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The interaction of post-traumatic stress disorder (PTSD) and atherosclerosis (AS)
increase the risk of mortality. Metabolism and immunity play important roles in the
comorbidity associated with PTSD and AS. The adenosine monophosphate-
activated protein kinase/mammalian target of rapamycin and phosphatidylinositol
3-kinase/Akt pathways are attractive research topics in the fields of metabolism,
immunity, and autophagy. They may be effective intervention targets in the
prevention and treatment of PTSD comorbidity with AS. Herein, we
comprehensively review metabolic factors, including glutamate and lipid
alterations, in PTSD comorbidity with AS and discuss the possible implications in
the pathophysiology of the diseases.
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1 Introduction

Post-traumatic stress disorder (PTSD) is characterized by persistent maladaptive reactions
after exposure to severe natural or psychological traumatic events. Traumatic events, including
violent personal assaults, natural and anthropogenic disasters, and military combat or warfare,
may trigger PTSD (O’Donnell et al., 2021). PTSD can be highly co-morbid with serious physical
illnesses, including autoimmune diseases (Bookwalter et al., 2020), and cardiovascular diseases
(CVD) (Wilson et al., 2019). Recent evidence demonstrates an association between PTSD and
CVD along with major CVD outcomes such as coronary heart disease (CHD), myocardial
infarction, and heart failure (Edmondson and von Knel, 2017). However, it is unclear whether
these associations are causal or confounding. Furthermore, the biological and behavioral
mechanisms underlying these associations are poorly understood. Some researchers have
hypothesized that metabolic abnormalities and immune inflammatory responses play
important roles in the comorbidity of PTSD and CHD (O’Donnell et al., 2021).
Atherosclerosis (AS) is the main cause of CHD, cerebral infarction, and peripheral vascular
lesions. In AS, affected artery lesions start from the intima, typically with deposition of lipids
and complex sugars and thrombosis, followed by fibrous tissue hyperplasia, calcareous
deposition, and gradual transformation and calcification of the middle layer of the artery.
These alterations lead to thickening and hardening of the arterial wall and narrowing of the
vascular lumen (Rossetti et al., 2015). Herein, we comprehensively review the metabolic factors,
including glutamate and lipids, altered in PTSD comorbidity with AS and discuss the possible
implications of the pathophysiology of the adenosine monophosphate (AMP)-activated protein
kinase (AMPK)/mammalian target of rapamycin (mTOR) and phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (Akt) pathways through interactions with metabolism and autophagy.
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2 Interaction between post-traumatic
stress disorder and atherosclerosis

PTSD is a serious chronic emotional response to a traumatic
event in which individuals exhibit severe environmental stress with
symptoms of re-experience, avoidance, and hyper-arousal (Fossion
et al., 2015). Following the COVID-19 outbreak, 6%–53.8% of
people worldwide have developed PTSD symptoms due to stress
(Phan et al., 2020). According to a study in 2021 (O’Donnell et al.,
2021), mental stress causes pathophysiological changes in the
central and peripheral nervous, immune, endocrine, and
vascular systems. Studies published in the British Medical
Journal, JAMA Cardiology, and Circulation demonstrate that
PTSD increases the risk of CVD by 1–3 times and is also closely
associated with an increased risk of cardiovascular events (such as
myocardial infarction and stroke), progression of cardiovascular
disease to heart failure, and premature death (Rossetti et al., 2015;
Roy et al., 2015; Song et al., 2019; Phan et al., 2020; Ebrahimi et al.,
2021). PTSD is an independent risk factor for CHD and increases

the risk by 61% (Ebrahimi et al., 2021). PTSD also increases the risk
of stroke caused by myocardial infarction by 2.37 times (Roy et al.,
2015). The relationship between PTSD and CHD is mediated by
specific genes, proteins, and metabolic pathways (Figure 1).

PTSD and CHD interact during the pathological process,
thereby increasing the risk of death and affecting the outcome
of patients (O’Donnell et al., 2021). An increasing number of
studies have shown that the pathological process of AS is
accompanied by an increase in anxiety-like behaviors and
cognitive impairment. Moreover, AS is positively correlated with
leukoencephalopathy and cognitive impairment (Ahmed et al.,
2012; Rossetti et al., 2015; Roy et al., 2015; Song et al., 2019;
Phan et al., 2020; Ebrahimi et al., 2021). As the medical model has
changed from a simple biomedical to a bio-psycho-social medical
model, increasing attention is being paid on the “two-heart”
medical concept in the face of increasing mortality of patients
with AS and PTSD comorbidity, advocating for increased focus on
the high incidence of comorbidity by medical workers (O’Donnell
et al., 2021).

FIGURE 1
Interaction between mental diseases and cardiac diseases.
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3 Interaction of gut microbiome in post-
traumatic stress disorder and
atherosclerosis

Increasing evidence suggests a link between gut microbiota
abnormalities and PTSD (Laudani et al., 2023). Neurological and
neuropsychiatric disorders are associated with changes in the
composition of the gut microbiota (Cryan et al., 2019). Stress-
related conditions including major depressive disorder and PTSD
are among the neuropsychiatric disorders that have been linked to
alterations in the composition of the gut microbiota (Foster et al.,
2017). Most of the studies in the field have been performed by using
chronic stress models major depressive disorder, whereas little is
known about the association between alteration in gut microbiota
composition and acute traumatic stress-induced susceptibility/
resilience mechanisms, which are more linked to PTSD. PTSD is a
trauma- and stressor-related disorder that often occurs after exposure
to a single traumatic event (Musazzi et al., 2018). The firstly supported
by clinical studies showing altered gut microbiota composition in
individuals with PTSD compared to trauma-exposed resilient
individuals (Stanislawski et al., 2021; Malan-Muller et al., 2022). In
particular, alterations of certain phyla (Actinobacteria, Lentisphaerae,
Verrucomicrobia, and Olsenella), despite no significant changes in
microbial alpha and beta diversity, were found to be correlated with
clinician-administered posttraumatic stress disorder scale scores
exhibited by people with PTSD (Hemmings et al., 2017; Malan-
Muller et al., 2022). It has been also suggested that changes in gut
microbiota composition may be directly linked to the dysregulation of
the hypothalamic–pituitary–adrenal axis and glucocorticoid signaling
characterizing individuals with PTSD (Foster et al., 2017). Recently,
many studies have demonstrated that there are some relationships
between microbiota and atherosclerosis. Atherosclerosis have been
related to gut microbiota dysbiosis with an increase in the Firmicutes/
Bacteroidetes ratio via productions of acetate and decreasing of
butyrate. Butyrate, once proved to be the main energetic resource
of intestinal epithelial cells (IECs), is able to maintain the stability of
gut barrier. High-fat intake thought as the risk factor for
atherosclerosis can induce remarkable changes in gut microbiota
composition (Birchenough et al., 2019; Paone and Cani, 2020).
Many researchers have also found that compared with people
without atherosclerosis, the patients with atherosclerosis have
differences in the gut microbiota (Karlsson et al., 2012; Ziganshina
et al., 2016; Jie et al., 2017).

4 Effects of glutamate on post-traumatic
stress disorder comorbidity with
atherosclerosis

Glutamate metabolism imbalance and inflammatory immune
responses may be the key mechanisms underlying the comorbidity
of PTSD with CHD (O’Donnell et al., 2021). As an excitatory
neurotransmitter, glutamate plays an important role in
maintaining the excitability of the central nervous system;
however, it is also a strong neurotoxin that functions in learning
and memory behaviors (Simioni et al., 2018). Abnormal glutamate
energy metabolism leads to stress responses and PTSD (Manning
and Toker, 2017). Glutamate plays an important role in PTSD and is
closely related to the formation of memory, specifically long-term

memory, during the occurrence of PTSD, suggesting that glutamate
is an important risk factor for learning and memory impairments
(Averill et al., 2016). The role of glutamate in PTSD is partially
mediated by regulation of the hypothalamic-pituitary-adrenal
(HPA) axis. Animal studies have shown that overexpression of
glutamate receptors reduces the release of adrenocorticotropic
hormone in response to stress, which is essential for the
initiation and maintenance of the HPA axis. Furthermore,
enhanced neurotransmitter function of glutamate can promote
the body to produce new memories, thereby reducing memories
related to traumatic events (Kelmendi et al., 2016). When re-
experiencing trauma, an individual with PTSD is unable to
maintain adequate glutamate delivery because of an impaired
glutamate system, which leads to increased levels of over-
attention, stress response, and fear (Slagsvold et al., 2014). Pro-
inflammatory cytokines, such as IL-1, IL-1β, IL-6, tumor necrosis
factor alpha (TNFα), C-reactive protein (CRP), and interferon-γ,
activate the HPA axis, promote excitatory glutamate, and damage
the neuroplasticity of the brain by reducing the levels of
neurotransmitters such as serotonin (5-HT), norepinephrine
(NE), and dopamine (DA), which ultimately affects cognitive,
behavioral, and emotional responses (Figure 2) (Manning and
Toker, 2017; Simioni et al., 2018). Pro-inflammatory cytokines
such as IL-1β, IL-6, TNFα, CRP, and interferon-γ activate the
HPA axis response by reducing monoamine neurotransmitter
levels in the central nervous system, thereby promoting
glutamate excitotoxicity, damaging the plasticity of brain nerves,
and ultimately affecting cognition, behavior, and emotional
responses (Krugers et al., 2010; Grajeda-Iglesias and Aviram,
2018). Microglia are abnormally activated when the body
receives stress or danger signals, resulting in the release of
inflammatory cytokines, such as TNFα and IL-1β, and an
excessive increase in glutamate release. These pro-inflammatory
mediators re-activate astrocytes, leading to their release of
inflammatory factors and further inducing abnormal activation
of microglia, resulting in neuronal damage (Krugers et al., 2010).

AS is a chronic inflammatory disease characterized by lipid
accumulation, smooth muscle cell proliferation, cell apoptosis,
necrosis, fibrosis, and local inflammation. High glutamate levels are
associated with the incidence of CHD (Vaarhorst et al., 2014).
Furthermore, glutamine is linked to clinical manifestations of AS
through an association with an increased risk of both plaque
development and increased intima-media thickness (Würtz et al.,
2012). A recent study reported contrary findings; in
postmenopausal women, glutamine was the only metabolite
associated with a decreased risk of CHD, whereas glutamate
remained a biomarker after adjustment for conventional CHD risk
factors (Paynter et al., 2018). Studies on the effects of all 20 amino
acids on atherogenesis using murine macrophages identified six
specific amino acids, including glutamate and glutamine, which
significantly affected lipid accumulation in arterial cells at non-
toxic level (Rom et al., 2017). A major protective effect on
macrophage triglyceride metabolism was also observed, as shown
by decreased uptake of triglyceride-rich very-low-density
lipoprotein and macrophage triglyceride biosynthesis rate.
Glutamate is characterized as a pro-atherogenic compound because
it stimulates triglyceride accumulation in macrophages through
upregulation of triglyceride biosynthesis. This is mediated by
inducing key regulators of cellular triglyceride biosynthetic
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pathways, including sterol regulatory element-binding protein 1
(Horton et al., 2002) and diacylglycerol acyltransferase-1, which
catalyzes the final step of this pathway (Yen et al., 2008).
Additionally, glutamate exerts marked stimulatory effects on
macrophage oxidative stress and overexpression of scavenger
receptor class B type 1, a regulator of macrophage oxidative status
and lipid metabolism (Ji et al., 2011; Liu et al., 2016). Inflammation
also plays an important role in the occurrence and development of
heart disease. The release of inflammatory factors leads to an increase
in glutamate concentration, which further induces excitotoxicity via
excessive Ca2+ influx and oxidative stress. Chronic inflammation is a
precursor of myocardial infarction and ischemic stroke (Chen et al.,
2016; Yang et al., 2017).

Glutamate affects the immune response by regulating the HPA
axis to affect memory and learning, ultimately influencing the
incidence of PTSD, as well as patient outcomes. At the same time,
glutamate could increase inflammatory response and oxidative stress
response, then promote plaque development and disrupt triglyceride
metabolism, leading to the development of AS (Miao et al., 2020).
Microglia are abnormally activated when the body receives stress or
danger signals, resulting in the release of inflammatory cytokines,
which in turn could increase glutamate concentration, further
inducing excitotoxicity via excessive Ca2+ influx and oxidative
stress. The bidirectional relationships among nervous system,
systemic inflammation, and metabolic deterioration may affect the
risks of PTSD and AS (Kaplan et al., 2018).

5 Effects of lipids on post-traumatic
stress disorder comorbidity with
atherosclerosis

A crucial step in early AS development is the infiltration of
monocytes from the circulation into the arterial wall (Xu et al.,
2015), where they differentiate into macrophages and accumulate
lipids in a process known as macrophage foam cell formation, the
hallmark feature of early atherogenesis (Dickhout et al., 2008). The
accumulation of lipids, notably cholesterol and triglycerides, in
macrophages, their conversion into foam cells, and the initiation
and progression of atherosclerotic lesions are primarily determined
by the balance between lipoprotein uptake by macrophages, lipid
biosynthesis rate within macrophages, and lipid clearance from
macrophages, known as cholesterol efflux (Libby et al., 2016; Rom
and Aviram, 2016). Hyperlipidemic status may cause oxidized low-
density lipoprotein (LDL) accumulation as the first step in the
progression of AS. Macrophages play an important role in the
inflammatory response, and after activation, they are involved in
other immune cells in advanced atherosclerotic lesions. Cholesterol,
triglyceride, and lipoprotein levels have been implicated in the
pathogenesis of AS. Increased serum LDL and triglyceride level are
responsible for the formation of atherosclerotic lesions (Albertini
et al., 2002). Lipid metabolism and LDL modification are
important in AS development. Lipid metabolism occurs via both
exogenous and endogenous pathways. Retention of LDL particles

FIGURE 2
Effect of inflammation on glutamate in the synapse.
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in the vessel wall is considered the first step in AS pathogenesis
(Wisniewska et al., 2017). Under smoking, hypertensive,
hyperglycemic, and hyperlipidemic conditions, the production of
reactive oxygen species (ROS) increases, overwhelming the
endogenous antioxidant response. Lastly, oxidative stress increases
LDL oxidation and impairs endothelial function (Frostegård et al.,
2003; Bloomer, 2007; Zhou et al., 2013). Similarly, an excessive
inflammatory response is a major cause of the formation,
development, and rupture of atherosclerotic plaques (Bentzon
et al., 2014). Key findings from two studies revealed a correlation
between AS and several cytokines and chemokines, including TNF-α,
IL-6, IL-1, IL-2, IL-7, IL-8, IL-10, IL-18, soluble tumor necrosis factor
receptor, and CRP, which reflects the chronic low-grade systemic
inflammation in AS (Zhoa and Mallat, 2019; Gencer et al., 2021).
Inflammatory responses are believed to occur in all stages of AS.
Increasing evidence suggests a bidirectional relationship between
metabolic abnormalities and systemic inflammatory responses.

Lipids play important roles in the brain, including
neurogenesis, synaptogenesis, myelin information, and impulse
transduction (Cermenati et al., 2015). The availability of
cholesterol is one of the limiting factors of synaptogenesis and
is critical to its persistence. It is also important for the stability of
neurotransmitters (Liu et al., 2010). The pathophysiology of
PTSD includes synaptic loss (Krystal et al., 2017), increased
myelination (Chao et al., 2015), abnormal white matter (Li
et al., 2016), and reduced cortical thickness (Wrocklage et al.,
2017), suggesting a role of lipids in the pathogenesis of PTSD.
Sanacora et al. (2022) found that metabolic abnormalities play a
critical role in mediating the psychopathological effects of stress.
Abnormal lipid metabolism and hemodynamic changes can lead
to increased production of ROS, accumulation of inflammatory
substances, and induction of systemic inflammation, resulting in
cognitive impairment (Jha et al., 2017). In case of excessive lipid
accumulation in neurons and astrocytes, inflammatory factors
such as vascular cell adhesion molecule increase, blood–brain
barrier permeability increases, hippocampal neurogenesis and
synapse numbers decrease, hippocampal-dependent spatial
memory and other cognitive abilities decline, and anxiety-like
behaviors increase (Ji et al., 2011). Pro-inflammatory cytokines,
such as IL-1β, IL-6, TNFα, CRP, and interferon-γ activate
neuroendocrine responses (including the HPA axis) and
promote glutamate excitatory toxicity by reducing the levels of
monoaminergic neurotransmitters (such as 5-HT, NE, and DA) in
the central nervous system. Damage to brain neuroplasticity and
other mechanisms ultimately affects cognitive, behavioral, and
emotional responses (Sanacora et al., 2022). A recent systematic
review suggested dysregulation of lipids that may serve as
biomarker to predict the risk of PTSD (Bharti et al., 2022).

Hyperlipidemic status may cause oxidized LDL accumulation.
When lipid accumulation in neurons and astrocytes is excessive,
inflammatory factors such as vascular cell adhesion molecule and
blood–brain barrier permeability increase, hippocampal
neurogenesis and synapse numbers decrease, hippocampal-
dependent spatial memory and other cognitive abilities decline,
and anxiety-like behaviors increase. AS may lead to increased
inflammatory responses in the brain, abnormal microvessels,
reduced synaptic plasticity, and cognitive impairment (Baker
et al., 2018; Asim et al., 2021). Current clinical and basic studies
indicate that metabolic abnormalities and immune-inflammatory

responses play an important role in the comorbidity of PTSD
and AS.

6 Effects of lipid peroxidation and
ferroptosis comorbidity with
atherosclerosis

Ferroptosis is an iron-dependent oxidative form of cell death
associated with increased lipid peroxidation and insufficient
capacity to eliminate lipid peroxides (Galluzzi et al., 2018).
Abnormal lipid metabolism, oxidative stress and inflammation
are the main features of AS. Different signal pathways have
demonstrated that ferroptosis, an iron-driven form of
programmed cell death characterized by lipid peroxidation,
contributes to the onset and progression of AS (Wang et al.,
2021). The main mechanism of ferroptosis is the Fenton reaction,
which involves intracellular free iron interacting with hydrogen
peroxide to deplete plasma membrane polyunsaturated fatty acids
(PUFAs) (Stockwell et al., 2017). Numerous cellular metabolic
processes, such as redox balance, iron management,
mitochondrial activity, and the metabolism of amino acids,
lipids, and carbohydrates, control ferroptosis. The sulfhydryl-
dependent redox system and the mevalonate pathway are two
metabolic mechanisms that influence cellular vulnerability to
ferroptosis (Zheng and Conrad, 2020). Restricted GSH
production, disruptions in iron homeostasis, an accumulation
of lipid peroxides, and fatty acid synthesis are all factors that
contribute to the development of ferroptosis and are also
intimately related to AS (Wang et al., 2021). NRF2-Keap1
pathway decreases ferroptosis associated with AS by
maintaining cellular iron homeostasis, increasing the
production glutathione, GPX4 and NADPH (Dodson et al.,
2019). The p53 plays different roles in ferroptosis at different
stages of AS in a transcription-dependent and transcription
independent manner (Tarangelo et al., 2018). p53 targets gene
GLS2 (glutaminases2), relating to glutaminolysis, also involved in
ferroptosis (Gao et al., 2015). Glutaminolysis (a major source of
anaplerosis) is involved in ferroptosis through ferroptosis
functioning of the tricarboxylic acid (TCA) cycle. Importantly,
loss of fumarate hydrase function, a TCA cycle component and
tumor suppressor, confers resistance to cysteine-deprivation
induced ferroptosis (Gao et al., 2019). The activation of
ferroptosis has been shown to be a factor in the progression of
AS through the Hippo pathway. AS and ferroptosis are caused by
additional transcription factors such ATF3, ATF4, and STAT3. A
few proteins or enzymes are also involved in the regulation of
ferroptosis and AS (Wang et al., 2019).

7 AMPK/mTOR pathway in post-
traumatic stress disorder comorbidity
with atherosclerosis

Although PTSD and AS are speculated to share a common
pathway in metabolic imbalance and the immune inflammatory
response (O’Donnell et al., 2021), in-depth mechanistic studies
are still needed. A large number of molecular mechanism studies
have revealed the relationship among energy metabolism,
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synaptic plasticity, and the related signaling pathways. Among
these, the AMPK/mTOR energy metabolism-related pathway is
an attractive area of research in the fields of metabolism,
immunity, and autophagy. AMPK, a cellular energy sensor that
is highly sensitive to the intracellular AMP/ATP ratio, is activated
when this ratio increases to regulate glucose and lipid metabolism,
and is related to autophagy (Lin and Hardie, 2018). AMPK
activation promotes uncoordinated-51-like kinase 1 (ULK1)
activity and decreases its mobility (Jia et al., 2019). Activated
ULK1 interacts with AMPK to promote autophagy progression
under stress conditions, including hunger and ischemia (Mao and
Klionsky, 2011). Previous studies involving AMPK’s downstream
target, mTOR, have demonstrated the key role of the AMPK/
mTOR pathway in neurogenesis and synaptic plasticity (Fidaleo
et al., 2017). Regulation of metabolism, proliferation, apoptosis,
and autophagy by mTOR is directly activated by both serine/
threonine kinase 11 (LKB1)-AMPK-mTOR pathway and
phosphorylation of its downstream 4E-binding protein 1,
eIF4E, and ribosomal S6 protein kinase (Cheon and Cho,
2021). The mammalian target of rapamycin complex 1

(mTORC1) regulates lipid synthesis by regulating protein
synthesis, acting on sterol response element binding protein,
and negatively regulating autophagy via the phosphorylation of
ULK1, thus interfering with the connection between AMPK and
ULK1 (Kim et al., 2013). mTORC2 primarily regulates cell
proliferation and survival, cytoskeletal remodeling, cell
migration, and glucose and amino acid metabolism (Figure 3)
(Chun and Kim, 2021).

AMPK/mTOR plays an important role in the metabolic and
inflammatory responses in cardiovascular diseases and
psychiatric disorders. mTOR regulates the expression of
inflammatory cytokines in LDL-induced macrophages (Ai
et al., 2014) and interferes with lipid metabolism, leading to
the development of AS (Ma et al., 2013). Zheng et al. (2016)
used rapamycin to inhibit mTOR activity and reduce energy
consumption in protein synthesis to maintain normal ATP
levels while inhibiting the mitochondrial function of neurons.
A previous animal study found that short-term exposure of
hippocampal neurons to amyloid-β oligomers leads to a
decrease in intracellular ATP levels and AMPK activity,

FIGURE 3
(A, B) AMPK/mTOR metabolic signaling module.
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resulting in a decrease in the number of glucose transporters
GLUT3/4 on the dendritic surface of hippocampal neurons and in
the ability of neurons to transport glucose (Da Silva et al., 2017).

8 PI3K/akt pathway in post-traumatic
stress disorder comorbidity with
atherosclerosis

PI3K is a lipid kinase that plays an active role in cell survival
and energy metabolism. Akt is a serine/threonine protein kinase
that regulates apoptosis, proliferation, and glucose metabolism
(Simioni et al., 2018). The PI3K/Akt pathway is closely related to
cardiac development, myocardial hypertrophy, and myocardial
apoptosis regulation (Manning and Toker, 2017). Clinical studies
have reported that overexpression of Akt after coronary artery
bypass transplantation may help promote the survival of cardiac
cells and recovery of cardiac function (Slagsvold et al., 2014).
Animal studies have shown that Akt activation reduces the size of
myocardial infarction area and significantly reduces myocardial
cell apoptosis in a mouse model, and these effects can be blocked
by an Akt pathway-specific inhibitor (LY294002) (Liu et al., 2016).
Moreover, Akt activation inhibits oxidative stress injury in
cardiomyocytes and hydrogen peroxide-induced apoptosis of
cardiomyocytes in ischemia–reperfusion injury (Chen et al.,
2016). Various factors simultaneously act on the mitochondrial
membrane, resulting in the opening of mitochondrial permeability
conversion hole and increased expression of pro-apoptotic
proteins such as Bax, p21, and caspase. The cell then enters
programmed death in oxidative stress injury. However, the
activated PI3K/Akt pathway inhibits the interaction between
apoptotic proteins and blocks the mitochondrial apoptosis
pathway (Ma et al., 2013; Yang et al., 2017). Therefore, the
PI3K/Akt pathway plays an important role in oxidative stress-
induced apoptosis of cardiomyocytes.

Previous studies on PTSD have reported that fear, anxiety, and
stress-related mood disorders are based on persistent abnormal
neurobiological responses to traumatic events (Liu et al., 2018b;
Kaplan et al., 2018). The Akt signaling pathway ameliorates PTSD
symptoms by promoting synaptic plasticity and glutamate transmission
(Liu et al., 2018b). Glutamate receptors are the main excitatory
neurotransmitter receptors in the mammalian brain that determine
synaptic transmission efficiency (Liu et al., 2018a; Barnes et al., 2020)
and play an important role in learning and memory (Zarebidaki et al.,
2020). Increasing evidence indicates that abnormal glutamate energy
systems are associated with stress responses and PTSD (Ji et al., 2011).
Patients with PTSD and impaired glutamate systems cannot maintain
adequate glutamate delivery when re-experiencing trauma-related
stimuli, leading to increased over-attention, stress response, and fear
(Pitman et al., 2012). Activated PI3K/Akt is crucial for the formation of
fear memory, and the PI3K/Akt pathway may underlie the anti-
regression of fear memory caused by traumatic stress (Yang et al.,
2015) and be related to the formation of anxiety-like symptoms in PTSD
(Knox et al., 2021). Akt plays an important role in neural development,
learning, and memory, and upregulation of the PI3K/Akt pathway may
prevent and treat cognitive impairment (Palumbo et al., 2021; Tong
et al., 2021). Chinesemedicine and exercise have been shown to enhance
the PI3K/Akt pathway, regulate synaptic plasticity, resist apoptosis and
inflammation, promote the regression of fear memory, increase 5-HT

levels in the hippocampus, and alleviate PTSD symptoms (Ling et al.,
2020; Zhang et al., 2020).

9 Conclusion

Existing literature supports an important role of several
metabolites, including glutamate and lipids, in the pathogenesis of
PTSD and AS. Glutamate may affect the immune response and
oxidative stress response, ultimately influencing the incidence of
PTSD and AS, as well as patient outcomes. Abnormal lipid
metabolism leads to the increased production of ROS,
accumulation of inflammatory substances, and induction of a
systemic inflammatory response, resulting in cognitive dysfunction
and plaque development. AMPK/mTOR and PI3K-Akt energy
metabolism-related pathways have attracted considerable attention
in studies on metabolism and inflammation. These pathways may
affect PTSD and AS by mediating metabolic pathways and
inflammation to interfere with metabolism and immunity.
However, how AMPK/mTOR and PI3K/Akt regulate metabolism
and inflammation in the interaction between PTSD and AS
requires further clarification. Future studies are necessary to
explore the role of the AMPK/mTOR and PI3K/Akt pathways in
PTSD and AS using molecular biology techniques. The expected
results will provide new ideas for the precise diagnosis, treatment,
and intervention of PTSD comorbidity with AS, which has important
social significance and great economic value for the development of
targeted drugs, exploration of efficient prevention and control
strategies, and reduction of the disease burden.
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