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During development, lymphatic endothelial cell (LEC) progenitors differentiate
from venous endothelial cells only in limited regions of the body. Thus, LEC
migration and subsequent tube formation are essential processes for the
development of tubular lymphatic vascular network throughout the body. In
this review, we discuss chemotactic factors, LEC-extracellular matrix
interactions and planar cell polarity regulating LEC migration and formation of
tubular lymphatic vessels. Insights into molecular mechanisms underlying these
processes will help in understanding not only physiological lymphatic vascular
development but lymphangiogenesis associated with pathological conditions
such as tumors and inflammation.
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Introduction

The lymphatic system plays pivotal roles in fluid homeostasis, immune cell trafficking
and dietary lipid uptake. Lymphatic vascular dysfunction leads to lymphedema, disturbed
immune responses and lipid malabsorption. The lymphatic vasculature develops primarily
from pre-existing veins, while non-venous derived lymphatic endothelial cells (LECs) have
been reported in specific tissues (Oliver et al., 2020). The differentiation of LEC progenitors
depends on expression of the transcription factor SRY-related HMG-box 18 (Sox18) and the
transcription factor prospero-related homeobox gene 1 (Prox1) (Wigle and Oliver, 1999;
Francois et al., 2008). Prox1 maintains the expression of receptor tyrosine kinase of vascular
endothelial growth factor receptor 3 (VEGFR3), while VEGFR3 signaling upregulates
Prox1 expression. This feedback loop between these two key players results in the
lineage and maintenance of LECs (Srinivasan et al., 2014). The differentiated LECs
subsequently proliferate and migrate away from the vein to establish tubular lymphatic
vascular network throughout the body. LEC migration is induced by chemotactic factors
such as VEGF-C and modulated by the interactions with extracellular matrix (ECM).
Furthermore, the regulation of planar cell polarity (PCP) has been implicated in the directed
migration of LECs and formation of tubular structure. In this review, we discuss the
molecular mechanisms underlying these processes from LEC migration to formation of
tubular lymphatic vascular network.

Chemotactic factors

LECs originated from the jugular veins migrate under the control of chemotactic factors
in embryos. Some factors promote LEC migration, while others provide a repulsive cue to
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LECs (Figure 1). These factors work in concert to regulate the
distribution of lymphatic vessels.

VEGF-C plays an important role as a chemotactic factor in LEC
migration (Karkkainen et al., 2004). During embryonic
development, VEGF-C produced by mesenchymal cells is
required for dorsolateral migration of LECs from the jugular vein
in mice (Hagerling et al., 2013). VEGF-C is produced in a premature
form and is cleaved to a mature form in collagen and calcium-
binding epidermal growth factor domains 1 (CCBE1) and a
disintegrin and metalloprotease with thrombospondin motifs-3
(ADAMTS3)-dependent manner (Jeltsch et al., 2014). Genetic
ablation of either Ccbe1 or Adamts3 in mice results in defective
lymphatic vascular development, which is most likely caused by
improper activation of VEGF-C (Hagerling et al., 2013; Janssen
et al., 2016). Loss-of-function mutations in the ADAMTS3 gene have
been identified in hereditary lymphedema patients (Brouillard et al.,
2017). The mature form of VEGF-C binds to VEGFR3 (also known
as Flt4) and activates intracellular signaling pathways, including
phosphoinositide 3-kinase (PI3K)/Akt (also known as protein
kinase B) and mitogen activated protein kinase (MAPK)/
extracellular signal-regulated kinase (ERK). Neuropilin-2 (Nrp2)
forms a complex with VEGFR3 to facilitate VEGF-C-mediated
migration (Xu et al., 2010). Both Akt and ERK pathways are
important for human dermal LEC migration in vitro (Deng et al.,
2015), and PI3K/Akt pathway has especially been characterized as
the regulator of lymphatic vascular morphogenesis in vivo. Somatic
activating mutations in the PIK3CA gene encoding the p110α
catalytic subunit of PI3K have been identified as causative genes
of lymphatic malformations which are congenital developmental
anomalies with variable size of fluid-filled lymphatic cysts (Makinen
et al., 2021). Pik3ca mutant LECs show the spiky morphology of
active sprouts in mouse embryos and migrate faster, compared with
control LECs in vitro (Martinez-Corral et al., 2020). Activated PI3K
phosphorylates phosphatidylinositol-4, 5-bisphosphate to create
phosphatidylinositol-3, 4, 5-triphosphate, which activates Akt.
This process is inhibited by phosphatase and tensin homolog

(PTEN), and loss of PTEN enhances Akt activation. Actually,
PTEN inhibits the PI3K/Akt pathway downstream of VEGF-C/
VEGFR3 activation. Lymphatic-specific deletion of Pten in mice
leads to the increased lymphatic vessel density, diameter, and
branching (Kataru et al., 2021). Genetic ablation of Akt1 in mice
leads to the reduced size of lymphatic capillaries and defects in the
maturation of collecting lymphatic vessels and valve development
(Zhou et al., 2010). These studies demonstrated that VEGF-C/
VEGFR3/PI3K/Akt pathway plays a crucial role in LEC migration.

Chemokine ligands Cxcl12a and Cxcl12b induce LEC migration
via Cxcr4a or Cxcr4b receptor. The chemokine signaling
orchestrates the stepwise assembly and patterning of the trunk
lymphatic network in zebrafish (Cha et al., 2012). It has been
shown that Cxcl12a-mediated LEC migration are regulated by
miR-126a which binds the 5′untranslated region of Cxcl12a
mRNA and enhances the translation (Chen et al., 2016).

Due to predominant expression of VEGF-C and Cxcl12 in
arteries, initial LEC migration instructed by these attractive
factors is observed along arteries (Vaahtomeri et al., 2017).
The guidance factor Semaphorin 3G (Sema3G) plays a key
role in subsequent broad distribution of lymphatic
vasculature in mouse embryonic skin. Sema3G produced by
arterial endothelial cells binds to the LEC receptors Nrp2.
Nrp2 binds to the coreceptor PlexinD1 and provides a
repulsive cue to LECs during lymphatic vascular patterning.
Genetic ablation of either Sema3G or PlexinD1 in mice results in
the limited distribution of lymphatic vasculature near arteries
(Liu et al., 2016).

LEC-ECM interactions

LEC migration is based on the interactions between LECs and
ECM. The ECM is composed of various structural proteins such as
collagen, fibronectin, and hyaluronan. Cell anchorage to ECM
creates a strong connection between the intracellular and

FIGURE 1
Chemotactic factors and LEC-ECM interactions for LEC migration. VEGF-C/VEGFR3/PI3K/Akt pathway is the main signaling for LEC migration.
Cxcl12 also promotes LEC migration. Sema3G serves as a repulsive factor which acts through Nrp2/PlexinD1 receptor complex. Integrins expressed by
LECs play a crucial role in adhesion to ECM as well as modulation of VEGFR3 signals. By sensing mechanical forces, integrin β1 is released from ILK and
interacts with VEGFR3. MMP2 produced by LECs perform matrix remodeling, possibly modulating matrix stiffness. Soft matrix induces
GATA2 expression, which enhances VEGFR3 expression. ECM, extracellular matrix; ILK, integrin-linked kinase; LEC, lymphatic endothelial cell; MMP2,
matrix metalloproteinase 2; Nrp2, neuropilin-2; PI3K, phosphoinositide 3-kinase; Sema3G, Semaphorin 3G; VEGF-C, vascular endothelial growth factor
C; VEGFR3, vascular endothelial growth factor receptor 3.
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extracellular environments (Giancotti and Ruoslahti, 1999).
Regulators of LEC-ECM interactions are shown in Figure 1.

Integrin is the main component of ECM receptor complex in
LECs and serve as a heterodimeric protein consisting of eighteen α
and eight β subunits (Hynes, 2002). These receptors involve in cell
motility by supporting adhesion to the ECM and by linking via
adapters with actin cytoskeleton (Lock et al., 2008). In addition to a
role in cell adhesion, integrins transduce signals by associating with
adapter proteins that connect to the cytoskeleton and cytoplasmic
kinases. As integrins bind to ECM, they become clustered in the
plane of the cell membrane and associated with a cytoskeletal and
signaling complex that promotes the assembly of actin filaments.
Integrin β1, the component of integrin α1β1, α2β1, or α4β1 has been
implicated in lymphangiogenesis (Hong et al., 2004; Garmy-Susini
et al., 2010; Kumaravel et al., 2020). Antagonists of integrin
α5β1 inhibits inflammatory lymphangiogenesis in cornea
(Dietrich et al., 2007). Knockdown of integrin α9, the component
of integrin α9β1, in human LECs suppresses proliferation, adhesion,
migration, and tube formation (Altiok et al., 2015). Integrin
β1 reportedly responds to mechanical forces and activates
VEGFR3. Integrin β1 interacts with integrin-linked kinase (ILK)
which binds to α-parvin and F-actin cytoskeleton. Upon an increase
in interstitial fluid volume, integrin β1 is released from ILK and
interacts with VEGFR3 (Urner et al., 2019).

Type II collagen (Col2a1) is an important ECM component for
LEC migration. Col2a1 secretion is controlled by a pathway
mediating endoplasmic reticulum (ER)-Golgi anterograde
transport. Membrane-bound transcription factor peptidase site-1

(Mbtps1) is a serine protease which cleaves and activates several
transcription factors. Mbtps1 activates the transcription factor
cAMP responsive element binding protein 3-like 2 (Creb3l2),
which induces the transcription of Sec23a gene (Saito et al.,
2009). The main function of Sec23a is to concentrate fully-folded
proteins into vesicles on the ER. In mbtps1 or sec23a mutant
zebrafish, the defective secretion of Col2a1 protein affects LEC
migration, resulting in the defective lymphatic vasculature in the
trunk (Chaudhury et al., 2020).

Matrix stiffness affects LEC-ECM interactions. Matrix
remodeling by matrix metalloproteinase 2 (MMP2) activity plays
a role in lymphangiogenesis (Detry et al., 2012). LECs grown on a
soft matrix exhibit increased expression of the transcription factor
GATA2 and downstream target genes involved in LEC migration
and lymphangiogenesis. Analyses of mouse models demonstrate a
cell-autonomous function of GATA2 in regulating LEC
responsiveness to VEGF-C via VEGFR3 upregulation and in
controlling LEC migration and sprouting in vivo (Frye et al., 2018).

Planar cell polarity

The migrating cell is highly polarized with complex regulatory
pathways that spatially and temporally integrate its component
processes. Establishing and maintaining PCP in response to
extracellular stimuli appear to be mediated by a set of interlinked
positive feedback loops (Ridley et al., 2003). PCP is a polarity axis
organizing cells in the plane of the tissue and is essential for proper

FIGURE 2
PCP regulators for directed migration of LECs and formation of tubular lymphatic vessels. PCP is established in a migrating cell with the localization
of the MTOC and Golgi apparatus in front of the nucleus. There are several players regulating PCP in LECs, including Wnt5a, PCs, and FAT4, although the
mechanisms of molecular interactions are not clear yet. VEGF-C/VEGFR3-dependent expression of Mafb induces gene expression involved in PCP
regulation. The internalization and transport of integrin β1 towards the cell front enhance the establishment of front-rear polarity. FAT4, FAT tumor
suppressor homolog 4; LEC, lymphatic endothelial cell; Mafb, MAF bZIP transcription factor B; MTOC, microtubule-organizing center; PC, polycystin;
PCP, planar cell polarity; VEGF-C, vascular endothelial growth factor C; VEGFR3, vascular endothelial growth factor receptor 3; Wnt5a, wingless-type
MMTV integration site family member 5a.

Frontiers in Physiology frontiersin.org03

Shiiya and Hirashima 10.3389/fphys.2023.1124696

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1124696


development and tissue homeostasis. It has been shown that PCP is
related to directed migration of LECs and formation of tubular
lymphatic vessels. Cell polarity is associated with reorientation of the
microtubule-organizing center (MTOC) and the Golgi apparatus
toward the cell front, leading to growth of microtubules and delivery
of vesicles and proteins into this region (Ravichandran et al., 2020).
PCP regulators in LECs are shown in Figure 2.

The Wingless-type MMTV integration site (WNT) family
regulates numerous aspects of embryonic development including
angiogenesis. WNTs constitute a large group of secreted lipid-
modified signaling glycoproteins, and several receptors and co-
receptors are involved in β-catenin-dependent canonical or non-
canonical WNT signaling pathways. Wnt5a has been implicated in
the formation of tubular lymphatic vessels by regulating the WNT/
PCP pathway, since cyst-like lymphatics are detected in the skin of
Wnt5a-deficient mice (Lutze et al., 2019). Wnt5a pathway is
mediated via Rac GTPases, and Rac1 plays an important role in
directed migration of LECs from the jugular vein in mouse embryos
(D’Amico et al., 2009).

Polycystin (PC) is a cell surface receptor involved in cell-cell and
cell-matrix interactions and is encoded by PKD1 and PKD2, the
genes responsible for autosomal dominant polycystic kidney disease
(Harris and Torres, 2009). PC-1 is a large membrane receptor with a
short intracellular C-terminus that binds to PC-2, which has
homology to the transient receptor potential family of calcium-
permeable cation channels (Gallagher et al., 2010). PC-1 and PC-2
act as important regulators of directed migration of LECs, and
decreased vascular branching with cyst-like lymphatics is detected in
Pkd1-or Pkd2-deficient mice (Coxam et al., 2014; Outeda et al.,
2014).

The small GTPase Arf6 plays pivotal roles in a wide variety of
cellular events such as endocytosis, exocytosis, and actin
cytoskeleton reorganization. Arf6 regulates VEGF-C-dependent
directed migration by enhancing the internalization of cell
surface integrin β1 (Lin et al., 2017). Integrins internalized into
vesicles via endocytosis at the cell rear are transported toward the
cell front and used for new adhesions (Paul et al., 2015). Besides
Arf6, the endocytic adaptor protein Numb binds integrin β1 and
controls endocytosis of integrin for directed migration with the PAR
complex composed of PAR-3, PAR-6 and atypical protein kinase C
(Nishimura and Kaibuchi, 2007). The PAR complex controls the
spatiotemporal dynamics of actin filaments and MTOC in
directionally migrating cells (Crespo et al., 2014).

MAF bZIP transcription factor B (Mafb) has been identified as a
downstream transcriptional effector of the VEGF-C/VEGFR3 axis,
regulating the transcription factors PROX1, SOX18, COUP-TFII,
and the kruppel-like transcription factor 4 in LECs (Dieterich et al.,
2015; Koltowska et al., 2015). Mafb regulates morphogenesis of a
subset of lymphatic beds, including the skin and diaphragm in mice
(Dieterich et al., 2020; Rondon-Galeano et al., 2020). Mafba and
Mafbb, two paralogs in zebrafish, tune the directionality of LEC
migration in facial lymphatic development, without affecting cell
motility (Arnold et al., 2022).

FAT tumor suppressor homolog 4 (FAT4) is atypical cadherin
which has been implicated in Hippo pathway. FAT4 plays a role in
polarization of LECs since cyst-like lymphatics are detected in Fat4-
deficient mouse embryos (Betterman et al., 2020). YAP (Yes-associated
protein) and TAZ (transcriptional coactivator with PDZ-binding

motif) are final effectors of Hippo pathway. Lymphatic-specific
YAP/TAZ depletion in mice leads to mispatterning of growing
lymphatic plexus with cyst-like lymphatics (Cho et al., 2019).
Apoptosis-stimulating protein of p53 (Aspp) 1 is an interacting
protein with LATS kinases, another Hippo pathway-related
molecule (Vigneron et al., 2010). Aspp regulates intercellular
tension, and cyst-like lymphatics are detected in Aspp1-deficient
mouse embryos (Hirashima et al., 2008; Matsuzawa et al., 2021).
These results suggests that Hippo pathway regulates PCP of LECs,
although the detailed mechanisms remain to be elucidated.

The core PCP proteins Celsr1 and Vangl2 reportedly regulate
directed cell rearrangements during lymphatic valve formation by
controlling the stabilization of endothelial adherens junctions (Tatin
et al., 2013).

Conclusion

In this review, we described molecular and cellular mechanisms
of LEC migration and tube formation during lymphatic vascular
development. Chemotactic factors and LEC-ECM interactions are
important regulators of LEC migration and eventually to determine
the distribution and morphogenesis of lymphatic vessels. Regulation
of these factors will contribute to develop treatment for pathological
lymphangiogenesis such as those in tumors and inflammation. PCP
is related to directed migration of LECs and formation of tubular
lymphatic vessels since improper PCP disrupts network formation,
resulting in cyst-like lymphatics. These pathological conditions are
similar to lymphatic malformations caused by somatic mutations,
and insights into PCP regulation may help in the development of
their treatment. Recently, it has been reported that the flow is
involved in the regulation of blood endothelial cell polarity
(Barbacena et al., 2022; Yuge et al., 2022). It may be intriguing to
determine whether similar mechanisms exist in the regulation of
LEC polarity to control morphogenesis of lymphatic vessels. Taken
together, LEC migration and tube formation are key processes
during the formation of functional lymphatic vessels, and studies
on them will contribute to lymphatic vascular biology in health and
diseases.
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