
missingness and made some features prohibitive to obtain.
During early empiric analysis of window sizes the small dataset

FIGURE 5
Top 15 significant features from PTS data (M3).

FIGURE 6
Top 15 significant Features from Cohort 1 manually derived features (M4).
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and level of missingness may have caused overfitting for larger 48 h
windows, leading to selection of 36 h model window. Our sampling
strategy lead to 1:1 balance of positive and negative samples. This
difference from the clinical incidence may bias metrics, lowering the
AUROC and increasing AUPRC. These limitations will be addressed
in future work by a) external validation of the model with a dataset
from another institution and b) use of additional features obtained
from ADT records, billing information, comorbidity indices such as
Elixhuaser’s (Elixhauser et al., 1998).

The VAC definition has several limitations. The variables that
define a VAC, while more objective than those used for the previous
VAP construct (Magill et al., 2013) are under clinician control and
rely on timely adjustment. Failure to wean FiO2/PEEP while a
patient is improving could mask a subsequent VAC. Similarly,
escalation of FiO2 and PEEP off the ARDSnet protocol (Brower
et al., 2004) could trigger a VAC. One solution would be to balance
these settings with a measure of oxygenation, such as PaO2 or SpO2.
Finally, the VAC focuses primarily on oxygenation, and may miss
decompensation that requires increased ventilation.

This work raises several questions for future work. First, given
that automated feature generation outperformed manual features on
the high frequency data, where does the frequency cut-off occur, and
can higher frequencies further improve performance. Second, can
automated features be made more interpretable.

4.1 Future directions

This model is still capable of improvement. Application of
neural networks to raw waveform data rather than uniform

down-sampling of the physiological time series data may
provide greater accuracy or earlier predictions for real-time
usage in the ICU. This model can also be externally validated
on other critical care databases as to determine its functionality
across different datasets. With such improvements, a model
could be created to provide an hourly risk score of the
patient’s status, or a sliding time window for clinicians to
understand when a patient’s vital signs worsen, as to signal
the need for appropriate clinical interventions.

5 Conclusion

We developed risk prediction models specific to the
mechanically ventilated ICU population. The models’ ability
to classify patients accurately compares favorably to the
current classification standard using APACHE risk scores
(Gursel and Demirtas, 2006). Though this model relies on
existing records, the methodology suggests feasibility in
further use of high-frequency data. Future work using more
computationally intensive models and higher-frequency
patient data may increase relevant classification metrics even
further.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

FIGURE 7
Top 15 significant Features from Cohort 2 manually derived features (M5).
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