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Insects have highly specialized and sensitive olfactory systems involving several
chemosensory genes to locate their mates and hosts or escape from predators.
Pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae), has
invaded China since 2016 and caused serious damage. Till now, there is no
environmentally friendly measure to control this gall midge. Screening
molecules with high affinity to target odorant-binding protein to develop
highly efficient attractants is a potential pest management method. However,
the chemosensory genes in T. japonensis are still unclear. We identified
67 chemosensory-related genes in the transcriptomes of antennae, including
26 OBPs, 2 CSPs, 17 ORs, 3 SNMPs, 6 GRs, and 13 IRs, using high throughput
sequencing. Phylogenetic analysis of these six chemosensory gene families
among Dipteran was performed to classify and predict the functions. The
expression profiles of OBPs, CSPs and ORs were validated by quantitative real-
time PCR. 16 of the 26 OBPs were biased expressed in antennae. TjapORco and
TjapOR5 were highly expressed in the antenna of unmated male and female
adults. The functions of related OBPs and ORs genes were also discussed. These
results provide a basis for the functional research on chemosensory genes at the
molecular level.
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1 Introduction

Insects have sensitive olfactory systems to perceive odorant compounds and guide their
important behaviors, including host location, feeding, mating, oviposition, and escape from
harm (Zhang et al., 2017; Turlings and Erb, 2018; Guo and Wang, 2019). As the main
olfactory organ of insects, antennae have a variety of olfactory sensilla on the surface
(Zacharuk, 1980; Steinbrecht, 1997; Binyameen et al., 2012). The odorant molecules enter the
cavity of the olfactory sensilla through the micropores on the wall of the olfactory sensilla,
pass through the lymphatic fluid of the sensilla, reach the Olfactory receptor neurons
(ORNs) dendrites, activate the receptor proteins on the dendrites, and finally cause different
behavioral responses of insects (Pelosi, 1996; Krieger and Breer, 1999; Wilson and Mainen,
2006; Hansson and Stensmyr, 2011). The study of insects’ olfactory mechanisms is
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progressing owing to advancements in biochemistry, molecular
biology, insect behavior, and electrophysiology (Vogt and
Riddiford, 1981; Wetzel et al., 2001; Leal, 2005; Forstner et al.,
2008; Allen and Wanner, 2011; Hua et al., 2013; Leal, 2013; Wang
et al., 2020). There are several olfactory proteins involved in the
odorant’s perception (Pelosi et al., 2006). The odorant molecules are
delivered by odorant-binding proteins (OBPs) or chemosensory
proteins (CSPs) in sensilla lymph fluid (Vogt and Riddiford,
1981; Vogt et al., 1991; Pelosi, 1994; Pelosi et al., 2005; Pelosi
et al., 2014; Liu et al., 2018). Then, molecules are detected by
odorant receptors (ORs) expressed on the olfactory neuron
membrane. Meanwhile, the chemical signal is converted to
electrical signals (Clyne et al., 1999; Gao and Chess, 1999;
Vosshall et al., 1999; Wicher et al., 2008; Butterwick et al., 2018).
Additionally, gustatory receptors (GRs), ionotropic receptors (IRs)
and sensory neuron membrane proteins (SNMPs) are also involved
(Jones et al., 2007; Benton et al., 2009; Xu et al., 2015; Ning et al.,
2016). GRs could detect carbon dioxide, sugars, pheromones, or
bitter flavors (Kent et al., 2008; Robertson and Kent, 2009). IRs are
essential for odor-evoked neuronal responses and for detecting
environmental volatile chemicals and tastes (Croset et al., 2010;
Rytz et al., 2013). Sensory neuron membrane proteins (SNMPs) are

hypothesized to act in concert with odorant receptors to detect
pheromone molecules in a population of olfactory sensory neurons
(OSNs) (Benton et al., 2007; Jin et al., 2008; Liu et al., 2013). The
signal molecules are degraded by odorant degrading enzymes in
lymphatic or sensorial cells (Vogt and Riddiford, 1981; Leal, 2005;
Leal, 2013).

Pine needle gall midge, T. japonensis (Uchida and Inouye), a
microscopic forest pest belonging to the Cecidomyiidae family,
which contains more than 6,600 known species (Gagné et al.,
2021). First reported in Japan in 1901, the pest was discovered in
South Korea in 1924, causing serious damage to pine trees such as P.
thunbergii Parlatore and P. densiflora Sieb. et Zucc, resulting in huge
ecological and economic losses. T. japonensis has become an
important pest to pine trees in South Korea (Choi et al., 2019).
T. japonensis has invaded China in 2016 and caused serious damages
to local Pinus thunbergii, P. densiflora, and P. tabulaeformis (Duan
et al., 2021).

Adult pine needle gall midges mate soon after emerging from
pupation sites in the surface soil in June. The females lay eggs on
needle pairs of shoots. Like other Cecidomyiids, adults of T.
japonensis have a lifespan of 1-2 days and do not feed (Harris
et al., 2003). Galls are formed when larvae grow in the base needle

FIGURE 1
The NJ phylogenetic analysis of OBPs in T. japonensis, C. quinquefasciatus, A. gambiae, and D. melanogaster. The LUSH group and OS-E/OS-F
group are shown.
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pairs, causing the stopping of needle growth (Skuhravá and Roques,
2000). Currently, there are no environmentally friendly control
measures except traditional chemical pesticides.

Effectively interfering with the olfactory perception process is a
potential way to achieve sustainable pest management. One of the
future approaches to pest management is the use of attractants and
repellents to disrupt behavior to achieve green control and reduce
the use of conventional insecticides. For example, the sex
pheromone of the Mayetiola destructor (Hessian Fly),
Sitodiplosis mosellana (Orange Wheat Blossom Midge), and
Contarinia nasturtii (Swede Midge) have been made into a
commercial lure and is widely used for trapping and
monitoring pests (Witzgall et al., 2008). The oviposition
attractants, targeting olfactory proteins, have been successfully
screened for the prevention and control of Culex
quinquefasciatus (Leal et al., 2008).

Identifying chemosensory genes and studies into the
olfactory mechanism is essential for pest control because they

interfere with olfactory perception. The chemosensory gene
families have been extensively studied in two model
organisms, namely, Drosophila melanogaster and Anopheles
gambiae for years (Hill et al., 2002; Robertson et al., 2003;
Rinker et al., 2013a; Rinker et al., 2013b). Since then, several
chemosensory-related genes have been identified in Diptera
insects, including Aedes aegypti, C. quinquefasciatus (Pelletier
and Leal, 2011; Manoharan et al., 2013), Anopheles sinensis (He
et al., 2016), Delia platura (Ohta et al., 2015), Bactrocera
cucurbitae (Elfekih et al., 2016), B. dorsalis (Liu et al., 2016),
and so on. However, the chemosensory gene families in
herbivorous Cecidomyiids species were poorly studied.

This study aims to identify the chemosensory genes and
characterize the chemosensation of T. japonensis. We performed
transcriptome analysis of the antennae of T. japonensis, and
67 chemosensory genes were identified. The real-time quantitative
polymerase chain reaction was performed to study the transcription
levels of OBPs, CSPs, and ORs in different tissues of both female and

FIGURE 2
The NJ phylogenetic analysis of CSPs in T. japonensis, C. quinquefasciatus, D. antiqua, A. aegypti, A. gambiae, A. sinensis and D. melanogaster. Two
TjapCSPs clustered into two groups are shown. The TjapCSP1 and TjapCSP2 were marked with star.
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male gall midges. The results may provide in-depth information about
chemosensory genes at the molecular level.

2 Results

2.1 Transcriptome sequencing and assembly

The antennal RNA-seq raw reads (PE150) were generated by
Illumina Novaseq. A total of 286,459,200 Raw reads were obtained,
and 278,011,612 Clean reads were obtained after quality control. The
GC content of all samples was greater than 35%, the Q20 bases were
greater than 97%, and the Q30 bases were greater than 93%. After de
novo assembly, 83,080 transcripts were obtained with an average
length of 922 bp. The N50 length was up to 1966 bp. All transcripts
ranged from 201 bp—35,601 bp in length. The result of BUSCO
assessment showed that the complete BUSCOs accounted for 93.0%,
with 85.9% single copy and 7.1% multiple copies.

2.2 Homology analysis and gene ontology
annotation

All transcripts from T. japonensis were annotated in six
databases (NR, Pfam, GO, KEGG, COG, and Swiss-Prot). Among
the 83,080 transcripts, 16,837 (20.27%) transcripts were annotated
to the GO database, 13,489 (16.24%) to the KEGG database, 19,798
(23.83%) to the COG database, 20,088 (24.18%) to the NR database,
16,840 (20.27%) to the Swiss-Prot database, and 17,898 (21.54%) to
the Pfam database. NR database homology searches showed that the
T. japonensis antennal transcriptome shared the greatest homology
with sequences from A. aegypti (6.97%), followed by A. albopictus
(6.43%) and C. quinquefasciatus (3.07%). Among the transcripts
annotated to the GO database, 35% were annotated to the biological
process, 29% to molecular function, and 36% to the cellular
component. In the biological process category, the frequency of
the cellular process is the highest, followed by the metabolic process.
In the cell component category, the frequency of the cell part is the

FIGURE 3
The NJ phylogenetic analysis of ORs in T. japonensis, B. minax, B. correcta, B. dorsalis, andD. melanogaster. The ORco group and OR67d group are
shown.
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highest. The most annotated functional proteins in the molecular
function category include binding and catalytic activity
(Supplementary Figure S1).

2.3 Identification and analysis of
chemosensory-related genes

2.3.1 Odorant-binding proteins (OBPs)
26 OBPs were identified in the T. japonensis antennal

transcriptomes. Except for TjapOBP26, 25 OBPs have complete
Open Reading Frames (ORFs) ranging from 115 to 169 amino acids
in length and 18 OBPs have signal peptides. All 26 TjapOBPs hit the
Insect pheromone/odorant binding protein domains (smart00708)
and pheromone/general odorant binding protein family
(pfam01395). The FPKM values of 24 TjapOBPs were greater

than 1. Of these, TjapOBP6 and TjapOBP20 were highly
expressed, with FPKM values of 75,423.09 and 24245.72,
respectively. We divided 26 OBPs into Classic, Plus-C and
Minus-C subfamilies according to the position and number of
conserved cysteines (Supplementary Table S1). Most TjapOBPs
belong to classical subfamily, which presents the pattern of six
conserved cysteines of C1-X26-37-C2-X3-C3-X32-41-C4-X7-10-
C5-X8-C6. We also identified one plus-C subfamily TjapOBP22,
which presented two additional conserved cysteines behind
conserved C6 and a conserved proline after the conserved C6 of
C1-X37-C2-X3-C3-X42-C4-X24-C5-X8-C6-P-X10-C7-X9-C8.
TjapOBP13 (C1-X32-C3-X38-C4-X17-C6) and TjapOBP18 (C1-
X25-C2-X3-C3-X46-C4-X18-C6) were identified as Minus-C
subfamily, with only 4 or 5 conserved cysteines.

We constructed a phylogenetic Neighbor-joining tree of OBPs of
T. japonensis with OBPs from other Dipteran insects. In the

FIGURE 4
The NJ phylogenetic analysis of GRs in T. japonensis, B. dorsalis, A. aegypti, M. de-structor, B. latifrons, and D. melanogaster. The CO2 receptors
group is shown.
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phylogenetic tree, most TjapOBPs were clustered with other
Dipteran OBPs. Notably, TjapOBP8/9 were clustered with
DmelOBP76a (pheromone-binding protein, LUSH) of D.
melanogaster, and TjapOBP1/2/3 were clustered with
DmelOBP83a/83b (OS-E/OS-F, an OBP group co-expressed with
LUSH and involved in pheromone detection) of D. melanogaster
(Shanbhag et al., 2001; Ha and Smith, 2006) (Figure 1).

2.3.2 Chemosensory proteins (CSPs)
We identified two TjapCSPs in the antennal transcriptomes of T.

japonensis that encode proteins full ORF, which length was 122 aa and
112 aa, and have signal peptides (Supplementary Table S2). The two
TjapCSPs have four conserved cysteine residues (C1-X6-C2-X18-C3-
X2-C4). The FPKM values of the two CSPs were 245 and 17,
respectively. A phylogenetic tree was established using the CSPs
sequences to analyze the relationships of the CSPs in T. japonensis
with other Dipteran insects, including A. sinensis, A. aegypti, C.
quinquefasciatus, A. gambiae, Delia antiqua and D. melanogaster

(Figure 1). In the phylogenetic tree, two TjapCSPs were clustered
into two groups with the CSPs of D. melanogaster, respectively
(Figure 2).

2.3.3 Odorant receptors (ORs)
We identified 17 ORs in the antennal transcriptomes of T.

japonensis. 11 ORs have complete ORFs ranging from 317 aa to
467 aa in length with 4-8 predicted transmembrane domains, and six
genes had partial ORFs in the 5′or 3′regions (Supplementary Table
S3). TjapOR15 and TjapORco were highly expressed, with FPKM
values of 388.78 and 106.96, respectively. A phylogenetic tree was
established using the ORs sequences to analyze the relationship of
the ORs in T. japonensis with other Dipteran insects, including
Bactrocera minax, B. correcta, B. dorsalis and D. melanogaster.
TjapORco was clustered in a highly conserved clade with other
Dipteran insects. Eight ORs of T. japonensis cluster into a relative
“species expansion” group, and TjapOR10 is clustered with
DmelOR13 of D. melanogaster. In addition, four ORs of T.

FIGURE 5
TheNJ phylogenetic analysis of IRs in T. japonensis,B. dorsalis, Zeugodacus tau,B. latifrons, andD.melanogaster. The TjapIR8a group and TjapIR25a
group are shown.
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japonensis (TjapOR4/5/7/14) clustered with the pheromone receptor
DmelOR67d of D. melanogaster, BcorOR67d of B. correcta,
BminOR67d of B. minax, and BdorOR67d of B. dorsalis, to form
the OR67d branch with high bootstrap support value (Figure 3).

2.3.4 Gustatory receptors (GRs)
Six Gustatory receptors of T. japonensis in the antennal

transcriptomes were identified. Two TjapGRs (TjapGR1/2)
have complete ORFs containing 7 TMDs, and four genes have
partial ORFs in the 5′or 3′regions (Supplementary Table S4).
Except that the FPKM value of TjapGR1 was 401, the FPKM
values of other TjapGRs were less than 10. Phylogenetic tree was
constructed from GR sequences of five species of dipteran insects
(B. dorsalis, A. aegypti, M. destructor, B. latifrons, and D.
melanogaster) (Figure 4). The TjapGR1 and TjapGR2 gathered
with CO2 receptors of other dipteran insects to form CO2

receptor branch.

2.3.5 Ionotropic receptors (IRs)
13 IRs in the antennal transcriptomes of T. japonensis were

identified, and six IRs have complete ORFs ranging from 457 aa to
935 aa in length. Seven genes had partial ORFs in the 5′or 3′regions
(Supplementary Table S5). The FPKM values of all IRs were greater

than 1. TjapIR75d5 and TjapIR75d2 were highly expressed, with
FPKM values of 46.44 and 78.13, respectively. A phylogenetic tree
was established using the TjapIRs of T. japonensis with IRs gene
sequences from other Dipteran insects, including B. dorsalis,
Zeugodacus tau, B. latifrons, and D. melanogaster. TjapIR8a and
TjapIR25a were clustered into conserved branches of IR8a and
IR25a, respectively. Besides, TjapIR21a and TjapIR76b also
formed IR21a and IR76b branches with homologous genes of
other insects (Figure 5).

2.3.6 Sensory neuron membrane proteins (SNMPs)
Three SNMPs of T. japonensis in the antennal transcriptomes

were identified, encoding proteins ranging from 228 aa to 493 aa in
length. Two TjapSNMPs (TjapSNMP1a/TjapSNMP1b) have
complete ORFs, and TjapSNMP2 have partial ORFs in the
3′regions (Supplementary Table S6). The FPKM values of all
SNMPs were greater than 1. TjapSNMP1b was highly expressed,
with FPKM values of 30.72. In the phylogenetic analysis of
TjapSNMPs with proteins from other dipteran species, including
A. aegypti, A. gambiae, B. dorsalis, C. quinquefasciatus, Zeugodacus
tau, Z. cucurbitae and D. melanogaster, all SNMPs were separated
into SNMP1 and SNMP2 groups with a high bootstrap support
value (Figure 6).

FIGURE 6
The NJ phylogenetic analysis of SNMPs in T. japonensis, A. aegypti, A. gambiae, B. dorsalis, C. quinquefasciatus, Zeugodacus tau, Z. cucurbitae, and
D. melanogaster. The SNMP1 group and SNMP2 group are shown.
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2.4 Tissue expression profile analysis

A total of 26 OBPs, 2 CSPs and 17 ORs were used to explore the
expression level in female antennae (FA), male antennae (MA),
female heads (without antennae, FH), male heads (without
antennae, MH), female thoraxes (FT), male thoraxes (MT),
female external genitals (FG) and male external genitals (MG) by
RT-qPCR. Genorm and NormFinder results showed that GAPDH
and RPL3 have the same stability. Therefore, these two genes alone,
or in combination, could be used for RT-qPCR analysis of gene
expression in T. japonensis under our experimental conditions. We
chose GAPDH as reference gene in the study. RT-qPCR results
showed that 7 OBPs (TjapOBP1/2/3/6/8/9/10) were highly expressed
in the antennae of females, and 6 OBPs (TjapOBP1/6/9/11/14/20)
were highly expressed in male antennae (Figure 7). Most TjapOBPs
(TjapOBP1/2/3/4/5/6/8/9/10/11/12/14/16/17/20/21) were biased
expressed in the antennae of females and males. Among them,
TjapOBP6, TjapOBP11, TjapOBP14, TjapOBP15, TjapOBP20 and
TjapOBP21 were only expressed in male antennae (Figure 8).
Besides, TjapOBP18 was highly expressed in the legs of both
females and males, while TjapOBP7 and TjapOBP13 displayed
male-biased expression in the legs. TjapOBP22 was highly

expressed in female and male heads (Figure 8). In addition,
TjapCSP1 was highly expressed in the external genitalia of female
andmale adults, and TjapCSP2was highly expressed in the antennae
of both female and male adults (Figure 9). RT-qPCR results showed
that most ORs were highly expressed in the antennae of both females
and males (Figure 10). TjapORco was the highest expressed ORs in
antennae of male and female adults. TjapOR5 was relatively highly
expressed in the antennae of both female and male adults, while
TjapOR15 displayed male-biased high expression in the antennae
(Figure 11).

3 Discussion

In the present study, we sequenced and analyzed the
transcriptomes of antennae of adult T. japonensis (female and
male), and searched for chemosensory-related genes. In total, we
identified 26 OBPs, 2 CSPs, 17 ORs, 3 SNMPs, 6 GRs, and 13 IRs in
the transcriptomes of T. japonensis antennae. As the tissue
expression profile of chemosensory genes indicates its potential
biological function, which could help to reveal the olfaction
mechanism of insects (He et al., 2011; Gu et al., 2015; Yuan

FIGURE 7
Relative expression levels of all TjapOBPs in different tissues of females and males. FA, female antennae, MA, male antennae, FH, female heads
(without antennae), MH, male heads (without antennae), FT, female thoraxes, MT, male thoraxes, FG, female external genitals and MG, male external
genitals. Note: the heatplot figure was built using the data set of RT-qPCR.
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et al., 2015). We performed RT-qPCR to analyze the tissue
expression profiles of candidate OBPs, CSPs and ORs. Most
OBPs are highly expressed in insect antennae. Antenna-specific
OBPs play an important role in recognizing host volatiles and
pheromone (Gong et al., 2014; Brito et al., 2016). In this study,
16 of the 26 OBPs were biased expressed in antennae (Figure 8),
indicating that they may be involved in recognizing odorant
molecules. Phylogenetic analysis showed that TjapOBP8 and
TjapOBP9 were clustered with DmelOBP76a/LUSH, a
pheromone-binding protein bound to the sex pheromone of D.
melanogaster (Ha and Smith, 2006). In addition, TjapOBP1,
TjapOBP2 and TjapOBP3 were clustered with DmelOBP83a/83b,
which is involved in the recognition of sex pheromone of D.
melanogaster (Shanbhag et al., 2001; Siciliano et al., 2014).
Therefore, we speculate that these proteins (TjapOBP1/2/3/8/9)
might be involved in the sex pheromone recognition process of
T. japonensis. These putative sex pheromone recognition-related

OBPs were expressed in both unmated female and male antennae.
The TjapOBP1/2 were expressed more in female than male antennae
(Figure 7). Amarawardana found that more sex pheromones were
collected from fewer virgin females than much virgin females, when
collecting sex pheromones of pear leaf midge (Dasineura pyri) and
blackcurrant midge (D. tetensi) using an air entrainment method in
a glass tube (Amarawardana, 2009). Therefore, it is hypothesized
that a virgin female gall midge may sense the content of sex
pheromone in the surrounding environment using its antennae
to regulate its own release of sex pheromone. Laboratory tests
with T. japonensis demonstrated the existence of sex pheromone
in the virgin adult female, to which males responded with the typical
sexual behaviour of raising the antennae and vibrating the wings
(Lee and Lee, 1985). The life span of adults T. japonensis is very
short, sometimes only 1–2 days, and do not feed. Adult males
emerge, take flight, and copulate with females. Females emerge
with a full complement of mature eggs, and search for host

FIGURE 8
Expression profiles of T. japonensis OBPs in different tissues of female and male. A, antennae; H, heads (without antennae); T, thoraxes; G, external
genitals; L, legs. The letters above the error bar denote significant differences (p < 0.05).
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plants on which to oviposit after mating (Duan et al., 2021). Thus,
efficient mechanism for finding mates is required. In this process,
pheromone-binding proteins and pheromone detection related ORs
are required to function.

Although most OBPs are biased and expressed in antennae,
OBPs expressed in non-antennae also play an important role in the
gustatory or olfactory sense (Shanbhag et al., 2001; Siciliano et al.,
2014). For example, the HarmOBP10, expressed in the gland of the
Helicoverpa armigera, was related to the synthesis, storage and
release of pheromones (Sun et al., 2012). Two OBPs
(DmelOBP57d and DmelOBP57e) expressed in the legs of D.
melanogaster played a crucial role in host plant localization
(Yasukawa et al., 2010). AcerOBP15 was specifically expressed in
the legs of Apis cerana cerana and was involved in taste recognition
while collecting nectar and pollen (Du et al., 2019). The PxyOBP13,
expressed in the head of the diamondback moth, Plutella xylostella,
contributed to enhancing its resistance to pyrethroids (Bautista et al.,
2015). In this study, RT-qPCR results showed that three OBPs
(TjapOBP7/13/18) were highly expressed in the leg of T. japonensis,
we speculate they may play a role in recognition of volatile or non-
volatile compounds of host plants. The TjapOBP22 was highly
expressed in the head of T. japonensis, which may be related to
taste function. The TjapOBP26 was highly expressed in the female
external genitalia of T. japonensis, we speculate it may be related to
the synthesis and transport of sex pheromone.

Compared to OBPs, CSPs were more conserved, with 40%–50%
homology between different insect species (Pelosi et al., 2006). The
CSPs were not only expressed in antennae but also widely expressed
in other parts of the body, such as heads, thoraxes, wings, ovaries,
testes, legs and abdomens (Jacquin-Joly et al., 2001; Gong et al.,
2012; Wang et al., 2017; Pelosi et al., 2018). Its functional diversity
corresponds to the wide distribution of CSPs in insects. For example,
the SexiCSP3 of female Spodoptera exigua can significantly affect egg
hatching (Gong et al., 2012). The SinfCSP19 of Sesa-mia inferens
displayed high binding affinities to both host plant volatiles and

female sex pheromones (Zhang et al., 2014). In this study, we found
that TjapCSP1 was highly expressed in the external genitalia of
females and males, and TjapCSP2 was highly expressed in both
female andmale antennae.We speculate that the two CSPsmay have
other physiological functions.

Previous studies have shown that most ORs genes of insects were
highly expressed in antennae, which played a crucial role in recognizing
odorant molecules in the peripheral olfactory system of antennae
(Montagne et al., 2015; Fleischer et al., 2018). For example,
DmelOR67d has been proven to be the receptor of the D.
melanogaster sex pheromone (Laughlin et al., 2008). For H.armigera,
HarmOR42 has been shown to specifically recognize
phenylacetaldehyde, the main volatile of angiosperm floral scent,
and was involved in finding host plants (Guo et al., 2021). The
LmigOR35 was a specific receptor for 4-vinylanisole, a
polypheromone of locusts (Guo et al., 2020). We identified 17 ORs
in the antenna transcriptomes of T. japonensis. RT-qPCR results
showed that most ORs were highly expressed in the antennae of
both unmated females and males. Phylogenetic analysis of ORs
showed that TjapORco was clustered in a highly conserved clade
with other Dipteran insects. The Orco is a widely expressed and
highly conserved odorant receptor co-receptor that interacts with
general odorant receptors to detect external odorants in insects
(Benton et al., 2006; Yan et al., 2017; Fandino et al., 2019). RT-
qPCR results showed that TjapORco was highly expressed in the
antenna of unmated male and female adults. The olfactory function
of TjapORco can be further confirmed using the EAG response assays
andRNAi technology.TjapOR4/5/7/14were clusteredwithDmelOR67d
of D. melanogaster, and TjapOR5 was relatively highly expressed in the
antennae of both female and male adults, we speculate that these ORs
may have the same function as DmelOR67d in the process of sex
pheromone recognition. The aforementioned research can provide a
reference for the functional verification of TjapORs.

Many studies revealed that the IRs genes of insects are highly
expressed in their antennae and play an important role in chemical

FIGURE 9
Expression profiles of T. japonensis CSPs in different tissues of female and male. A: antennae; H: heads (without antennae); T: thoraxes; G: external
genitals; L: legs. The letters above the error bar denote significant differences (p < 0.05).
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molecule sensing, auditory function, temperature and humidity sensing
(Benton et al., 2009; Senthilan et al., 2012; Zhang et al., 2013; Knecht
et al., 2017; Liu et al., 2018; Greppi et al., 2020). IR8a and IR25a are the
two most conserved IRs, considered co-receptors in IRs (Abuin et al.,
2011). The phylogenetic tree of Diptera IRs showed that TjapIR8a and
TjapIR25a clustered on the branches of IR8a and IR25a, respectively.
Phylogenetic analysis of GRs showed that TjapGR1 and TjapGR2 were
clustered together with DmelGR21a and DmelGR63a of D.
melanogaster, respectively. Previous studies have shown that the co-
expression of DmelGR21a and DmelGR63a regulates CO2 detection in
D. melanogaster (Jones et al., 2007). SNMP1 is supposed to be related to
the perception of pheromones in insects (Jin et al., 2008; Vogt et al.,
2009; Li et al., 2014). The functions of three SNMPs identified from the
antennal transcriptome of T. japonensis need further study.

In conclusion, this is the first report on the identification,
classification and functional analysis of chemosensory-related
genes in the antennal transcriptome of the economically important
forest pest T. japonensis. A total of 67 chemosensory-related genes
were identified, including 26 OBPs, 2 CSPs, 17 ORs, 3 SNMPs, 6 GRs,

and 13 IRs. They contribute a significant contribution to the Diptera
insect genomic database. In addition, tissue expression profile and
phylogenetic analysis showed that some of these genes might be
involved in physiological processes such as host recognition, mate
location and spawning site. This work provides a theoretical basis for
the study of the binding and sensing mechanism of the key olfactory
genes via assessing protein expression, molecular docking,
fluorescence binding competition, and RNA interference, which
would facilitate the development of highly effective attractants and
key gene silencing to control and monitor T. japonensis.

4 Materials and methods

4.1 Sample collection

Adult T. japonensis were collected in Qingdao, Shandong
Province of China. During the emergence period in the middle
of June, adults for transcriptome sequencing were collected in the

FIGURE 10
Relative expression levels of all TjapORs in different tissues of females and males. FA: female antennae, MA: male antennae, FH: female heads
(without antennae), MH: male heads (without antennae), FT: female thoraxes, MT: male thoraxes, FG: female external genitals and MG: male external
genitals. Note: the heatplot figure was built using the data set of RT-qPCR.
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infested P. thunbergii forest using a net. Besides, soil containing the
pupae was put in cages (30 cm × 30 cm × 30 cm) under room
temperature to collect unmated adults. Calling females and unmated
males were collected in cages. The collected adults were immediately
placed in liquid nitrogen, then taken back to the laboratory and
placed in the −80°C. Antennae were quickly separated using high-
precision tweezers (ideal-tek 5.SA, Switzerland) under the
microscope and immediately put into a 1.5 mL centrifuge tube
immersed in liquid nitrogen. Nearly 600 adult antennae were
collected as a biological replicate for transcriptome sequencing.
Two biological repeats were assessed for adult antennae.

4.2 RNA extraction

Total RNA was extracted from antennae for transcriptome
sequencing by M5 HiPer Insects RNeasy Mini Kit
(Mei5 Biotechnology, China) following the manufacturer’s
instruction. The Qubit 2.0 fluorometer (United States, Thermo
Fisher) was used to detect the concentration of RNA. The purity

of RNA was detected by a nanodrop spectrophotometer
(United States, Thermo Fisher). The integrity of RNA was
evaluated with Agilent 2100 Bioanalyzer (United States, Agilent
Technologies) and 1% agarose gel electrophoresis.

4.3 Transcriptome sequencing, assembly
and function annotation

The cDNA library construction and transcriptome sequencing
were conducted at a commercial company (China, Majorbio). An
Illumina TruseqTM RNA sample prep Kit (United States, San
Diego) was used to construct a cDNA sequencing library. The
cDNA library was sequenced on Illumina Novaseq 6000
(United States, Illumina, San Diego) with double-ended reads of
150 bp in length. There were two biological replicates, and each
biological replicate was sequenced three times. Fastp v0.19.5 was
used to prune and control the quality of raw double-ended reads to
produce clean and high-quality reads. Trinity v2.8.5 (https://github.
com/trinityrnaseq/trinityrnaseq) was used for de novo

FIGURE 11
Expression profiles of T. japonensis ORs in different tissues of female and male. A: antennae; H: heads (without antennae); T: thoraxes; G: external
genitals; L: legs. The letters above the error bar denote significant differences (p < 0.05).
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transcriptome assembly. TransRate v1.0.3 (http://hibberdlab.com/
transrate/) and CD-HIT v4.5.7 (http://weizhongli-lab.org/cd-hit/)
were used to further filter sequences (Li and Godzik, 2006; Smith-
Unna et al., 2016). BUSCO program v3.0.2 was used for assembly
assessment (Simao et al., 2015). The assembled transcripts were
annotated in six databases (NR, Pfam, GO, KEGG, COG, and Swiss-
Prot) with an E-value threshold < 1e−5.

4.4 Identification of chemosensory-related
genes

Putative OBPs, CSPs, ORs, IRs, GRs, and SNMPs were identified
by tBLASTn program from the antennae transcriptome of T.
japonensis. The candidate gene sequences were further confirmed
by BLASTX in NCBI (https://www.ncbi.nlm.nih.gov). The open
reading frame (ORF) and conserved domain were predicted in
NCBI (https://www.ncbi.nlm.nih.gov/orffinder/). Expression levels
were displayed as FPKM values (fragments per kilobase per million
reads) by RSEM (Li and Dewey, 2011). After performed amino acid
sequence alignment using the Muscle method (Edgar, 2004), the
phylogenetic trees of all chemosensory-related protein sequences
were constructed by the Neighbor-Joining method (Bootstrap 1000)
in MEGA 7.0 software (Kumar et al., 2016). The sequences of
olfactory genes used to build phylogenetic trees were listed in
Supplementary Material S1. The phylogenetic trees were
visualized by EvolView v2 (https://www.evolgenius.info/evolview-
v2/).

4.5 Tissue expression profile analysis

The tissue expression profiles of candidate OBPs, CSPs and
ORs were performed by RT-qPCR with CFX96 thermocycler
(United States, BIO-RAD). The antennae, heads (without
antennae), legs, thoraxes, and external genitals were collected
from unmated gall midges and every 25 female or male adults for
each biological replicate. And three biological replicates were
used for each tissue. Total RNA was extracted from different
tissues using Trizol reagent (Invitrogen, United States) following
the manufacturer’s instruction. A Maxima First Strand cDNA
Synthesis Kit (United States, Thermo Fisher) was used to
synthesize the first strand of cDNA before a RapidOut DNA
Kit (United States, Thermo Fisher) was used to remove the
gDNA. Primers for RT-qPCR were designed by Primer3
(https://bioinfo.ut.ee/primer3-0.4.0/). The amplification
efficiency of primers was calculated by the following equation:
E = [10̂ (−1/slope) −1] × 100%, in which the slope was derived by
plotting the cycle threshold (Ct) value against five 3-fold serial
dilutions. Only primers with 90%–110% amplification efficiency
were used for RT-qPCR (Primers used for RT-qPCR were listed in
Supplementary Material S1). The RT-qPCR reactions were
executed in a 20 µL reaction mixtures, containing 0.4 µL of
each forward and reverse primer (10 µM), 1 µL of cDNA,
10 μL of 2× ChamQ Universal SYBR qPCR Master Mix
(Vazyme Biotech, China), and 8.2 µL of Nuclease-free water
(USA, Thermo Fisher). The RT-qPCR condition was as
follows: denaturation at 95°C for 30 s, then 95°C for 10 s and

60°C for 30 s (40 cycles). Melting curve analysis (65°C–95°C) was
used to validate the specificity of primers. GAPDH and RPL3
(ribosomal protein L3) were selected as candidate reference genes
from the antennal transcriptome. Using RT-qPCR pre-
experiments, the genes with the most stable expression were
tested as internal reference genes in http://blooge.cn/
RefFinder/. Relative expression was performed by the 2−ΔΔCt

method with the reference gene. The expression differences
between tissues were analyzed by Tukey’s honest significant
difference test using SPSS software. GraphPad Prism 6 was
used to construct figures. Heatplot figures of TjapOBPs and
TjapORs were built in https://www.omicstudio.cn/tool/4.
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