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Background: Functional ankle instability (FAI) is the primary classification of ankle
injuries. Competitive activities have complicated movements that can result in
ankle re-injury among patients with FAI. Unanticipated movement state (MS) and
mental fatigue (MF) could also happen in these activities, which may further
increase their joint injury risk.

Objective: This study aimed to clarify the biomechanical characteristics difference
of the lower extremity (LE) between the injured side and the uninjured side among
patients with FAI when they perform unanticipated side-step cutting after MF.

Methods: Fifteen males with unilateral FAI participated in this study (age: 20.7 ±
1.3 years, height: 173.6 ± 4.4 cm, weight: 70.1 ± 5.0 kg). They used the injured side
and the uninjured side of LE to complete anticipated and unanticipated side-step
cutting before and after MF. The kinematic and kinetics data were evaluated using
three-way ANOVA with repeated measures.

Results: During patients with FAI performed anticipated side-step cutting, the
ankle stiffness of both sides showed no significant change after MF; During they
performed unanticipated side-step cutting, their injured side presented
significantly lower ankle stiffness after MF, while the uninjured side did not
have such change. In addition, after MF, the injured side exhibited increased
ankle inversion, knee valgus and LR, but the uninjured side did without these
changes.

Conclusion: Influenced by MF, when patients with FAI use their injured side of LE
to perform side-step cutting, this side LE has a higher risk of musculoskeletal
injuries such as lateral ankle sprains and anterior cruciate ligament injury. The ankle
stiffness of the injured side will be further reduced when patients with FAI perform
unanticipated side-step cutting, which increases ankle instability and the risk of re-
injury.
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1 Introduction

Lateral ankle sprain is the most common type of sports injury in
the lower extremity (LE), with an incidence rate of approximately
7.3%; it is mostly caused by abrupt excessive ankle inversion (Roos
et al., 2017). If the injured ankle is not properly treated after the first
sprain, it will continue to be negatively affected by chronic pain and
local edema. Patients might be unable to control the injured ankle
sufficiently, increasing its re-injury risk and eventually leading to
functional ankle instability (FAI) (Cao et al., 2019).

FAI is the primary classification of ankle instability in clinical,
and it can be attributed to the loss of proprioception and
neuromuscular deficits in the injured ankle (Steib et al., 2013).
FAI is typically accompanied by abnormal joint sensation and
loss of normal motion control of the ankle (Freeman et al., 1965;
Marinho et al., 2017). The abnormal joint sensation usually occurs in
patients with FAI (Freeman et al., 1965; Arnold et al., 2009; Lysdal
et al., 2022), which refers to frequently unconscious episodes of
hyper-inversion and subsequent “giving way” of the ankle likely to
occur (Tropp, 2002; Takeda et al., 2021). Such abnormal ankle
motionmay aggravate the risk of ankle re-injury in patients with FAI
during sports. Side-step cutting is one of the complex movements
commonly used in competitive activities, and its main objective is to
dodge the defensive player through sudden direction changes while
running (Besier et al., 2001). This movement usually generates an
impact on the ankle joint that is three times more than one’s body
weight, and the generated instantaneous pressure is largely borne by
the LE. Recent studies have shown that patients with ankle instability
exhibit significant biomechanical differences in side-step cutting
performance compared with healthy individuals, especially the
significantly greater ankle internal rotation that may result in
ankle re-injury (Simpson et al., 2020a; Simpson et al., 2020b).

When humans perform movements, they need to fully account
for the external environment, and follow-up actions will be
preplanned under the current movement state (MS) (Dey and
Schilling, 2022). MS in competitive sports is constantly changing.
Participants do not know the direction or route of action in advance
and need to make immediate adjustments based on the instant
feedback from the sensory system (Besier et al., 2001). Sudden
unanticipated disturbances can evoke psychological and
physiological responses to such stimulus, namely, the startle
reflex. The main function of the startle reflex is to help the body
avoid external stimulation and increase the sympathetic nervous
system activity to prepare for subsequent actions (Yeomans et al.,
2002). But at the same time, because the startle reflex is an
autonomous defensive reflex and is not controlled by the will, its
appearance is likely to lead to the deformation of the standard
action. In unanticipated MS, the human body cannot quickly and
accurately make corresponding postural adjustments like
anticipated MS, resulting in involuntary changes in
neuromuscular activities. Some scholars pointed out that
unanticipated side-step cutting increases the knee valgus angle
and the ligament injury risk (Brown et al., 2014). Patients with
FAI have a diminished capacity to use their injured side of LE to
maintain balance. They cannot adapt to the external environment
and adjust their posture in time (Kazemi et al., 2017). They might be
more likely to suffer from injury when performing unanticipated
side-step cutting. Analyzing the biomechanical characteristics of

these patients who perform unanticipated side-step cutting can
provide a theoretical basis and references for preventing sports
injury.

Patients with ankle instability experience difficulty maintaining
postural balance after prolonged and intensive exercise due to
proprioceptive deficits and weak ankle motion control (Gribble
et al., 2007), making them more at risk of excessive ankle
torsion. Both mental fatigue (MF) and muscle fatigue caused by
long-term exercise could reduce sports performance quality. But
different from muscle fatigue, MF is a psychobiological state caused
by prolonged periods of demanding cognitive activity (Van Cutsem
et al., 2017; Le Mansec et al., 2018; Meeusen et al., 2021),
emphasizing the difficulty of CNS signal integration and the
increased cognitive burden (Li et al., 2015). Previous studies have
revealed that individuals are unable to concentrate and maintain
efficiency in working after MF (Ream and Richardson, 1996) and
also have difficulty changing coping strategies in the face of the
external environment or in performing movement tasks (Lorist
et al., 2005; Pageaux and Lepers, 2018). After moderate-to low-
intensity aerobic exercise, jeopardized behavioural and cognitive
control induced by MF disables the general muscle contraction even
though muscles are without fatigue (Olson et al., 2016). Although
both MF and MS have been proven to be potential factors affecting
sports safety, most studies only analyzed the movement
performance of patients with FAI when they complete the
anticipated side-step cutting (Dayakidis and Boudolos, 2006;
Suda and Sacco, 2011). A few studies have analyzed the
biomechanical performance of these patients while they perform
the unanticipated step-cutting task (Kim et al., 2021a; Kim et al.,
2021b), but scholars have not further considered the possible effects
of MF in this state.

The current study is aimed to clarify the biomechanical
characteristics of the LEs of patients with FAI during anticipated or
unanticipated side-step cutting before and after MF. We hypothesized
the following: 1. The patients with FAI show different kinematic and
kinetic characteristics between the injured and the uninjured sides
during side-step cutting; 2. The appearance of MF or unanticipated
movement affects the kinematic and kinetic characteristics of the
injured side during side-step cutting; 3. Influenced by MF, the
injured side could show obvious biomechanical characteristics
changes during these patients perform unanticipated side-step
cutting in comparison with the uninjured side.

2 Materials and methods

2.1 Participants

Fifteen males with unilateral FAI (age: 20.7 ± 1.3 years, height:
173.6 ± 4.4 cm, weight: 70.1 ± 5.0 kg) who frequently participated in
sports (i.e., at least three times a week) and had good side-step
cutting skills, were recruited for this study. The dominant LE of all
the participants was right determined by kicking a ball; it was also
the injured side. The inclusion criteria for patients with FAI were as
follows. (1) The unilateral ankle had suffered at least one sprain in
the past year, and the patient experienced a feeling of weakness or
instability. (2) The score in the Cumberland Ankle Instability Tool
was below 24 (Donahue et al., 2011); (3) The patient had no critical
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LE injury history, including fractures or serious orthopedic injury
(Wu et al., 2022), except for ankle sprain; (4) The anterior drawer
test and the talar tilt test were negative (Kaminski et al., 1999); (5)
Only one LE side suffered from FAI. The exclusion criteria were as
follows: (1) Bilateral ankle sprains (Wang et al., 2022); (2) Acute
pathological symptoms of LE; (3) History of previous surgeries in
the LE (Kweon et al., 2022); (4) History of equilibrium and balance
control disorder (Wu et al., 2022); (5) Had congenital feet, ankles,
knees, pelvis and spine deformities. This study was approved by
Ethics Committee of Soochow University, and all the participants
had written consent forms before the experiment.

2.2 Side-step cutting

The design of the side-step cutting task followed that of previous
research (Kim et al., 2014; Liew et al., 2021). In summary, a
minimum of 8 m run-up distance was provided to participants to
reach the desired speed (4.0 ± 0.5 m/s). Participants stepped their
foot on the fixed position of the force platform (90 cm × 60 cm ×
10 cm) in the mode of rear foot landing. Then they quickly ran away
from the force platform towards the cutting direction. When

participants completed the left-direction side-step cutting, they
must complete the cutting task by the right side of LE. On the
contrary, they needed to use the left side of LE during the cutting
direction is right. All participants were required to run at least three
steps before decelerating and stopping.

Side-step cuttings were performed under anticipated and
unanticipated states in sequence. A light-emitting diode (LED) monitor
with four green bulbs in the arrow shape was set in behind the force
platform to give the side-step cutting direction order. The left (right) arrow
represented participants should perform maximum-effort side-step
cutting to the left (right) 45° direction. The upper arrow representative
continued to run forward,while the lower arrow representative emergently
stopped. For the anticipated state, the bulbwith the left (or right) arrowhas
lit before participants runup. For the unanticipated state, the LEDmonitor
was connected to the infrared sensing device. Only when the participants
passed the infrared sensing device was one of the four arrow bulbs applied
through a computer program randomly lit. The layout of experimental site
is shown in Figure 1.

2.3 Induction and assessment of MF

The Stroop task has been proven effective in inducingMF (Mangin
et al., 2022). In the current study, a 45-min Stroop task included four
words in Chinese (red, yellow, blue, and green) that were displayed
randomly in one of the four colors. The task was presented in an event-
related design. It comprised 675 trials that included 225 congruent trials
(themeaning of the colormatched the color) and 450 incongruent trials
(the meaning of the color did not match the color). Each trial began
with a 500 ms fixation cross, followed by the stimulus presented for 2 s
and then the blank for 1.5 s. The subjects were required to press one of
the four keys to indicate the color of the ink while disregarding the
meaning of the color word.

As a complex probe of attention that combines both visual
selectivity and motor response, letter cancellation task (LCT) can
reflect the participants’ changes in attention, attention span, and
vigilance (Casagrande et al., 1997; Casagrande et al., 1999; Pradhan
et al., 2018), and can be used in neurological status assessment
(Geldmacher, 1998). In this study, the degree of participants’ MF
before and after receiving the 45-min Stroop task were assessed by
LCT. Participants were required to search for and mark target letters
as quickly and accurately as possible (Casagrande et al., 1997).
Target letters were randomly placed within a 20 × 53 matrix of
capital letters (font: Time New Roman, size: 12) printed on an A4-
size paper. Participants were ordered to complete LCT as soon as
possible. Different matrices of capital letters were used to analyze the
changes in the level of MF in each participant before and after they
received the Stroop task. Whether the changes in the performance of
LCT in participants were significantly worsened were used to
determine their appearance of MF.

2.4 Experimental procedure

All the participants were asked to refrain from strenuous
exercises 24 h before the formal test. Before data collection, they
performed a warm-up exercise that comprised of a 5-min jogging on
a treadmill at their preferred speed (Zebris FDM-T, Germany).

FIGURE 1
Layout of experimental site.
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All participants first completed three successful trials of side-
step cutting movement under both anticipated and unanticipated
conditions, performed the Stroop task to induce MF, and then
repeated three successful trials of the same side-step cutting
movement under the two testing conditions. Data were collected
and recorded during each trial. A successful trial was defined as a
run-up speed within 4.0 ± 0.5 m/s. Side-step cutting should realize
the correct footfalls and land on the point. The cutting angle must be
within 45° ± 3°. The mean value of three trials was used for
comparative analysis. Finally, the successful 45° side-step cutting
of the uninjured side and injured side under different MSs before
and after MF was analyzed and compared. Running forward and
emergent stops were used as interference items under unanticipated
MS, and their trial data were not considered in the subsequent
analysis and comparison.

2.5 Data processing

Kinematic data were captured using a motion analysis system
that comprised eight infrared cameras (Vicon Motion Analysis,
United Kingdom) by tracking 16 infrared reflective balls (reflective
markers) with a diameter of 14 mm at 100 Hz. The infrared
reflective balls were stick to participants’ corresponding parts
following the scheme suggested by the Plug-in Gait model.
Kinetic data were capture using a 3D force plate (KISTLER,
Switzerland) at 1,000 Hz, which was synchronized with motion
analysis system. Kinematic and kinetic data were firstly processed
by Vicon Nexus 2.1.2. Both kinematic and kinetic data were then
imported to Visual3D (Version 6, C-Motion, Inc, United States) for
further processing. The following data were analyzed: peak joint
angles on the sagittal and frontal planes (Kim et al., 2014); ground-
reaction force (GRF), including peak vertical GRF (vGRF), peak
medial GRF (mGRF), peak horizontal GRF (hGRF); time-to-peak
ground reaction force (T_GRF), including time-to-peak vertical
GRF (T_vGRF), time-to-peak medial GRF (T_mGRF), time-to-
peak horizontal GRF (T_hGRF), and stance duration; ankle

stiffness and loading rate (LR). GRF data were standardized by
each participant’s body weight (BW).

Working efficiency can comprehensively evaluate the
performance of participants when completing LCT (Yang, 1989).
We used working efficiency to analyze the fatigue degree of the
central nervous system (CNS) to determine whether MF was
successfully induced. Working efficiency was calculated using
Equation 1.

A � c − w( )
c + o( )

E � 100pA/T (1)
A denotes the accuracy of cancellation, c represents the number

of cancelled symbols, w represents the number of wrongly cancelled
symbols, o represents the number of missed cancelled symbols, T is
the time taken to cancel symbols, and E indicates working efficiency.

LR can be raised due to load accumulation caused by abnormal
movement patterns, which are closely associated with injury. LR was
calculated using Equation 2.

LR � vGRF/T vGRF (2)
Ankle joint stiffness is the ratio of the change of ankle joint

moment and ankle joint angular displacement from the moment of
touchdown to the moment of maximum ankle dorsiflexion (Kim
et al., 2019). In the current study, we used the ankle stiffness of
different LEs to quantify the interaction between MF and MS. Ankle
stiffness was normalized to each participant’s BW. Ankle stiffness
was calculated using Equation 3.

Kankle � ΔMankle/Δθankle (3)
ΔM is defined as the change in ankle moment, and Δθ represents

the angular displacement in ankle dorsiflexion (Hamill et al., 2014).

2.6 Statistical analysis

Data were expressed as mean and standard deviation (SD). SPSS
26.0 software (SPSS Inc, Chicago, IL, United States) was used for
statistical analysis. Normality tests were conducted via the
Kolmogorov–Smirnov test. Matched sample t-test was used to
assess the working efficiency of the participants before and after
the Stroop task. A three-way (2 LE × 2 MF × 2 MS) analysis of
variance with repeated measures was performed for kinematic and
kinetic variables. Interaction effects will be investigated prior. Main
effects were considered only if non-significant interaction effects
were found. In case a significant interaction was detected, simple
effects analysis was performed (Keppel et al., 1992). Statistical
significance was set at 0.05 for all variables.

3 Results

Figure 2 displays the results of the change in the working
efficiency of LCT before and after the Stroop task. All the
participants demonstrated a remarkable decrease in work
efficiency after the Stroop task (t = 3.097, p = 0.008), indicating
that MF was successfully induced.

FIGURE 2
Changes in work efficiency of LCT in participants before and after
Stroop task.
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TABLE 1 Maximum Angles of the hip, knee, and ankle joints during side-step cutting.

Variables (+/−) Injured side Uninjured side Main effect Interaction effect

Anticipated
movement

Unanticipated
movement

Anticipated
movement

Unanticipated
movement

LE MF MS LE ×
MF

LE ×
MS

MF ×
MS

LE ×
MF × MS

Ankle dorsiflexion/plantarflexion (degree)

Before MF 18.8 (5.6) 19.2 (5.7) 20.2 (5.9) 23.5 (6.1) 0.015* 0.002** 0.013* 0.971 0.574 0.424 0.318

After MF 20.1 (4.8) 23.7 (4.9) 23.3 (4.3) 26.2 (4.0)

Ankle eversion/inversion (degree)

Before MF −10.5 (5.8) −10.3 (3.1) −10.2 (6.2) −10.6 (4.6) 0.118 0.202 0.296 0.040* 0.608 0.300 0.358

After MF −11.6 (5.9) −15.1 (7.4) −9.3 (5.0) −10.0 (4.2)

Knee flexion/extension (degree)

Before MF 45.7 (5.1) 51.9 (6.4) 47.6 (8.0) 51.5 (6.4) 0.681 0.971 0.001** 0.864 0.984 0.975 0.480

After MF 47.1 (7.5) 51.1 (5.3) 46.2 (11.2) 52.5 (8.8)

Knee valgus/varus (degree)

Before MF 3.7 (5.0) 4.5 (3.1) 3.6 (6.2) 4.3 (4.1) 0.043* 0.032* 0.057 0.043* 0.333 0.434 0.417

After MF 6.1 (4.6) 9.7 (4.5) 3.7 (5.0) 4.4 (5.2)

Hip flexion/extension (degree)

Before MF 42.9 (13.7) 49.2 (14.4) 48.6 (9.6) 50.3 (9.3) 0.210 0.973 0.098 0.971 0.811 0.684 0.341

After MF 45.5 (11.2) 46.6 (15.3) 47.4 (9.9) 51.2 (4.9)

Hip abduction/adduction (degree)

Before MF 4.3 (3.2) 6.6 (7.6) 4.5 (7.2) 8.1 (4.8) 0.803 0.351 0.025* 0.648 0.146 0.877 0.538

After MF 4.0 (6.0) 5.7 (4.6) 6.8 (6.1) 7.0 (5.7)

“*” means significance (p< 0.05), “**” means very significance (p< 0.01). Abbreviations: LE: lower extremity, MF: mental fatigue, MS: movement state.

Bold value is the appearance of statistical significance.
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TABLE 2 Peak ground reaction force, time to peak ground reaction force, and stance duration during side-step cutting.

Variables Injured side Uninjured side Main effect Interaction effect

Anticipated
movement

Unanticipated
movement

Anticipated
movement

Unanticipated
movement

LE MF MS LE × MF LE × MS MF × MS LE ×
MF × MS

vGRF (BW)

Before MF 3.20 (0.75) 2.76 (0.79) 3.38 (0.65) 2.63 (0.71) 0.463 0.593 0.003** 0.372 0.436 0.229 0.741

After MF 3.27 (0.51) 3.09 (0.91) 3.09 (0.94) 2.81 (0.75)

mGRF (BW)

Before MF 0.96 (0.29) 0.71 (0.17) 0.83 (0.21) 0.73 (0.18) 0.892 0.330 0.000** 0.136 0.060 0.476 0.589

After MF 0.88 (0.14) 0.62 (0.16) 0.90 (0.10) 0.70 (0.22)

hGRF (BW)

Before MF 1.06 (0.26) 1.18 (0.22) 1.21 (0.21) 1.23 (0.20) 0.002** 0.836 0.509 0.593 0.474 0.418 0.784

After MF 1.08 (0.25) 1.10 (0.29) 1.25 (0.23) 1.21 (0.26)

T_vGRF (s)

Before MF 0.049 (0.011) 0.043 (0.015) 0.055 (0.011) 0.042 (0.011) 0.375 0.321 0.003* 0.976 0.148 0.196 0.906

After MF 0.044 (0.008) 0.043 (0.014) 0.049 (0.017) 0.043 (0.012)

T_mGRF (s)

Before MF 0.226 (0.053) 0.212 (0.077) 0.254 (0.054) 0.208 (0.057) 0.391 0.092 0.586 0.977 0.162 0.079 0.980

After MF 0.223 (0.038) 0.256 (0.083) 0.249 (0.089) 0.252 (0.070)

T_hGRF (s)

Before MF 0.095 (0.023) 0.101 (0.037) 0.105 (0.021) 0.097 (0.027) 0.812 0.089 0.563 0.775 0.397 0.751 0.708

After MF 0.110 (0.020) 0.107 (0.037) 0.112 (0.041) 0.105 (0.029)

Stance duration (s)

Before MF 0.379 (0.087) 0.387 (0.139) 0.392 (0.083) 0.378 (0.102) 0.907 0.096 0.502 0.987 0.610 0.495 0.941

After MF 0.399 (0.070) 0.434 (0.140) 0.409 (0.144) 0.429 (0.119)

“*” means significance (p< 0.05), “**” means very significance (p< 0.01). Abbreviations: LE: lower extremity, MF: mental fatigue, MS: movement state.

Bold value is the appearance of statistical significance.
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Table 1 presents the results in comparison of the peak joint
angles between the injured side and the uninjured side. LE (F =
6.704, p = 0.015, η2 = 0.193), MF (F = 11.512, p = 0.002, η2 = 0.291),
and MS (F = 7.100, p = 0.013, η2 = 0.202) showed significant main
effects on ankle dorsiflexion. LE × MF exhibited a significant
interaction effect on ankle inversion (F = 4.624, p = 0.040, η2 =
0.142). The simple effect analysis showed that the injured side had
significantly increased ankle inversion after MF (p = 0.021);
However, the uninjured side did not have a similar change (p =
0.566). MS showed a significant main effect on knee flexion (F =
13.486, p = 0.001, η2 = 0.325). LE (F = 4.475, p = 0.043, η2 = 0.138),
and MF (F = 5.094, p = 0.032, η2 = 0.154) showed significant main
effects on knee valgus. LE × MF showed a significant interaction
effect on knee valgus (F = 4.516, p = 0.043, η2 = 0.139). The simple
effect analysis showed that the injured side had significantly
increased knee valgus after MF (p = 0.003), while the uninjured
side did not exhibit such a change (p = 0.926). MS exhibited a
significant main effect on hip abduction (F = 5.607, p = 0.025, η2 =
0.167).

Table 2 presents the results in comparison of GRF, T_GRF and
stance duration between the injured side and the uninjured side. MS
showed significant main effects on vGRF (F = 10.313, p = 0.003, η2 =
0.269), mGRF (F = 55.882, p < 0.001, η2 = 0.666), and T_vGRF (F =
10.485, p = 0.003, η2 = 0.272). LE presented a significant main effect
on hGRF (F = 11.198, p = 0.002, η2 = 0.286). No interaction effects
were observed in this table.

Table 3 provides the results in comparison of ankle stiffness and
loading rate between the injured and the uninjured side. LE (F =
7.523, p = 0.011, η2 = 0.212), MF (F = 17.738, p < 0.001, η2 = 0.388)
and MS (F = 10.177, p = 0.003, η2 = 0.267) have significant main
effects on ankle stiffness; LE × MS (F = 4.659, p = 0.040, η2 = 0.143),
and LE ×MF ×MS (F = 4.373, p = 0.046, η2 = 0.135) have significant
interaction effects on ankle stiffness. The simple effect analysis of
LE × MF × MS showed that during anticipated cutting, both sides
showed no significant change in ankle stiffness after MF (p = 0.752;
p = 0.399); During unanticipated cutting, the injured side presentedTA
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FIGURE 3
Change trend in ankle stiffness among patients with functional
ankle instability using the injured and the uninjured sides lower
extremities perform unanticipated side-step cutting before and after
mental fatigue. “**” means a very significant statistical difference
compared with before mental fatigue (p < 0.01).
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significantly decreased ankle stiffness after MF (p < 0.001), whereas
the uninjured side did not exhibit such change (p = 0.963) (Figure 3).

LE (F = 14.588, p = 0.001, η2 = 0.343) and MF (F = 43.942, p <
0.001, η2 = 0.611) showed significant main effects on LR. LE × MF
exhibited a significant interaction effect on LR (F = 13.769, p = 0.001,
η2 = 0.330). The simple effect analysis showed that the injured side
had higher LR after MF (p < 0.001), but the uninjured side did not
show changes (p = 0.069).

4 Discussion

In this study, we found the biomechanical characteristics
difference of the lower extremity (LE) between the injured side
and the uninjured side among patients with FAI when they
performed side-step cutting. This finding approved our
hypothesis 1; Mainly MF but not MS would affect these patients’
biomechanical characteristics of LE. This finding partly approved
our hypothesis 2; Consistent with our hypothesis 3, we observed that
during unanticipated side-step cutting, the ankle stiffness of the
injured side decreased significantly after MF. Since we observed
interaction effects, we mainly discussed these findings next.

Consistent with the previous study, MF induced by the Stroop test
negatively affected the kinematic performance among elite sporters
(Veness et al., 2017); our results showed that MF induced by the Stroop
test influenced the normal motion control of patients with FAI in their
ankle and knee in the front plane of the injured side. The side-step
cutting movement has high requirements for the non-sagittal
movement of the LE when landing (Zhou et al., 2021). The function
of muscles in controlling the ankle in patients with FAI is impaired
(Delahunt et al., 2006), and Koshino et al. (2016) found that the ankle
inversion angle of patients with ankle instability was significantly higher
than that of healthy individuals when completing side-step cutting. Our
results are consistent with them and showed that the injured side had
increased ankle inversion compared to the uninjured side after MF. If
the ankle inversion of patients with ankle instability is reduced while
performing 45° side-step cutting, representing they take prudent and
conservative sports strategies to avoid ankle injury (Son et al., 2017;
Fuerst et al., 2018). For patients with FAI, they must exert more energy
to make their CNS consciously control ankle stability. Reduced CNS
control caused by MF inhibits such protection and finally increases
ankle inversion. Similarly, Pageaux et al. (2014) found that 30 min of
mental exertion involving response inhibition reduces subsequent self-
paced endurance performance, negatively affecting the normal motion
control of LE. Increased ankle inversion indicates that the lateral ankle
musculature of patients with FAI is unable to control frontal-plane
motion eccentrically when the lateral ankle is loaded during ground
contact, which leads to the ankle complex giving way to excessive
inversion and exposing the injured side to an increased risk of recurrent
lateral ankle sprain during side-step cutting (Simpson et al., 2020b).

Our results also showed that the injured side had increased knee
valgus compared with the uninjured side afterMF. This result is in line
with the research view of David et al. (2017), that is, the increased knee
valgus will better meet the needs of people who suffer from ankle
injuries. In the current study, all patients with FAI were ordered to
adopt the rear foot landing mode. vGRF of the rear foot landing is
3.4 times that of the front foot landingmode (Kovács et al., 1999), and
the knee joint turn outward can better absorb vGRF (Mizuno et al.,

2009) to reduce the ankle needs to bear when performing movements.
The increased knee valgus of the injured side proved that the
appearance of MF affected and adjusted the GRF distribution of
LE, reducing the ankle burden. However, Son et al. (2017) have found
that although elastic ankle protection can reduce the energy
absorption of the ankle, which protects the damaged ankle joint,
the negative impact still has on the knee joint. Most patients with
ankle instability reported more symptomatology in the knee and
worse knee joint health than healthy individuals (Kosik et al., 2020).
Increased knee valgus can induce anterior cruciate ligament injury
during side-step cutting (McLean et al., 2005; David et al., 2017).
Hence, influenced by MF, patients with FAI rely more on changing
knee motion to cushion the GRF of side-step cutting, but this further
aggravates the risk of knee joint injury.

In this study, the injured side showed higher LR afterMF, consistent
with Tajdini et al. (2022) that patients with ankle instability exhibited a
greater inter-limb asymmetry of LR, and the LR of their injured side was
higher than healthy individuals during walking. As we found in
kinematics, the FAI population after MF cannot effectively control
the ankle inversion angle. Greater ankle movement control can decrease
LR (Decker et al., 2002), reducing the impact of stress on soft tissues
during landing. The impaired ability in injured ankle motion control of
patients with FAI might be the main reason for the high LR. Besides,
some scholars (Le Mansec et al., 2018) pointed out that MF directly
affects the depth and speed of visual processing before attention. These
changes negatively affect the precision and integrity of automatic visual
processing, influencing the subsequent concentrated attention stage
processing and ultimately leading to error task execution (Rozand
et al., 2015; Smith et al., 2016). In side-step cutting, the human body
must brake to reduce the forward speed when touching the ground first
and then transfer part of the forward speed to the side speed by pushing
the ground in the opposite direction of the side cut, accelerating the push
to achieve the purpose of a side cut. All the actions mentioned above
should be completed quickly. Due to the damaged muscle spindle and
around receptors of the injured ankle, nerve signal transmission speed
from the joint to the CNS was directly impeded. The appearance of MF
will further negatively influence the signal process of CNS, and sensory
information will not be processed in time. These patients adopt an
uncomplicated buffering strategy to complete side-step cutting, which
requires less time, and posture preparation process of the injured side,
but soft tissues or muscles of the injured side of LE are not fully
mobilized to cushion the load during side-step cutting, making raised
LR, which will cause stress fracture and plantar fasciitis (Venesky et al.,
2006).

When the posture of the human body changes, the adjustment of
LE stiffness is the first thing to start (Liu et al., 2006). If joint stiffness
cannot effectively adjust the impact and influence generated by MS, it
will inevitably reduce the quality of movement performance, such as
the deformation of LE movements during landing (Flanagan and
Harrison, 2007; Balasundaram and Rajan, 2018), leading to
musculoskeletal injury. During the anticipated MS, humans can
prepare enough to adjust the physical characteristics of soft tissues
by actively activating muscles, the neuromuscular system will adjust
muscle tuning according to the MS (Nigg and Wakeling, 2001), and
the stiffness and motion of joints will also be adjusted accordingly to
activate the joint soft tissue and reduce the risk of injury (Nigg and
Liu, 1999). Increased ankle stiffness can be used to stabilize the body
and prevent excessive joint motion (Brughelli and Cronin, 2008; Li
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et al., 2021). In this study, MF had no significant influence on ankle
stiffness of the injured side when patients with FAI performed
anticipated side-step cutting. Consistent with our results, Simpson
et al. (2020a) found that less lateral center of pressure progression and
increased tibialis anterior activation were observed in patients with
ankle instability, reflecting a protective movement strategy during
anticipated side-cutting to avoid recurrent injury. Therefore, when
patients with FAI use their injured side to perform the anticipated
side-step cutting, the appearance of MF could not result in an
obviously negative influence on the ankle joint.

However, the amount of time for participants tomake appropriate
postural adjustments before performing the unanticipated cutting task
is smaller than the anticipated state (Besier et al., 2001), and their
movement plan must be immediately adjusted in the CNS based on
current MS. In this process, the thinking decision is dominant in their
brain, but their movement control is inevitably weakened. The
appearance of MF will further delay the thinking decision process,
leading to abnormal action control (Pageaux et al., 2014). We found
that, influenced by MF, the injured side had significantly decreased
ankle stiffness when these patients performed unanticipated side-step
cutting. This finding is consistent with Kim et al. (2019) that the ankle
stiffness of patients with ankle instability is lower than that of healthy
individuals. Brown et al. (2022) revealed that the decreased ankle
stiffness of the injured side indicates its diminished ability to respond
to movement loading. A compliant joint contributes more to the
attenuation of the joint load than a stiffer joint (Hamil et al., 2014),
and such altered neuromechanics in patients with ankle instability
means redistributing energy absorption from the distal (ankle) to the
proximal (knee and hip) joints (Kim et al., 2019). The ankle stiffness
change might be a protection strategy used by patients with FAI
(Sarvestan et al., 2021) tomodulate impact forces during this task. But
due to side-step cutting being a complex and intense exercise, the
decreased ankle stiffness alsomeans their ankle stability will be weaker
in this task. A previous study revealed that patients with ankle
instability demonstrated alterations in landing/cutting movement
strategies. These patients have a higher susceptibility to foot
placement for lateral ankle sprains (Kim et al., 2019).
Consequently, influenced by MF, when patients with FAI use their
injured side to perform unanticipated side-step cutting, their injured
ankle easily suffers from re-injury.

5 Clinical implications

This study demonstrated that compared with MS, MF is more
likely to lead to patients with FAI having biomechanical
characteristics changes in the injured side of LE. Proper physical
exercise is very important to improve the lower limb joint control of
this group of people. Balance training can improve the
neuromuscular control ability of people with FAI when
completing dynamic tasks, thus improving test performance (Wu
et al., 2022). The findings of kinematics suggest that after MF,
patients with FAI have control obstacles in sagittal control of ankle
and knee joints. Progressive hop-to-stability balance (PHSB)
training is a balance training method that emphasizes dynamic
stability in predictable or unpredictable jump direction changes,
take-off and landing plane and dynamic touch tasks. Previous
studies have applied the PHSB training method proposed by

McKeon et al. (2008) to train patients with ankle instability and
have suggested that PHSB training is of great help in improving the
posture control of people with ankle instability (McKeon et al., 2009;
Anguish and Sandrey, 2018). Ardakani et al. (2019) further found
that after patients with ankle instability received a 6-week hop-
stabilization training program, they had better control of frontal-
plane joint angles at the ankle and knee, which reduced the joint
injury risk. This finding suggests that PHSB might greatly improve
the kinematic performance of patients with FAI during side-step
cutting and minimize the influence of MF.

Besides, influenced by MF, when patients with FAI use their
injured side to perform side-step cutting, this side has higher LR
than their uninjured side. Since this population relies heavily on the
feedforward function to adjust posture (Delahunt et al., 2006),
treatment personnel can increase their feedforward function
training to maintain the posture control ability of these patients
and prevent potential injuries induced by abnormal kinetic changes
after MF. Some scholars have reported that gait retraining programs
that utilize biofeedback can reduce high LR caused by abnormal
movement patterns (Phan et al., 2017), which may be an effective
training method for these patients to reduce the higher LR of the
injured side. In addition, when performing unanticipated side-step
cutting, the changes in ankle stiffness of the injured side ankle after
MF may induce injury risk to the injured ankle. Treatment
personnel should delay the emergence of MF in patients with
FAI to avoid the possibility of fatigue injury to these patients’
ankles. Some scholars (Chen and Zhang, 2021) have proposed
that moderate but not excessive exercise can improve the level of
brain metabolism and balance the secretion of neurotransmitters,
improving cognition. Designing targeted exercise treatment plans
for this population is worth exploring in the future.

6 Limitation

This study still has some limitations. Although this study tries to
restore the performance of patients with FAI when they complete
the side-step cutting in a natural sports environment and analyze
their biomechanical characteristics, the number of samples is still
small, which may lead to a decline in the effectiveness of some
results. Besides, ankle muscles play a vital role in postural stability.
Since electromyography was not used in this study, the activation of
those muscles is still not apparent during the experimental process,
and relevant indexes of electromyography can be considered in
future research.

7 Conclusion

In conclusion, MF and MS affect the LE biomechanical
characteristics of patients with FAI during side-step cutting.
Influenced by MF, patients with FAI will adopt protective
strategies by increasing knee valgus to buffer GRF when using
their injured side of LE to complete side-step cutting. However,
an increased load and a higher risk of musculoskeletal injuries such
as lateral ankle sprains and anterior cruciate ligament injuries
remain on this side LE. In particular, when their brain is
fatigued, and patients with FAI perform unanticipated side-step
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cutting using the injured side of LE, ankle stiffness considerably
decreases, which enhances the possibility of bone and soft tissue
damage. To improve the safety of the joints of patients with FAI
during competitive sports, we suggest these patients should avoid
performing unanticipated side cutting after MF. Athletic trainers
and treatment personnel need to take appropriate treatment to
improve these patients’ cognition to delay the occurrence of MF.
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